Prevalence and Genetic Diversity of Toxin Genes in Clinical Isolates of Clostridium perfringens: Coexistence of Alpha-Toxin Variant and Binary Enterotoxin Genes (bec/cpile)
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Toxin Genes and Toxinotypes
2.2. Sequence Type (ST) Based on MLST (multilocus sequence typing) Scheme
2.3. Genetic Analysis of Toxin Genes
2.3.1. Alpha-Toxin (Phospholipase C) Gene (plc) and Alpha-Toxin Type
2.3.2. Enterotoxin Gene (cpe)
2.3.3. Beta2 Toxin Gene (cbp2)
2.3.4. NetB Toxin Gene (netB)
2.3.5. Binary Enterotoxin Gene (becAB/cpile-ab)
3. Discussion
4. Materials and Methods
4.1. C. perfringens Isolates
4.2. Genetic Analysis of C. Perfringens
4.3. Classification of Toxinotype and Alpha-Toxin Type
4.4. GenBank Accession Numbers
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Uzal, F.A.; Freedman, J.C.; Shrestha, A.; Theoret, J.R.; Garcia, J.; Awad, M.M.; Adams, V.; Moore, R.J.; Rood, J.I.; McClane, B.A. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Futur. Microbiol. 2014, 9, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Li, J.; McClane, B.A. Enterotoxigenic Clostridium perfringens: detection and identification. Microbes Environ. 2012, 27, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Yonogi, S.; Matsuda, S.; Kawai, T.; Yoda, T.; Harada, T.; Kumeda, Y.; Gotoh, K.; Hiyoshi, H.; Nakamura, S.; Kodama, T.; et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect. Immun. 2014, 82, 2390–2399. [Google Scholar] [CrossRef] [PubMed]
- Irikura, D.; Monma, C.; Suzuki, Y.; Nakama, A.; Kai, A.; Fukui-Miyazaki, A.; Horiguchi, Y.; Yoshinari, T.; Sugita-Konishi, Y.; Kamata, Y. Identification and Characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS ONE 2015, 10, 0138183. [Google Scholar] [CrossRef] [PubMed]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 2008, 4, e26. [Google Scholar] [CrossRef] [PubMed]
- van Asten, A.J.; Nikolaou, G.N.; Gröne, A. The occurrence of cpb2-toxigenic Clostridium perfringens and the possible role of the beta2-toxin in enteric disease of domestic animals, wild animals and humans. Vet. J. 2010, 183, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef]
- Sparks, S.G.; Carman, R.J.; Sarker, M.R.; McClane, B.A. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J. Clin. Microbiol. 2001, 39, 883–888. [Google Scholar] [CrossRef]
- Kokai-Kun, J.F.; Songer, J.G.; Czeczulin, J.R.; Chen, F.; McClane, B.A. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. J. Clin. Microbiol. 1994, 32, 2533–2539. [Google Scholar]
- Daube, G.; Simon, P.; Limbourg, B.; Manteca, C.; Mainil, J.; Kaeckenbeeck, A. Hybridization of 2,659 Clostridium perfringens isolates with gene probes for seven toxins (alpha, beta, epsilon, iota, theta, mu, and enterotoxin) and for sialidase. Am. J. Vet. Res. 1996, 57, 496–501. [Google Scholar]
