Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines
Abstract
:1. Introduction
1.1. Pertussis Disease
1.2. Pertussis Vaccines
1.3. Structure of PTx
2. Specific Tests for PTx Toxicity
2.1. Lethal Histamine Sensitization Test (Lethal HIST)
2.2. Temperature Histamine Sensitization Test (Temperature HIST)
2.3. CHO Cell Clustering Assay
2.4. Biochemical Assays
2.5. Leukocytosis Promotion (LP) Test
2.6. Other Cell-Based Assays
3. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Melvin, J.A.; Scheller, E.V.; Miller, J.F.; Cotter, P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014, 12, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Pertussis vaccines: WHO position paper. Wkly. Epidemiol. Rec. 2010, 85, 385–400.
- Dorji, D.; Mooi, F.; Yantorno, O.; Deora, R.; Graham, R.M.; Mukkur, T.K. Bordetella pertussis virulence factors in the continuing evolution of whooping cough vaccines for improved performance. Med. Microbiol. Immunol. 2017, 207, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Corbel, M.J.; Xing, D.K. Toxicity and potency evaluation of pertussis vaccines. Expert Rev. Vaccines 2004, 3, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Higgs, R.; Higgins, S.C.; Ross, P.J.; Mills, K.H. Immunity to the respiratory pathogen Bordetella pertussis. Mucosal Immunol. 2012, 5, 485–500. [Google Scholar] [CrossRef]
- Kilgore, P.E.; Salim, A.M.; Zervos, M.J.; Schmitt, H.J. Pertussis: Microbiology, Disease, Treatment, and Prevention. Clin. Microbiol. Rev. 2016, 29, 449–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattoo, S.; Foreman-Wykert, A.K.; Cotter, P.A.; Miller, J.F. Mechanisms of Bordetella pathogenesis. Front. Biosci. 2001, 6, E168–E186. [Google Scholar] [CrossRef]
- Chen, Q.; Stibitz, S. The BvgASR virulence regulon of Bordetella pertussis. Curr. Opin. Microbiol. 2019, 47, 74–81. [Google Scholar] [CrossRef]
- Bisgard, K.M.; Rhodes, P.; Connelly, B.L.; Bi, D.; Hahn, C.; Patrick, S.; Glode, M.P.; Ehresmann, K.R. Pertussis vaccine effectiveness among children 6 to 59 months of age in the United States, 1998–2001. Pediatrics 2005, 116, e285–e294. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, Y.; Asokanathan, C.; Zhang, S.; Xing, D.; Wang, J. Characterization of co-purified acellular pertussis vaccines. Hum. Vaccin. Immunother. 2015, 11, 421–427. [Google Scholar] [CrossRef]
- Tan, T.; Dalby, T.; Forsyth, K.; Halperin, S.A.; Heininger, U.; Hozbor, D.; Plotkin, S.; Ulloa-Gutierrez, R.; Wirsing von Konig, C.H. Pertussis Across the Globe: Recent Epidemiologic Trends From 2000 to 2013. Pediatric Infect. Dis. J. 2015, 34, e222–e232. [Google Scholar] [CrossRef] [PubMed]
- Dias, W.O.; Van der Ark, A.A.; Sakauchi, M.A.; Kubrusly, F.S.; Prestes, A.F.; Borges, M.M.; Furuyama, N.; Horton, D.S.; Quintilio, W.; Antoniazi, M.; et al. An improved whole cell pertussis vaccine with reduced content of endotoxin. Hum. Vaccin. Immunother. 2013, 9, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locht, C. Will we have new pertussis vaccines? Vaccine 2018, 36, 5460–5469. [Google Scholar] [CrossRef] [PubMed]
- Warfel, J.M.; Zimmerman, L.I.; Merkel, T.J. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc. Natl. Acad. Sci. USA 2014, 111, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Barlow, W.E.; Davis, R.L.; Glasser, J.W.; Rhodes, P.H.; Thompson, R.S.; Mullooly, J.P.; Black, S.B.; Shinefield, H.R.; Ward, J.I.; Marcy, S.M.; et al. The risk of seizures after receipt of whole-cell pertussis or measles, mumps, and rubella vaccine. N. Engl. J. Med. 2001, 345, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Olin, P.; Rasmussen, F.; Gustafsson, L.; Hallander, H.O.; Heijbel, H. Randomised controlled trial of two-component, three-component, and five-component acellular pertussis vaccines compared with whole-cell pertussis vaccine. Ad Hoc Group for the Study of Pertussis Vaccines. Lancet 1997, 350, 1569–1577. [Google Scholar] [CrossRef]
- Cherry, J.D. Historical review of pertussis and the classical vaccine. J. Infect. Dis. 1996, 174, S259–S263. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, L.; Hallander, H.O.; Olin, P.; Reizenstein, E.; Storsaeter, J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N. Engl. J. Med. 1996, 334, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Gangarosa, E.J.; Galazka, A.M.; Wolfe, C.R.; Phillips, L.M.; Gangarosa, R.E.; Miller, E.; Chen, R.T. Impact of anti-vaccine movements on pertussis control: The untold story. Lancet 1998, 351, 356–361. [Google Scholar] [CrossRef]
