Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly
Abstract
:1. Introduction
2. Results
2.1. Principle and Characterization of Label-Free Impedimetric Aptasensor
2.2. The Optimization of Fabrication for Label-Free Impedimetric Aptasensor
2.3. Detectability of the Label-Free Impedimetric Aptasensor
2.3.1. Detection of OTA by Label-Free Impedimetric Aptasensor
2.3.2. Performance Comparison with Reported Label-Free Aptasensor
2.4. Specificity of Label-Free Impedimetric Aptasensor
2.5. Practicability of Label-Free Impedimetric Aptasensor
2.5.1. Application of Label-Free Impedimetric Aptasensor in Grape Commodities
2.5.2. Application of Label-Free Impedimetric Aptasensor in Grape
3. Conclusions
4. Materials and Methods
4.1. Chemical Reagents
4.2. Apparatus
4.3. Preparation of Gold Electrode
4.4. Preparation of Label-Free Impedimetric Aptasensor
4.5. Electrochemical Measurements
4.6. Sample Preparation
Author Contributions
Funding
Conflicts of Interest
References
- Felsöciová, S.; Rybárik, L.; Tancinová, D.; Masková, Z.; Kacániová, M. Microfungi and mycotoxins of grapes from eastern Slovak wine region. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 12–15. [Google Scholar] [CrossRef]
- García-Cela, E.; Crespo-Sempere, A.; Gil-Serna, J.; Porqueres, A.; Marin, S. Fungal diversity, incidence and mycotoxin contamination in grapes from two agro-climatic Spanish regions with emphasis on Aspergillus species. J. Sci. Food Agric. 2015, 95, 1716–1729. [Google Scholar] [CrossRef] [PubMed]
- Valero, A.; Marín, S.; Ramos, A.J.; Sanchis, V. Ochratoxin A-producing species in grapes and sun-dried grapes and their relation to ecophysiological factors. Lett. Appl. Microbiol. 2005, 41, 196–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khoury, A.; Atoui, A. Ochratoxin A: General overview and actual molecular status. Toxins 2010, 2, 461–493. [Google Scholar] [CrossRef]
- El Khoury, A.; Rizk, T.; Lteif, R.; Azouri, H.; Delia, M.L.; Lebrihi, A. Occurrence of ochratoxin A-and aflatoxin B1-producing fungi in Lebanese grapes and ochratoxin A content in musts and finished wines during 2004. J. Agric. Food Chem. 2006, 54, 8977–8982. [Google Scholar] [CrossRef] [PubMed]
- Gil-Serna, J.; Vázquez, C.; González-Jaén, M.T.; Patiño, B. Wine Contamination with Ochratoxins: A Review. Beverages 2018, 4, 6. [Google Scholar] [CrossRef]
- O’Brien, E.; Dietrich, D.R. Ochratoxin A: The continuing enigma. Crit. Rev. Toxicol. 2005, 35, 33–60. [Google Scholar] [CrossRef] [PubMed]
- Marín, S.; Cano-Sancho, G.; Sanchis, V.; Ramos, A.J. The role of mycotoxins in the human exposome: Application of mycotoxin biomarkers in exposome-health studies. Food Chem. Toxicol. 2018, 121, 504–518. [Google Scholar] [CrossRef] [PubMed]
- Pohland, A.E.; Nesheim, S.; Friedman, L. Ochratoxin A: A review (technical report). Pure Appl. Chem. 1992, 64, 1029–1046. [Google Scholar] [CrossRef]
- Krogh, P. Role of ochratoxin in disease causation. Food Chem. Toxicol. 1992, 30, 213–224. [Google Scholar] [CrossRef]
- Aresta, A.; Vatinno, R.; Palmisano, F.; Zambonin, C.G. Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection. J. Chromatogr. A 2006, 1115, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, E.; Ibáñez, M.; Sancho, J.V.; Cortés, M.Á.; Yusà, V.; Hernández, F. UHPLC–MS/MS highly sensitive determination of aflatoxins; the aflatoxin metabolite M1 and ochratoxin A in baby food and milk. Food Chem. 2011, 126, 737–744. [Google Scholar] [CrossRef]
- Ventura, M.; Guillén, D.; Anaya, I.; Broto-Puig, F.; Lliberia, J.L.; Agut, M.; Comellas, L. Ultra-performance liquid chromatography/tandem mass spectrometry for the simultaneous analysis of aflatoxins B1; G1; B2; G2 and ochratoxin A in beer. Rapid Commun. Mass Spectrom. 2006, 20, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Soleas, G.J.; Yan, J.; Goldberg, D.M. Assay of ochratoxin A in wine and beer by high-pressure liquid chromatography photodiode array and gas chromatography mass selective detection. J. Agric. Food Chem. 2001, 49, 2733–2740. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Simón, B.; Campàs, M.; Marty, J.L.; Noguer, T. Novel highly-performing immunosensor-based strategy for ochratoxin A detection in wine samples. Biosens. Bioelectron. 2008, 23, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Meulenberg, E.P. Immunochemical methods for ochratoxin A detection: A review. Toxins 2012, 4, 244–266. [Google Scholar] [CrossRef] [PubMed]