- Yonogi, S.; Kanki, M.; Ohnishi, T.; Shiono, M.; Iida, T.; Kumeda, Y. Development and application of a multiplex PCR assay for detection of the Clostridium perfringens enterotoxin-encoding genes cpe and becAB. J. Microbiol. Methods. 2016, 127, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Finegold, S.M.; Summanen, P.H.; Downes, J.; Corbett, K.; Komoriya, T. Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe 2017, 45, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Góra, B.; Gofron, Z.; Grosiak, M.; Aptekorz, M.; Kazek, B.; Kocelak, P.; Radosz-Komoniewska, H.; Chudek, J.; Martirosian, G. Toxin profile of fecal Clostridium perfringens strains isolated from children with autism spectrum disorders. Anaerobe 2018, 51, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Carman, R.J.; Sayeed, S.; Li, J.; Genheimer, C.W.; Hiltonsmith, M.F.; Wilkins, T.D.; McClane, B.A. Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe 2008, 14, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Sheedy, S.A.; Ingham, A.B.; Rood, J.I.; Moore, R.J. Highly conserved alpha-toxin sequences of avian isolates of Clostridium perfringens. J. Clin. Microbiol. 2004, 42, 1345–1347. [Google Scholar] [CrossRef] [PubMed]
- Abildgaard, L.; Engberg, R.M.; Pedersen, K.; Schramm, A.; Hojberg, O. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens. Vet. Microbiol. 2009, 136, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Ohtani, K.; Shimizu, T.; Misawa, N. Detection of a group II intron without an open reading frame in the alpha-toxin gene of Clostridium perfringens isolated from a broiler chicken. J. Bacteriol. 2007, 189, 1633–1640. [Google Scholar] [CrossRef]
- Xiao, Y.; Wagendorp, A.; Moezelaar, R.; Abee, T.; Wells-Bennik, M.H. A wide variety of Clostridium perfringens type A food-borne isolates that carry a chromosomal cpe gene belong to one multilocus sequence typing cluster. Appl. Environ. Microbiol. 2012, 78, 7060–7068. [Google Scholar] [CrossRef]
- Shimizu, T.; Ohtani, K.; Hirakawa, H.; Ohshima, K.; Yamashita, A.; Shiba, T.; Ogasawara, N.; Hattori, M.; Kuhara, S.; Hayashi, H. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. 2002, 99, 996–1001. [Google Scholar] [CrossRef]
- Oda, M.; Terao, Y.; Sakurai, J.; Nagahama, M. Membrane-Binding Mechanism of Clostridium perfringens Alpha-Toxin. Toxins 2015, 7, 5268–5275. [Google Scholar] [CrossRef]
- Kitadokoro, K.; Nishimura, K.; Kamitani, S.; Fukui-Miyazaki, A.; Toshima, H.; Abe, H.; Kamata, Y.; Sugita-Konishi, Y.; Yamamoto, S.; Karatani, H.; et al. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J. Biol. Chem. 2011, 286, 19549–19555. [Google Scholar] [CrossRef] [PubMed]
- Black, J.D.; Lopez, S.; Cocco, E.; Schwab, C.L.; English, D.P.; Santin, A.D. Clostridium perfringens enterotoxin (CPE) and CPE-binding domain (c-CPE) for the detection and treatment of gynecologic cancers. Toxins 2015, 7, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Veshnyakova, A.; Piontek, J.; Protze, J.; Waziri, N.; Heise, I.; Krause, G. Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J. Biol. Chem. 2012, 287, 1698–1708. [Google Scholar] [CrossRef] [PubMed]
- Hanna, P.C.; Mietzner, T.A.; Schoolnik, G.K.; McClane, B.A. Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region. J. Biol. Chem. 1991, 266, 11037–11043. [Google Scholar] [PubMed]
- Gibert, M.; Jolivet-Reynaud, C.; Popoff, M.R. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 1997, 203, 65–73. [Google Scholar] [CrossRef]