- Klein, N.P. Licensed pertussis vaccines in the United States. History and current state. Hum. Vaccin. Immunother. 2014, 10, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kimura, M.; Fukumi, H. Development of a pertussis component vaccine in Japan. Lancet 1984, 1, 122–126. [Google Scholar] [CrossRef]
- Kuchar, E.; Karlikowska-Skwarnik, M.; Han, S.; Nitsch-Osuch, A. Pertussis: History of the Disease and Current Prevention Failure. Adv. Exp. Med. Biol. 2016, 934, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Sato, H. Development of acellular pertussis vaccines. Biologicals 1999, 27, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.M.; Karzon, D.T. Pertussis vaccines. Pediatric Clin. N. Am. 1990, 37, 549–566. [Google Scholar] [CrossRef]
- Rappuoli, R.; Podda, A.; Pizza, M.; Covacci, A.; Bartoloni, A.; De Magistris, M.T.; Nencioni, L. Progress towards the development of new vaccines against whooping cough. Vaccine 1992, 10, 1027–1032. [Google Scholar] [CrossRef]
- Storsaeter, J.; Hallander, H.O.; Gustafsson, L.; Olin, P. Levels of anti-pertussis antibodies related to protection after household exposure to Bordetella pertussis. Vaccine 1998, 16, 1907–1916. [Google Scholar] [CrossRef]
- Pierce, V.M.; Vazquez, M. New combination vaccines: Integration into pediatric practice. Pediatric Infect. Dis. J. 2007, 26, 1149–1150. [Google Scholar] [CrossRef]
- Pines, E.; Barrand, M.; Fabre, P.; Salomon, H.; Blondeau, C.; Wood, S.C.; Hoffenbach, A. New acellular pertussis-containing paediatric combined vaccines. Vaccine 1999, 17, 1650–1656. [Google Scholar] [CrossRef]
- Vidor, E.; Soubeyrand, B. Manufacturing DTaP-based combination vaccines: Industrial challenges around essential public health tools. Expert Rev. Vaccines 2016, 15, 1575–1582. [Google Scholar] [CrossRef]
- Burns, D.L.; Meade, B.D.; Messionnier, N.E. Pertussis resurgence: Perspectives from the Working Group Meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J. Infect. Dis. 2014, 209, S32–S35. [Google Scholar] [CrossRef]
- Campbell, P.; McIntyre, P.; Quinn, H.; Hueston, L.; Gilbert, G.L.; McVernon, J. Increased population prevalence of low pertussis toxin antibody levels in young children preceding a record pertussis epidemic in Australia. PLoS ONE 2012, 7, e35874. [Google Scholar] [CrossRef] [PubMed]
- De Greeff, S.C.; De Melker, H.E.; Van Gageldonk, P.G.; Schellekens, J.F.; Van der Klis, F.R.; Mollema, L.; Mooi, F.R.; Berbers, G.A. Seroprevalence of pertussis in The Netherlands: Evidence for increased circulation of Bordetella pertussis. PLoS ONE 2010, 5, e14183. [Google Scholar] [CrossRef] [PubMed]
- Campbell, H.; Amirthalingam, G.; Andrews, N.; Fry, N.K.; George, R.C.; Harrison, T.G.; Miller, E. Accelerating control of pertussis in England and Wales. Emerg. Infect. Dis. 2012, 18, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Campbell, H.; Amirthalingam, G.; Van Hoek, A.J.; Miller, E. Investigating the pertussis resurgence in England and Wales, and options for future control. BMC Med. 2016, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Glaser, C.; Watt, J.; Harriman, K. Pertussis epidemic--California, 2014. MMWR. Morb. Mortal. Wkly. Rep. 2014, 63, 1129–1132. [Google Scholar] [PubMed]
- Barret, A.S.; Ryan, A.; Breslin, A.; Cullen, L.; Murray, A.; Grogan, J.; Bourke, S.; Cotter, S. Pertussis outbreak in northwest Ireland, January–June 2010. Eurosurveillance 2010, 15, 19654. [Google Scholar] [PubMed]
- Loconsole, D.; De Robertis, A.L.; Morea, A.; Metallo, A.; Lopalco, P.L.; Chironna, M. Resurgence of Pertussis and Emergence of the Ptxp3 Toxin Promoter Allele in South Italy. Pediatric Infect. Dis. J. 2018, 37, e126–e131. [Google Scholar] [CrossRef]
- Winter, K.; Zipprich, J.; Harriman, K. Pertussis in California: A Tale of 2 Epidemics. Pediatric Infect. Dis. J. 2018, 37, 324–328. [Google Scholar] [CrossRef]
- Brummelman, J.; Helm, K.; Hamstra, H.J.; Van der Ley, P.; Boog, C.J.; Han, W.G.; Van Els, C.A. Modulation of the CD4(+) T cell response after acellular pertussis vaccination in the presence of TLR4 ligation. Vaccine 2015, 33, 1483–1491. [Google Scholar] [CrossRef]