- Moises, S.S.; Schäferling, M. Toxin immunosensors and sensor arrays for food quality control. Bioanal. Rev. 2009, 1, 73–104. [Google Scholar] [CrossRef]
- Zezza, F.; Longobardi, F.; Pascale, M.; Eremin, S.A.; Visconti, A. A rapid lateral flow test for the determination of total type B fumonisins in maize. Anal. Bioanal. Chem. 2009, 395, 1317–1323. [Google Scholar] [CrossRef]
- Rhouati, A.; Yang, C.; Hayat, A.; Marty, J.L. Aptamers: A promising tool for ochratoxin A detection in food analysis. Toxins 2013, 5, 1988–2008. [Google Scholar] [CrossRef]
- Qian, J.; Jiang, L.; Yang, X.; Yan, Y.; Mao, H.; Wang, K. Highly sensitive impedimetric aptasensor based on covalent binding of gold nanoparticles on reduced graphene oxide with good dispersity and high density. Analyst 2014, 139, 5587–5593. [Google Scholar] [CrossRef]
- Rivas, L.; Mayorga-Martinez, C.C.; Quesada-González, D.; Zamora-Gálvez, A.; de la Escosura-Muñiz, A.; Merkoçi, A. Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal. Chem. 2015, 87, 5167–5172. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Sassolas, A.; Marty, J.L.; Radi, A.E. Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta 2013, 103, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Andreescu, S.; Marty, J.L. Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules. Biosens. Bioelectron. 2013, 45, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kong, W.; Yang, M.; Zhao, M.; Zhen, O. Application of aptamer identification technology in rapid analysis of mycotoxins. Chin. J. Anal. Chem. 2013, 41, 297–306. [Google Scholar] [CrossRef]
- Kuang, H.; Chen, W.; Xu, D.; Xu, L.; Zhu, Y.; Liu, L.; Chu, H.; Peng, C.; Xu, H.; Zhu, S. Fabricated aptamer-based electrochemical “signal-off” sensor of ochratoxin A. Biosens. Bioelectron. 2010, 26, 710–716. [Google Scholar] [CrossRef]
- Prabhakar, N.; Matharu, Z.; Malhotra, B.D. Polyaniline Langmuir–Blodgett film based aptasensor for ochratoxin A detection. Biosens. Bioelectron. 2011, 26, 4006–4011. [Google Scholar] [CrossRef]
- Mishra, R.K.; Hayat, A.; Catanante, G.; Ocaña, C.; Marty, J.L. A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries. Anal. Chim. Acta 2015, 889, 106–112. [Google Scholar] [CrossRef]
- Lu, X.; Zhi, F.; Shang, H.; Wang, X.; Xue, Z. Investigation of the electrochemical behavior of multilayers film assembled porphyrin/gold nanoparticles on gold electrode. Electrochim. Acta 2010, 55, 3634–3642. [Google Scholar] [CrossRef]
- Altman, M.; Shukla, A.D.; Zubkov, T.; Evmenenko, G.; Dutta, P.; Van Der Boom, M.E. Controlling structure from the bottom-up: Structural and optical properties of layer-by-layer assembled palladium coordination-based multilayers. J. Am. Chem. Soc. 2006, 128, 7374–7382. [Google Scholar] [CrossRef]
- Imahori, H.; Norieda, H.; Nishimura, Y.; Yamazaki, I.; Higuchi, K.; Kato, N.; Motohiro, T.; Yamada, H.; Tamaki, K.; Arimura, M.; et al. Chain length effect on the structure and photoelectrochemical properties of self-assembled monolayers of porphyrins on gold electrodes. J. Phys. Chem. B 2000, 104, 1253–1260. [Google Scholar] [CrossRef]
- Cai, H.; Xu, C.; He, P.; Fang, Y. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem. 2001, 510, 78–85. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Marty, J.L.; Yang, X. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens. Bioelectron. 2011, 26, 2724–2727. [Google Scholar] [CrossRef] [PubMed]
- Ringot, D.; Chango, A.; Schneider, Y.J.; Larondelle, Y. Toxicokinetics and toxicodynamics of ochratoxin A; an update. Chemo-Biol. Interact. 2006, 159, 18–46. [Google Scholar] [CrossRef] [PubMed]