- Kawahara, K.; Yonogi, S.; Munetomo, R.; Oki, H.; Yoshida, T.; Kumeda, Y.; Matsuda, S.; Kodama, T.; Ohkubo, T.; Iida, T.; et al. Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens. Biochem. Biophys. Res. Commun. 2016, 480, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Toniti, W.; Yoshida, T.; Tsurumura, T.; Irikura, D.; Monma, C.; Kamata, Y.; Tsuge, H. Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin. PLoS ONE 2017, 12, 0171278. [Google Scholar] [CrossRef] [PubMed]
- Forward, L.J.; Tompkins, D.S.; Brett, M.M. Detection of Clostridium difficile cytotoxin and Clostridium perfringens enterotoxin in cases of diarrhoea in the community. J. Med. Microbiol. 2003, 52, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Miyamoto, K.; Kaneko-Hirano, I.; Fujiuchi, K.; Akimoto, S. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl. Environ. Microbiol. 2008, 74, 5366–5372. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, D.; Kimata, K.; Shimizu, M.; Isobe, J.; Watahiki, M.; Karasawa, T.; Yamagishi, T.; Kuramoto, S.; Serikawa, T.; Ishiguro, F.; et al. Genotyping of Clostridium perfringens isolates collected from food poisoning outbreaks and healthy individuals in Japan based on the cpe locus. Jpn. J. Infect. Dis. 2007, 60, 68–69. [Google Scholar]
- Johansson, A.; Aspan, A.; Bagge, E.; Båverud, V.; Engström, B.E.; Johansson, K.E. Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge. BMC Microbiol. 2006, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Wada, A.; Shibasaki, S.; Annaka, M.; Higuchi, H.; Adachi, K.; Mori, N.; Ishikawa, T.; Masuda, Y.; Watanabe, H.; et al. Spread of a large plasmid carrying the cpe gene and the tcp locus amongst Clostridium perfringens isolates from nosocomial outbreaks and sporadic cases of gastroenteritis in a geriatric hospital. Epidemiol. Infect. 2009, 137, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Dolan, G.P.; Foster, K.; Lawler, J.; Amar, C.; Swift, C.; Aird, H.; Gorton, R. An epidemiological review of gastrointestinal outbreaks associated with Clostridium perfringens, North East of England, 2012-2014. Epidemiol. Infect. 2016, 144, 1386–1393. [Google Scholar] [CrossRef] [PubMed]
- Monma, C.; Hatakeyama, K.; Obata, H.; Yokoyama, K.; Konishi, N.; Itoh, T.; Kai, A. Four foodborne disease outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens. J. Clin. Microbiol. 2015, 53, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Aung, T.S.; Mya, S.; San, T.; New, K.M.; Kobayashi, N. Virulence factors and genetic characteristics of methicillin-resistant and -susceptible Staphylococcus aureus isolates in Myanmar. Microb. Drug Resist. 2011, 17, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Alam, M.; Urasawa, S. Analysis on distribution of insertion sequence IS431 in clinical isolates of staphylococci. Diagn. Microbiol. Infect. Dis. 2001, 39, 61–64. [Google Scholar] [CrossRef]
- Nakano, V.; Ignacio, A.; Llanco, L.; Bueris, V.; Sircili, M.P.; Avila-Campos, M.J. Multilocus sequence typing analyses of Clostridium perfringens type A strains harboring tpeL and netB genes. Anaerobe 2017, 44, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Lim, S.I.; Shin, S.H.; Kwon, Y.K.; Kim, H.Y.; Song, J.Y.; An, D.J. Distribution of Clostridium perfringens isolates from piglets in South Korea. J. Vet. Med. Sci. 2014, 76, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Klaasen, H.L.; Molkenboer, M.J.; Bakker, J.; Miserez, R.; Häni, H.; Frey, J.; Popoff, M.R.; van den Bosch, J.F. Detection of the beta2 toxin gene of Clostridium perfringens in diarrhoeic piglets in The Netherlands and Switzerland. FEMS Immunol. Med Microbiol. 1999, 24, 325–332. [Google Scholar] [PubMed]