- Ross, P.J.; Sutton, C.E.; Higgins, S.; Allen, A.C.; Walsh, K.; Misiak, A.; Lavelle, E.C.; McLoughlin, R.M.; Mills, K.H. Relative contribution of Th1 and Th17 cells in adaptive immunity to Bordetella pertussis: Towards the rational design of an improved acellular pertussis vaccine. PLoS Pathog. 2013, 9, e1003264. [Google Scholar] [CrossRef]
- Dunne, A.; Mielke, L.A.; Allen, A.C.; Sutton, C.E.; Higgs, R.; Cunningham, C.C.; Higgins, S.C.; Mills, K.H. A novel TLR2 agonist from Bordetella pertussis is a potent adjuvant that promotes protective immunity with an acellular pertussis vaccine. Mucosal Immunol. 2015, 8, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, L.; Hessel, L.; Storsaeter, J.; Olin, P. Long-term follow-up of Swedish children vaccinated with acellular pertussis vaccines at 3, 5, and 12 months of age indicates the need for a booster dose at 5 to 7 years of age. Pediatrics 2006, 118, 978–984. [Google Scholar] [CrossRef]
- Olin, P.; Gustafsson, L.; Barreto, L.; Hessel, L.; Mast, T.C.; Rie, A.V.; Bogaerts, H.; Storsaeter, J. Declining pertussis incidence in Sweden following the introduction of acellular pertussis vaccine. Vaccine 2003, 21, 2015–2021. [Google Scholar] [CrossRef]
- Barkoff, A.M.; Mertsola, J.; Pierard, D.; Dalby, T.; Hoegh, S.V.; Guillot, S.; Stefanelli, P.; Van Gent, M.; Berbers, G.; Vestrheim, D.; et al. Pertactin-deficient Bordetella pertussis isolates: Evidence of increased circulation in Europe, 1998 to 2015. Eurosurveillance 2019, 24, 1700832. [Google Scholar] [CrossRef] [PubMed]
- Hegerle, N.; Dore, G.; Guiso, N. Pertactin deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine. Vaccine 2014, 32, 6597–6600. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Sen, K.; Weigand, M.R.; Skoff, T.H.; Cunningham, V.A.; Halse, T.A.; Tondella, M.L. Bordetella pertussis Strain Lacking Pertactin and Pertussis Toxin. Emerg. Infect. Dis. 2016, 22, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Mooi, F.R.; Van Der Maas, N.A.; De Melker, H.E. Pertussis resurgence: Waning immunity and pathogen adaptation—Two sides of the same coin. Epidemiol. Infect. 2014, 142, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, V.; Brun, D.; Cantinelli, T.; Dore, G.; Njamkepo, E.; Guiso, N. First report and detailed characterization of B. pertussis isolates not expressing Pertussis Toxin or Pertactin. Vaccine 2009, 27, 6034–6041. [Google Scholar] [CrossRef]
- Bouchez, V.; Hegerle, N.; Strati, F.; Njamkepo, E.; Guiso, N. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates. Vaccines 2015, 3, 751–770. [Google Scholar] [CrossRef]
- Berbers, G.A.; De Greeff, S.C.; Mooi, F.R. Improving pertussis vaccination. Hum. Vaccines 2009, 5, 497–503. [Google Scholar] [CrossRef]
- Crowcroft, N.S.; Pebody, R.G. Recent developments in pertussis. Lancet 2006, 367, 1926–1936. [Google Scholar] [CrossRef]
- Kitchin, N.R. Review of diphtheria, tetanus and pertussis vaccines in clinical development. Expert Rev. Vaccines 2011, 10, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, M.E.; Bottero, D.; Errea, A.; Ormazabal, M.; Zurita, M.E.; Moreno, G.; Rumbo, M.; Castuma, C.; Bartel, E.; Flores, D.; et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine 2014, 32, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Locht, C.; Coutte, L.; Mielcarek, N. The ins and outs of pertussis toxin. FEBS J. 2011, 278, 4668–4682. [Google Scholar] [CrossRef] [PubMed]
- Sekura, R.D.; Fish, F.; Manclark, C.R.; Meade, B.; Zhang, Y.L. Pertussis toxin. Affinity purification of a new ADP-ribosyltransferase. J. Biol. Chem. 1983, 258, 14647–14651. [Google Scholar] [PubMed]
- Tamura, M.; Nogimori, K.; Murai, S.; Yajima, M.; Ito, K.; Katada, T.; Ui, M.; Ishii, S. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 1982, 21, 5516–5522. [Google Scholar] [CrossRef]
- Tamura, M.; Nogimori, K.; Yajima, M.; Ase, K.; Ui, M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J. Biol. Chem. 1983, 258, 6756–6761. [Google Scholar]
- Ui, M. ADP-ribosylating Toxins and G protein; Moss, J., Vaughan, M., Eds.; American Society for Microbiology: Washington, DC, USA, 1990. [Google Scholar]
- Title 21. Pertussis vaccine 620.1. In US Code of Federal Regulations; Government Printing Office: Washington, DC, USA, 1983; pp. 58–61.