- Tombelli, S.; Minunni, M.; Mascini, M. Analytical applications of aptamers. Biosens. Bioelectron. 2005, 20, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Castillo, G.; Lamberti, I.; Mosiello, L.; Hianik, T. Impedimetric DNA aptasensor for sensitive detection of ochratoxin A in food. Electroanal 2012, 24, 512–520. [Google Scholar] [CrossRef]
- Deng, K.; Li, C.; Huang, H.; Li, X. Rolling circle amplification based on signal-enhanced electrochemical DNA sensor for ultrasensitive transcription factor detection. Sens. Actuators B Chem. 2017, 238, 1302–1308. [Google Scholar] [CrossRef]
- Mejri-Omrani, N.; Miodek, A.; Zribi, B.; Marrakchi, M.; Hamdi, M.; Marty, J.L.; Korri-Youssoufi, H. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal. Chim. Acta 2016, 920, 37–46. [Google Scholar] [CrossRef]
- Yang, C.; Lates, V.; Prieto-Simón, B.; Marty, J.L.; Yang, X. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme–aptamer conjugates in wine. Talanta 2013, 116, 520–526. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhang, X.; Wang, J. An ochratoxigenic strain of Aspergillus niger and its ochratoxin A production conditions. Mycosystema 2017, 36, 433–443. (In Chinese) [Google Scholar]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743. [Google Scholar] [CrossRef]
- Gurban, A.M.; Prieto-Simón, B.; Marty, J.L.; Noguer, T. Malate biosensors for the monitoring of malolactic fermentation: Different approaches. Anal. Lett. 2006, 39, 1543–1558. [Google Scholar] [CrossRef]
Aptasensors | LOD (ng/mL) | Linear Range (ng/mL) | References |
---|---|---|---|
Au-ATP-rGO composite modified Au Electrode | 0.03 | 0.1–200 | [20] |
Thionine and IrO2 NPs modified SPCE | 0.0056 | 0.004–40 | [21] |
DNA/PANI–SA/ITO modified glass plates | 0.1 | 0.1–10 | [26] |
Diazonium-coupling reaction modified SPCE | 0.15 | 0.15–2.5 | [27] |
Thiolated aptamer modified Au electrode | 0.05–0.16 | 0.04–40 | [35] |
Polypyrrole-dendrimers modified gold surface | 0.002 | 0.002–6 | [37] |
Layer-by-layer self-assembly modified Au electrode | 0.03 | 0.1–10 | This work |
Sample | OTA Added, ng/mL | OTA Found, ng/mL | RSD (%) | Recovery (%) |
---|---|---|---|---|
Red wine | 1 | 0.98 ± 0.04 | 3.96% | 98.24% |
4 | 4.17 ± 0.32 | 7.42% | 100.04% | |
6 | 5.51 ± 0.41 | 1.30% | 92.83% | |
White wine | 1 | 1.01 ± 0.07 | 6.47% | 100.81% |
4 | 4.17 ± 0.32 | 7.77% | 104.21% | |
6 | 5.51 ± 0.41 | 7.41% | 91.90% | |
Red grape juice | 1 | 0.98 ± 0.04 | 1.44% | 99.04% |
4 | 4.00 ± 0.30 | 6.81% | 90.56% | |
6 | 5.57 ± 0.07 | 8.20% | 95.75% | |
Purple grape juice | 1 | 0.99 ± 0.02 | 1.90% | 93.44% |
4 | 3.62 ± 0.25 | 5.78% | 97.68% | |
6 | 5.75 ± 0.47 | 2.56% | 92.25% |
Sample | Inoculated Time (day) | OTA Found by Aptasensor (ng/mL) | RSD (%) | OTA Production, (μg/kg) |
---|---|---|---|---|
red globe | 0 | 0.01 ± 0.01 | 5.81 | - |
3 | 1.56 ± 0.04 | 2.79 | 62.40 | |
5 | 2.96 ± 0.06 | 2.11 | 118.40 | |
7 | 5.00 ± 0.12 | 2.24 | 200.00 | |
centennial seedless | 0 | −0.20 ± 0.01 | 5.10 | - |
3 | 0.50 ± 0.05 | 10.96 | 20.00 | |
5 | 3.20 ± 0.08 | 2.39 | 128.00 | |
7 | 3.51 ± 0.15 | 4.23 | 140.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, M.; Bi, Y.; Xue, H.; Xue, S.; Long, H.; Pu, L.; Fu, G. Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly. Toxins 2019, 11, 71. https://doi.org/10.3390/toxins11020071
Nan M, Bi Y, Xue H, Xue S, Long H, Pu L, Fu G. Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly. Toxins. 2019; 11(2):71. https://doi.org/10.3390/toxins11020071
Chicago/Turabian StyleNan, Mina, Yang Bi, Huali Xue, Sulin Xue, Haitao Long, Lumei Pu, and Guorui Fu. 2019. "Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly" Toxins 11, no. 2: 71. https://doi.org/10.3390/toxins11020071
APA StyleNan, M., Bi, Y., Xue, H., Xue, S., Long, H., Pu, L., & Fu, G. (2019). Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly. Toxins, 11(2), 71. https://doi.org/10.3390/toxins11020071