- Bueschel, D.M.; Jost, B.H.; Billington, S.J.; Trinh, H.T.; Songer, J.G. Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype. Vet. Microbiol. 2003, 94, 121–129. [Google Scholar] [CrossRef]
- Ferrarezi, M.C.; Cardoso, T.C.; Dutra, I.S. Genotyping of Clostridium perfringens isolated from calves with neonatal diarrhea. Anaerobe 2008, 14, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Schotte, U.; Truyen, U.; Neubauer, H. Significance of beta 2-toxigenic Clostridium perfringens infections in animals and their predisposing factors--a review. J. Vet. Med. B 2004, 51, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Heikinheimo, A.; Korkeala, H. Multiplex PCR assay for toxinotyping Clostridium perfringens isolates obtained from Finnish broiler chickens. Lett. Appl. Microbiol. 2005, 40, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Baums, C.G.; Schotte, U.; Amtsberg, G.; Goethe, R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 2004, 100, 11–16. [Google Scholar] [CrossRef]
- Miyamoto, K.; Wen, Q.; McClane, B.A. Multiplex PCR genotyping assay that distinguishes between isolates of Clostridium perfringens type A carrying a chromosomal enterotoxin gene (cpe) locus, a plasmid cpe locus with an IS1470-like sequence, or a plasmid cpe locus with an IS1151 sequence. J. Clin. Microbiol. 2004, 42, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- McDonel, J.L. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol. Ther. 1980, 10, 617–655. [Google Scholar] [CrossRef]
Specimens/Patients /Infection Types | Total no. of Isolates | Number of Isolates with Toxin Gene (%) | ||||
---|---|---|---|---|---|---|
plc | cpe | cpb2 | netB | bec/cpile | ||
Specimens | ||||||
Feces | 777 | 777 | 262 | 11 | 2 | 1 |
Intestinal fluid | 8 | 8 | 2 | 0 | 0 | 0 |
Bile/gallbladder | 5 | 5 | 1 | 0 | 0 | 0 |
Pus | 4 | 4 | 4 | 0 | 0 | 0 |
Urine | 1 | 1 | 1 | 0 | 0 | 0 |
Venous blood | 1 | 1 | 1 | 0 | 0 | 0 |
Intestinal mucosa | 2 | 2 | 2 | 0 | 0 | 0 |
Total | 798 | 798 (100%) | 273 (34.2%) | 11 (1.4%) | 2 (0.3%) | 1 (0.1%) |
Patients | ||||||
male | 370 | 370 (100%) | 155 (41.9%) 1 | 5 (1.4%) | 1 (0.3%) | 0 (0%) |
female | 428 | 428 (100%) | 118 (27.6%) | 6 (1.4%) | 1 (0.2%) | 1 (0.2%) |
Inpatient | 499 | 499 (100%) | 90 (18%) | 7 (1.4%) | 1 (0.2%) | 0 (0%) |
Outpatient | 299 | 299 (100%) | 183 (61.2%) 1 | 4 (1.3%) | 1 (0.3%) | 1 (0.3%) |
Toxinotype 1 | Alpha-Toxin (plc) | Beta-Toxin (cpb) | Epsilon-Toxin (etx) | Iota-Toxin (iA) | Enterotoxin (cpe) | NetB (netB) | Beta2-Toxin (cpb2) | BEC/CPILE (bec/cpile) | No. of Isolates (%) |
---|---|---|---|---|---|---|---|---|---|
A | + | − | − | − | − | − | − | − | 517 (64.8%) |
B | + | + | + | − | − | − | − | − | 0 |
C | + | + | − | − | ± 2 | − | − | − | 0 |
D | + | − | + | − | ± | − | − | − | 0 |
E | + | − | − | + | ± | − | − | − | 0 |
F | + | − | − | − | + | − | − | − | 267 (33.5%) |
G | + | − | − | − | − | + | − | − | 2 (0.3%) |