- El Baya, A.; Linnermann, R.; Von Olleschik-Elbheim, L.; Schmidt, M.A. Pertussis toxin. Entry into cells and enzymatic activity. Adv. Exp. Med. Biol. 1997, 419, 83–86. [Google Scholar]
- Banerjee, T.; Cilenti, L.; Taylor, M.; Showman, A.; Tatulian, S.A.; Teter, K. Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation. Infect. Immun. 2016, 84, 3388–3398. [Google Scholar] [CrossRef] [Green Version]
- Plaut, R.D.; Carbonetti, N.H. Retrograde transport of pertussis toxin in the mammalian cell. Cell. Microbiol. 2008, 10, 1130–1139. [Google Scholar] [CrossRef]
- Bokoch, G.M.; Katada, T.; Northup, J.K.; Hewlett, E.L.; Gilman, A.G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J. Biol. Chem. 1983, 258, 2072–2075. [Google Scholar] [PubMed]
- Katada, T.; Ui, M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA 1982, 79, 3129–3133. [Google Scholar] [CrossRef] [PubMed]
- Katada, T.; Ui, M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J. Biol. Chem. 1982, 257, 7210–7216. [Google Scholar] [PubMed]
- Munoz, J. Biological activities of pertussigen (pertussis toxin). In Pertussis Toxin; Sekura, R., Moss, J., Vaughan, M., Eds.; Academic Press Inc.: London, UK, 1985. [Google Scholar]
- Oh, H.; Kim, B.G.; Nam, K.T.; Hong, S.H.; Ahn, D.H.; Choi, G.S.; Kim, H.; Hong, J.T.; Ahn, B.Y. Characterization of the carbohydrate binding and ADP-ribosyltransferase activities of chemically detoxified pertussis toxins. Vaccine 2013, 31, 2988–2993. [Google Scholar] [CrossRef]
- Blatter, M.; Friedland, L.R.; Weston, W.M.; Li, P.; Howe, B. Immunogenicity and safety of a tetanus toxoid, reduced diphtheria toxoid and three-component acellular pertussis vaccine in adults 19–64 years of age. Vaccine 2009, 27, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Thierry-Carstensen, B.; Dalby, T.; Stevner, M.A.; Robbins, J.B.; Schneerson, R.; Trollfors, B. Experience with monocomponent acellular pertussis combination vaccines for infants, children, adolescents and adults—A review of safety, immunogenicity, efficacy and effectiveness studies and 15 years of field experience. Vaccine 2013, 31, 5178–5191. [Google Scholar] [CrossRef] [PubMed]
- Thierry-Carstensen, B.; Jordan, K.; Uhlving, H.H.; Dalby, T.; Sorensen, C.; Jensen, A.M.; Heilmann, C. A randomised, double-blind, non-inferiority clinical trial on the safety and immunogenicity of a tetanus, diphtheria and monocomponent acellular pertussis (TdaP) vaccine in comparison to a tetanus and diphtheria (Td) vaccine when given as booster vaccinations to healthy adults. Vaccine 2012, 30, 5464–5471. [Google Scholar] [CrossRef]
- Fowler, S.; Byron, O.; Jumel, K.; Xing, D.; Corbel, M.J.; Bolgiano, B. Novel configurations of high molecular weight species of the pertussis toxin vaccine component. Vaccine 2003, 21, 2678–2688. [Google Scholar] [CrossRef]
- Fowler, S.; Xing, D.K.; Bolgiano, B.; Yuen, C.T.; Corbel, M.J. Modifications of the catalytic and binding subunits of pertussis toxin by formaldehyde: Effects on toxicity and immunogenicity. Vaccine 2003, 21, 2329–2337. [Google Scholar] [CrossRef]
- Habeeb, A.J.; Hiramoto, R. Reaction of proteins with glutaraldehyde. Arch. Biochem. Biophys. 1968, 126, 16–26. [Google Scholar] [CrossRef]
- Ibsen, P.H. The effect of formaldehyde, hydrogen peroxide and genetic detoxification of pertussis toxin on epitope recognition by murine monoclonal antibodies. Vaccine 1996, 14, 359–368. [Google Scholar] [CrossRef]
- Metz, B.; Kersten, G.F.; Hoogerhout, P.; Brugghe, H.F.; Timmermans, H.A.; De Jong, A.; Meiring, H.; Ten Hove, J.; Hennink, W.E.; Crommelin, D.J.; et al. Identification of formaldehyde-induced modifications in proteins: Reactions with model peptides. J. Biol. Chem. 2004, 279, 6235–6243. [Google Scholar] [CrossRef] [PubMed]
- Nogimori, K.; Ito, K.; Tamura, M.; Satoh, S.; Ishii, S.; Ui, M. Chemical modification of islet-activating protein, pertussis toxin. Essential role of free amino groups in its lymphocytosis-promoting activity. Biochim. Biophys. Acta 1984, 801, 220–231. [Google Scholar] [CrossRef]
- Tan, Y.; Fleck, R.A.; Asokanathan, C.; Yuen, C.T.; Xing, D.; Zhang, S.; Wang, J. Confocal microscopy study of pertussis toxin and toxoids on CHO-cells. Hum. Vaccin. Immunother. 2013, 9, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Sainz, J.A.; Romero-Avila, M.T.; Ruiz-Arriaga, A.; Ruiz-Puente, J.; Agundis, C.; Ortiz, V.; Isibasi, A. Characterization and detoxification of an easily prepared acellular pertussis vaccine. Antigenic role of the A protomer of pertussis toxin. Vaccine 1992, 10, 341–344. [Google Scholar] [CrossRef]
- Nicosia, A.; Perugini, M.; Franzini, C.; Casagli, M.C.; Borri, M.G.; Antoni, G.; Almoni, M.; Neri, P.; Ratti, G.; Rappuoli, R. Cloning and sequencing of the pertussis toxin genes: Operon structure and gene duplication. Proc. Natl. Acad. Sci. USA 1986, 83, 4631–4635. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, J.N.; Chang, C.; Yoder, S.M.; Rock, M.T.; Maynard, J.A. Antibodies recognizing protective pertussis toxin epitopes are preferentially elicited by natural infection versus acellular immunization. Clin. Vaccine Immunol. 2011, 18, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Rappuoli, R. Toxin inactivation and antigen stabilization: Two different uses of formaldehyde. Vaccine 1994, 12, 579–581. [Google Scholar] [CrossRef]
- Seubert, A.; D’Oro, U.; Scarselli, M.; Pizza, M. Genetically detoxified pertussis toxin (PT-9K/129G): Implications for immunization and vaccines. Expert Rev. Vaccines 2014, 13, 1191–1204. [Google Scholar] [CrossRef]
- Surendran, N.; Pichichero, M. Genetically detoxified pertussis toxin induces superior antigen specific CD4 T cell responses compared to chemically detoxified pertussis toxin. Hum. Vaccin. Immunother. 2019, 15, 1167–1170. [Google Scholar] [CrossRef]
- Xing, D.; Canthaboo, C.; Douglas-Bardsley, A.; Yuen, C.T.; Prior, S.; Liu, Y.; Corbel, M. Developments in reduction and replacement of in vivo toxicity and potency tests for pertussis vaccines. Dev. Biol. 2002, 111, 57–68. [Google Scholar]
- Blanchard Rohner, G.; Chatzis, O.; Chinwangso, P.; Rohr, M.; Grillet, S.; Salomon, C.; Lemaitre, B.; Boonrak, P.; Lawpoolsri, S.; Clutterbuck, E.; et al. Boosting Teenagers with Acellular Pertussis Vaccines Containing Recombinant or Chemically Inactivated Pertussis Toxin: A Randomized Clinical Trial. Clin. Infect. Dis. 2018, 68, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Pitisuttithum, P.; Chokephaibulkit, K.; Sirivichayakul, C.; Sricharoenchai, S.; Dhitavat, J.; Pitisuthitham, A.; Phongsamart, W.; Boonnak, K.; Lapphra, K.; Sabmee, Y.; et al. Antibody persistence after vaccination of adolescents with monovalent and combined acellular pertussis vaccines containing genetically inactivated pertussis toxin: A phase 2/3 randomised, controlled, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1260–1268. [Google Scholar] [CrossRef]
- Sirivichayakul, C.; Chanthavanich, P.; Limkittikul, K.; Siegrist, C.A.; Wijagkanalan, W.; Chinwangso, P.; Petre, J.; Hong Thai, P.; Chauhan, M.; Viviani, S. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults. Hum. Vaccin. Immunother. 2017, 13, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Buasri, W.; Impoolsup, A.; Boonchird, C.; Luengchaichawange, A.; Prompiboon, P.; Petre, J.; Panbangred, W. Construction of Bordetella pertussis strains with enhanced production of genetically-inactivated Pertussis Toxin and Pertactin by unmarked allelic exchange. BMC Microbiol. 2012, 12, 61. [Google Scholar] [CrossRef]
- Zealey, G.R.; Loosmore, S.M.; Yacoob, R.K.; Cockle, S.A.; Herbert, A.B.; Miller, L.D.; Mackay, N.J.; Klein, M.H. Construction of Bordetella pertussis strains that overproduce genetically inactivated pertussis toxin. Appl. Environ. Microbiol. 1992, 58, 208–214. [Google Scholar]
- Adsorbed purified pertussis vaccine. In Minimum Requirements for Biological Products; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2006; pp. 150–153.
- Pertussis vaccine acellular component adsorbed, monograph 1356. In European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016.
- WHO Expert Committee on Biological Standardization. Recommendations to assure the quality, safety and efficacy of acellular pertussis vaccines. In WHO Technical Report Series NO. 979; WHO Press: Geneva, Switzerland, 2013; pp. 187–260. [Google Scholar]
- Arciniega, J.; Wagner, L.; Prymula, R.; Sebo, P.; Isbrucker, R.; Descampe, B.; Chapsal, J.M.; Costanzo, A.; Hendriksen, C.; Hoonaker, M.; et al. Alternatives to HIST for acellular pertussis vaccines: Progress and challenges in replacement. Pharmeur. Bio Sci. Notes 2016, 2015, 82–96. [Google Scholar]
- Ambrus, J.L.; Packman, E.W.; Rossi, G.V.; Ambrus, C.M.; Harrisson, J.W. The antagonism and synergism of histamine and antihistamines in mice. J. Pharm. Pharmacol. 1952, 4, 466–470. [Google Scholar] [CrossRef]
- Kind, L.S. The altered reactivity of mice after inoculation with Bordetella pertussis vaccine. Bacteriol. Rev. 1958, 22, 173–182. [Google Scholar]
- Parfentjev, I.A.; Goodline, M.A. Histamine shock in mice sensitized with Hemophilus pertussis vaccine. J. Pharmacol. Exp. Ther. 1948, 92, 411–413. [Google Scholar]
- Pittman, M. Determination of the histamine sensitizing unitage of pertussis vaccine. J. Biol. Stand. 1975, 3, 185–191. [Google Scholar] [CrossRef]
- Pertussis vaccine acellular co-purified adsorbed, monograph 1595. In European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016.