H1 | + | − | − | − | − | − | + | − | 5 (0.6%) |
H2 | + | − | − | − | + | − | + | − | 6 (0.8%) |
I | + | − | − | − | − | − | − | + | 1 (0.1%) |
Strain ID | Sex | Age | Inpatient /Outpatient | Specimen | Alpha-Toxin Sequence Type | Toxin Gene (+ plc) | Location of cpe | ST (Closest ST for New Alleric Profile) | Allelic Profile |
---|---|---|---|---|---|---|---|---|---|
CP201 | M | 80 | Outpatient | feces | I | netB | - | ST21 | 3-1-3-4-4-3-2-1-1 |
CP238 | F | 83 | Inpatient | feces | I | netB | - | ST21 | 3-1-3-4-4-3-2-1-1 |
CP606 | F | 83 | Inpatient | feces | I | cpb2 (C-1) 1 | - | New: ST21 (TLV) | 10-1-1-9*-3-2-1-1 |
CP501 | M | 1 | Outpatient | feces | IVb | cpe | Plasmid (IS1151-locus) | New | 4-30-19-3-1-3-3-1 |
CP322 | F | 86 | Outpatient | venous blood | IVb | cpe | Plasmid (IS1151-locus) | ST8 | 4-5-1-3-5-4-3-3 |
CP282 | M | 1 | Outpatient | feces | IVb | cpe | Plasmid (IS1151-locus) | New | 4-30-19-3-1-3-3-1 |
CP904 | M | 41 | Outpatient | feces | IVb | cpe | Plasmid (IS1151-locus) | ST25 | 17-3-1-3-1-3-3-14 |
CP648 | F | 89 | Inpatient | feces | IVb | cpb2 (C-1) | - | New: ST25 (TLV) | 4-9-5-3-1-3-3-3 |
CP628 | F | 89 | Inpatient | feces | IVb | - | - | New: ST25 (TLV) | 4-3-5-3-1-3-3-3 |
CP281 | F | 5 | Outpatient | bile | IVb | cpe | Plasmid (IS1151-locus) | ST25 | 17-3-1-3-1-3-3-14 |
CP458 | F | 62 | Outpatient | feces | IVb | cpe, cpb2 (C-2) | Plasmid (IS1151-locus) | New | 4-30-19-3-1-3-3-1 |
CP457 | M | 82 | Inpatient | feces | IVb | cpe, cpb2 (C-1) | Plasmid (IS1470-like locus) | ST36 | 6-6-1-7-1-5-4-1 |
CP428 | F | 78 | Inpatient | feces | IVc | cpe, cpb2 (C-1) | Plasmid (IS1470-like locus) | ST36 | 6-6-1-7-1-5-4-1 |
CP438 | F | 78 | Inpatient | feces | IVc | cpe, cpb2 (C-1) | Plasmid (IS1470-like locus) | ST36 | 6-6-1-7-1-5-4-1 |
CP450 | F | 68 | Inpatient | feces | IVc | cpe, cpb2 (C-1) | Plasmid (IS1470-like locus) | ST36 | 6-6-1-7-1-5-4-1 |
CP157 | M | 72 | Inpatient | pus | IVd | cpe | NT | New | 4-30-19-3-1-3-3-1 |
CP714 | M | 81 | Outpatient | pus | V | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP885 | F | 93 | Inpatient | feces | V | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP616 | F | 91 | Inpatient | large intestine mucous membrane | Vd | cpe | Plasmid (IS1151-locus) | ST7 | 5-4-1-5-4-3-3-3 |
CP672 | F | 46 | Outpatient | feces | Vd | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP792 | F | 51 | Outpatient | feces | Vd | cpe | Plasmid (IS1151-locus) | New: ST41 (SLV) | 19-5-1-5-1-2-3-1 |
CP667 | M | 86 | Inpatient | feces | Vd | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP489 | M | 1 | Outpatient | feces | Ve | - | - | New: ST41 (SLV) | 19-5-1-5-5-24-3-1 |
CP88 | F | 0 | Outpatient | feces | Ve | - | - | New: ST41 (DLV) | 19-10-1-5-9-2-3-1 |
CP412 | M | 68 | Outpatient | feces | Ve | cpb2 | - | New: ST41 (TLV) | 4-5-3-5-5-2-6-1 |
CP757 | F | 101 | Inpatient | feces | Ve | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP734 | F | 20 | Outpatient | feces | Ve | - | - | ST41 | 19-5-1-5-5-2-3-1 |
CP666 | F | 96 | Inpatient | feces | Ve | cpe | Plasmid (IS1151-locus) | New: ST41 (SLV) | 19-5-1-5-1-2-3-1 |