- Ochiai, M.; Yamamoto, A.; Kataoka, M.; Toyoizumi, H.; Arakawa, Y.; Horiuchi, Y. Highly sensitive histamine-sensitization test for residual activity of pertussis toxin in acellular pertussis vaccine. Biologicals 2007, 35, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Ishida, S.; Kurokawa, M.; Asakawa, S.; Iwasa, S. A sensitive assay method for the histamine-sensitizing factor using change in rectal temperature of mice after histamine challenge as a response. J. Biol. Stand. 1979, 7, 21–29. [Google Scholar] [CrossRef]
- Pertussis vaccine. In Pharmacopoeia of the People’s Republic of China (volume III); People’s Medical Publishing House: Beijing, China, 2005; pp. 67–71.
- Hoonakker, M.; Arciniega, J.; Hendriksen, C. Safety testing of acellular pertussis vaccines: Use of animals and 3Rs alternatives. Hum. Vaccin. Immunother. 2017, 13, 2522–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markey, K.; Asokanathan, C.; Tierney, S.; Hockley, J.; Douglas-Bardsley, A. Collaborative Study: Evaluation of Proposed Second International Standard for Pertussis Toxin Code: 15/126; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- Xing, D.; Gaines-Das, R.; Newland, P.; Corbel, M. Evaluation of Proposed International Standard of Perussis Toxin Code JNIH-5; WHO Press: Geneva, Switzerland, 2003. [Google Scholar]
- Xing, D.; Maes, A.; Behr-Gross, M.E.; Costanzo, A.; Daas, A.; Buchheit, K.H. Collaborative study for the standardisation of the histamine sensitizing test in mice and the CHO cell-based assay for the residual toxicity testing of acellular pertussis vaccines. Pharmeur. Bio Sci. Notes 2010, 2010, 51–63. [Google Scholar] [PubMed]
- European Directorate for the Quality of Medicine. Ph. Eur. to replace Histamine Sensitisation Test (HIST) for Residual Pertussis Toxin Testing. Available online: https://www.edqm.eu/en/news/ph-eur-replace-histamine-sensitisation-test-hist-residual-pertussis-toxin-testing (accessed on 10 June 2019).
- Carbonetti, N.H. Pertussis toxin and adenylate cyclase toxin: Key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 2010, 5, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Diehl, S.A.; McElvany, B.; Noubade, R.; Seeberger, N.; Harding, B.; Spach, K.; Teuscher, C. G proteins Galphai1/3 are critical targets for Bordetella pertussis toxin-induced vasoactive amine sensitization. Infect. Immun. 2014, 82, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Mangmool, S.; Kurose, H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX). Toxins 2011, 3, 884–899. [Google Scholar] [CrossRef] [PubMed]
- Wagner, L.D.; Corvette, L.J.; Ngundi, M.M.; Burns, D.L. Towards replacement of the acellular pertussis vaccine safety test: Comparison of in vitro cytotoxic activity and in vivo activity in mice. Vaccine 2017, 35, 7160–7165. [Google Scholar] [CrossRef] [PubMed]
- Bache, C.; Hoonakker, M.; Hendriksen, C.; Buchheit, K.H.; Spreitzer, I.; Montag, T. Workshop on Animal free Detection of Pertussis Toxin in Vaccines--Alternatives to the Histamine Sensitisation Test. Biologicals 2012, 40, 309–311. [Google Scholar] [CrossRef]
- Wagner, L.; Isbrucker, R.; Locht, C.; Arciniega, J.; Costanzo, A.; McFarland, R.; Oh, H.; Hoonaker, M.; Descampe, B.; Andersen, S.; et al. In search of acceptable alternatives to the murine histamine sensitisation test (HIST): What is possible and practical? Pharmeur. Bio Sci. Notes 2016, 2016, 82–101. [Google Scholar]
- Guerrant, R.L.; Brunton, L.L. Characterization of the Chinese hamster ovary cell assay for the enterotoxins of Vibrio cholerae and Escherichia coli and for specific antisera, and toxoid. J. Infect. Dis. 1977, 135, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Guerrant, R.L.; Brunton, L.L.; Schnaitman, T.C.; Rebhun, L.I.; Gilman, A.G. Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: A rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect. Immun. 1974, 10, 320–327. [Google Scholar] [PubMed]
- Hewlett, E.L.; Sauer, K.T.; Myers, G.A.; Cowell, J.L.; Guerrant, R.L. Induction of a novel morphological response in Chinese hamster ovary cells by pertussis toxin. Infect. Immun. 1983, 40, 1198–1203. [Google Scholar] [PubMed]
- Burns, D.L.; Kenimer, J.G.; Manclark, C.R. Role of the A subunit of pertussis toxin in alteration of Chinese hamster ovary cell morphology. Infect. Immun. 1987, 55, 24–28. [Google Scholar] [PubMed]
- Gillenius, P.; Jaatmaa, E.; Askelof, P.; Granstrom, M.; Tiru, M. The standardization of an assay for pertussis toxin and antitoxin in microplate culture of Chinese hamster ovary cells. J. Biol. Stand. 1985, 13, 61–66. [Google Scholar] [CrossRef]
- Xing, D.; Asokanathan, C.; Xu, X.; Bolgiano, B.; Douglas-Bardsley, A.; Zhang, S.; Wang, J.; Corbel, M. Relationship of immunogenicity to protective potency in acellular pertussis vaccines. Hum. Vaccin. Immunother. 2014, 10, 2066–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, H.; Iwasa, S. The quantitative assay of the clustering activity of the lymphocytosis-promoting factor (pertussis toxin) of Bordetella pertussis on Chinese hamster ovary (CHO) cells. J. Biol. Stand. 1989, 17, 53–64. [Google Scholar] [CrossRef]
- Isbrucker, R.; Daas, A.; Wagner, L.; Costanzo, A. Transferability study of CHO cell clustering assays for monitoring of pertussis toxin activity in acellular pertussis vaccines. Pharmeur. Bio Sci. Notes 2016, 2015, 97–114. [Google Scholar]
- Xing, D.; Das, R.G.; Newland, P.; Corbel, M. Comparison of the bioactivity of reference preparations for assaying Bordetella pertussis toxin activity in vaccines by the histamine sensitisation and Chinese hamster ovary-cell tests: Assessment of validity of expression of activity in terms of protein concentration. Vaccine 2002, 20, 3535–3542. [Google Scholar] [CrossRef]
- Gupta, R.K.; Siber, G.R. Need for a reference preparation of pertussis antitoxin for Chinese hamster ovary cell assay. Biologicals 1995, 23, 71–73. [Google Scholar] [CrossRef]
- Markey, K.; Douglas-Bardsley, A.; Hockley, J.; Costanzo, A. Calibration of pertussis toxin BRP batch 1 in a standardised CHO cell-based clustering assay. Pharmeur. Bio Sci. Notes 2018, 2018, 112–123. [Google Scholar] [PubMed]
- Kataoka, M.; Toyoizumi, H.; Yamamoto, A.; Ochiai, M.; Horiuchi, Y. Chinese hamster ovary (CHO) cell clustering does not correlate with in vivo histamine-sensitization when measuring residual activity of aldehyde-treated pertussis toxin (PT). Biologicals 2002, 30, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Maaloe, O.; Jerne, N.K. The standardization of immunological substances. Annu. Rev. Microbiol. 1952, 6, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Cyr, T.; Menzies, A.J.; Calver, J.; Whitehouse, L.W. A quantitative analysis for the ADP-ribosylation activity of pertussis toxin: An enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products. Biologicals 2001, 29, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.T.; Canthaboo, C.; Menzies, J.A.; Cyr, T.; Whitehouse, L.W.; Jones, C.; Corbel, M.J.; Xing, D. Detection of residual pertussis toxin in vaccines using a modified ribosylation assay. Vaccine 2002, 21, 44–52. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicine. Collaborative Study for the Establishment of a European Pharmacpoeia Biological Reference Preparation for Pertussis Toxin—Part 1. Pharm. Spec. Issue Biol. 2001, 2001, 15–23. [Google Scholar]
- Gomez, S.R.; Yuen, C.T.; Asokanathan, C.; Douglas-Bardsley, A.; Corbel, M.J.; Coote, J.G.; Parton, R.; Xing, D.K. ADP-ribosylation activity in pertussis vaccines and its relationship to the in vivo histamine-sensitisation test. Vaccine 2007, 25, 3311–3318. [Google Scholar] [CrossRef]
- Gomez, S.R.; Xing, D.K.; Corbel, M.J.; Coote, J.; Parton, R.; Yuen, C.T. Development of a carbohydrate binding assay for the B-oligomer of pertussis toxin and toxoid. Anal. Biochem. 2006, 356, 244–253. [Google Scholar] [CrossRef]
- Asokanathan, C.; Yuen, C.T.; Lin, N.; Xing, D. Investigation of effects of different commercial source of bovine serum albumin on the binding of pertussis toxin to the glycoprotein fetuin. Vaccine 2011, 29, 7593–7594. [Google Scholar] [CrossRef]
- Yuen, C.T.; Horiuchi, Y.; Asokanathan, C.; Cook, S.; Douglas-Bardsley, A.; Ochiai, M.; Corbel, M.; Xing, D. An in vitro assay system as a potential replacement for the histamine sensitisation test for acellular pertussis based combination vaccines. Vaccine 2010, 28, 3714–3721. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Yuen, C.T.; Asokanathan, C.; Rigsby, P.; Horiuchi, Y. Evaluation of an in vitro assay system as a potential alternative to current histamine sensitization test for acellular pertussis vaccines. Biologicals 2012, 40, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.T.; Asokanathan, C.; Cook, S.; Lin, N.; Xing, D. Effect of different detoxification procedures on the residual pertussis toxin activities in vaccines. Vaccine 2016, 34, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Isbrucker, R.; Arciniega, J.; McFarland, R.; Chapsal, J.M.; Xing, D.; Bache, C.; Nelson, S.; Costanzo, A.; Hoonakker, M.; Castiaux, A.; et al. Report on the international workshop on alternatives to the murine histamine sensitization test (HIST) for acellular pertussis vaccines: State of the science and the path forward. Biologicals 2014, 42, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Yuen, C.T.; Asokanathan, C.; Douglas-Bardsley, A.; Markey, K.; Rigsby, P.; Xing, D. Development of an in vitro Biochemical Assay System for the Measurement of Residual Toxin Activities in Pertussis Toxin Containing Vaccines. J. Vaccines Vaccin. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, M.; Horiuchi, Y.; Yuen, C.T.; Asokanathan, C.; Yamamoto, A.; Okada, K.; Kataoka, M.; Markey, K.; Corbel, M.; Xing, D. Investigation in a murine model of possible mechanisms of enhanced local reactions to post-primary diphtheria-tetanus toxoid boosters in recipients of acellular pertussis-diphtheria-tetanus vaccine. Hum. Vaccin. Immunother. 2014, 10, 2074–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbonetti, N.H. Pertussis leukocytosis: Mechanisms, clinical relevance and treatment. Pathog. Dis. 2016, 74, ftw087. [Google Scholar] [CrossRef]