CP833 | M | 77 | Outpatient | pus | Ve | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP832 | M | 4 | Outpatient | feces | Ve | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP782 | M | 25 | Outpatient | feces | Ve | cpe | Plasmid (IS1470-like locus) | ST41 | 19-5-1-5-5-2-3-?1 |
CP706 | M | 16 | Outpatient | feces | Ve | - | - | New | 19-3-19-5-4-5-3-1 |
CP91 | F | 82 | Outpatient | urine | Ve | cpe | NT | New: ST41 (SLV) | 3-5-1-5-5-2-3-1 |
CP396 | M | 2 | Outpatient | feces | Ve | cpe, cpb2 (C-1) | Plasmid (IS1470-like locus) | ST28 | 19-19-13-5-5-2-3-1 |
CP859 | F | 95 | Outpatient | feces | Ve | cpe | Plasmid (IS1151-locus) | New: ST41 (SLV) | 1-5-1-5-5-2-3-1 |
CP301 | M | 70 | Inpatient | feces | Ve | cpb2 (C-1) | - | ST28 | 19-19-13-5-5-2-3-1 |
CP232 | F | 89 | Inpatient | bile | Ve | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP94 | M | 69 | Outpatient | intestinal fluid | Ve | - | - | New: ST41 (SLV) | 19-5-3-5-5-2-3-1 |
CP570 | M | 3 | Outpatient | feces | Ve | cpe | Plasmid (IS1470-like locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP502 | F | 2 | Outpatient | feces | Ve | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP228 | F | 58 | Outpatient | intestinal fluid | Ve | cpe | NT | ST41 | 19-5-1-5-5-2-3-1 |
CP327 | F | 50 | Outpatient | intential wall | Ve | cpe | Plasmid (IS1151-locus) | ST41 | 19-5-1-5-5-2-3-1 |
CP422 | F | 90 | Outpatient | feces | Ve | cpe | Plasmid (IS1470-like locus) | New: ST41 (SLV) | 1-5-1-5*-5-2-3-1 |
CP400 | M | NA | Outpatient | feces | Vf | - | - | New | 4-8-1-1-8-7-4-1 |
CP653 | F | 44 | Outpatient | feces | Vg | bec (cpile) plc-variant 2 | - | New | 4-1-19*-1-3-5-1-1 |
CP452 | M | 26 | Outpatient | feces | VIII | cpb2 (C-1) | - | New | 4-30-1-9*-3-12-8-11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuda, A.; Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Sumi, A.; Nakamura, M.; Horino, Y.; Ito, M.; Habadera, S.; Kobayashi, N. Prevalence and Genetic Diversity of Toxin Genes in Clinical Isolates of Clostridium perfringens: Coexistence of Alpha-Toxin Variant and Binary Enterotoxin Genes (bec/cpile). Toxins 2019, 11, 326. https://doi.org/10.3390/toxins11060326
Matsuda A, Aung MS, Urushibara N, Kawaguchiya M, Sumi A, Nakamura M, Horino Y, Ito M, Habadera S, Kobayashi N. Prevalence and Genetic Diversity of Toxin Genes in Clinical Isolates of Clostridium perfringens: Coexistence of Alpha-Toxin Variant and Binary Enterotoxin Genes (bec/cpile). Toxins. 2019; 11(6):326. https://doi.org/10.3390/toxins11060326
Chicago/Turabian StyleMatsuda, Asami, Meiji Soe Aung, Noriko Urushibara, Mitsuyo Kawaguchiya, Ayako Sumi, Mayumi Nakamura, Yuka Horino, Masahiko Ito, Satoshi Habadera, and Nobumichi Kobayashi. 2019. "Prevalence and Genetic Diversity of Toxin Genes in Clinical Isolates of Clostridium perfringens: Coexistence of Alpha-Toxin Variant and Binary Enterotoxin Genes (bec/cpile)" Toxins 11, no. 6: 326. https://doi.org/10.3390/toxins11060326
APA StyleMatsuda, A., Aung, M. S., Urushibara, N., Kawaguchiya, M., Sumi, A., Nakamura, M., Horino, Y., Ito, M., Habadera, S., & Kobayashi, N. (2019). Prevalence and Genetic Diversity of Toxin Genes in Clinical Isolates of Clostridium perfringens: Coexistence of Alpha-Toxin Variant and Binary Enterotoxin Genes (bec/cpile). Toxins, 11(6), 326. https://doi.org/10.3390/toxins11060326