- Adler, A.; Morse, S.I. Interaction of lymphoid and nonlymphoid cells with the lymphocytosis-promoting factor of Bordetella pertussis. Infect. Immun. 1973, 7, 461–467. [Google Scholar]
- Morse, S.I.; Morse, J.H. Isolation and properties of the leukocytosis—and lymphocytosis-promoting factor of Bordetella pertussis. J. Exp. Med. 1976, 143, 1483–1502. [Google Scholar] [CrossRef]
- Carbonetti, N.H. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog. Dis. 2015, 73, ftv073. [Google Scholar] [CrossRef]
- Van Straaten-Van de Kappelle, I.; Van der Gun, J.W.; Marsman, F.R.; Hendriksen, C.F.; Van de Donk, H.J. Collaborative study on test systems to assess toxicity of whole cell pertussis vaccine. Biologicals 1997, 25, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Momose, H.; Mizukami, T.; Ochiai, M.; Hamaguchi, I.; Yamaguchi, K. A new method for the evaluation of vaccine safety based on comprehensive gene expression analysis. J. Biomed. Biotechnol. 2010, 2010, 361841. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chapter IV: Testing for whole cell pertussis vaccine. In Manual for Quality Control of Diphtheria, Tetanus and Pertussis Vaccines; World Health Organization: Geneva, Switzerland, 2013; pp. 173–228. [Google Scholar]
- Van Straaten-Van de Kappelle, I.; Wiertz, E.J.; Marsman, F.R.; Borsboom, D.J.; Van de Donk, H.J.; Kreeftenberg, J.G. The modified leukocytosis promoting factor (LPF)-test: A valuable supplement to the mouse weight gain (MWG)-test in toxicity control of whole cell pertussis vaccine. Biologicals 1992, 20, 277–282. [Google Scholar] [CrossRef]
- Hoonakker, M.E.; Ruiterkamp, N.; Hendriksen, C.F. The cAMP assay: A functional in vitro alternative to the in vivo Histamine Sensitization test. Vaccine 2010, 28, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Hoonakker, M.E.; Verhagen, L.M.; Van der Maas, L.; Sloots, A.; Hendriksen, C.F. Reporter cell lines for detection of pertussis toxin in acellular pertussis vaccines as a functional animal-free alternative to the in vivo histamine sensitization test. Vaccine 2017, 35, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Vaessen, S.F.; Bruysters, M.W.; Vandebriel, R.J.; Verkoeijen, S.; Bos, R.; Krul, C.A.; Akkermans, A.M. Toward a mechanism-based in vitro safety test for pertussis toxin. Hum. Vaccin. Immunother. 2014, 10, 1391–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamaguchi, I.; Imai, J.; Momose, H.; Kawamura, M.; Mizukami, T.; Naito, S.; Maeyama, J.; Masumi, A.; Kuramitsu, M.; Takizawa, K.; et al. Application of quantitative gene expression analysis for pertussis vaccine safety control. Vaccine 2008, 26, 4686–4696. [Google Scholar] [CrossRef] [PubMed]
- Vaessen, S.F.; Verkoeijen, S.; Vandebriel, R.J.; Bruysters, M.W.; Pennings, J.L.; Bos, R.; Krul, C.A.; Akkermans, A.M. Identification of biomarkers to detect residual pertussis toxin using microarray analysis of dendritic cells. Vaccine 2013, 31, 5223–5231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Requirement | WHO | EU 1 | USA | Canada | China | Japan |
---|---|---|---|---|---|---|
Requirement according to | TRS 979 | Ph. Eur. | License Dossier | Ph. Eur. | Ph. Chin. | Ph. Ja. |
Final lot (or bulk)/in process | Final bulk (one or more Dilutions) | In process and/or final lot | Final lot (or bulk) | Final lot | Bulk and final bulk | Final lot |
Injected vaccine volume | 1 or 2 HD | 2 HD | 0.5 mL | 2 HD | 0.5 mL | 0.5 mL |
Vaccine sample storage | 1 or more dilutions, 4 °C and or 37 °C | 4 °C and 37 °C | 4 °C | 4 °C | 4 °C and 37 °C | 4 °C and 37 °C |
Negative Control | Diluent or none | Diluent | Diluent | Diluent | n.s. | n.s. |
Positive control (and number of dilutions) | PTx (one or more dilutions) | PTx (one dilution) | PTx (one) | PTx (one dilution) | PTx (several dilutions) | PTx (several dilutions) |
Number of mice per group | Ten or an appropriate number | 5 | 20 | 5 | 10 | 10 |
Minimal number of groups | App. 5 | 3 | App. 3 | 2 | App. 5 | App. 6 |
Histamine challenge | defined dose of histamine (usually 1 or 2 mg) | 2 mg of histamine | 1 mg of histamine | 2 mg of histamine | 2–4 mg of histamine | 4 mg of histamine |
Time interval between sample administration and challenge | 4–5 days | 5 days | 5 days | 5 days | 4 days | 4 days |
Observation period | 30 min–24 h | 24 h | 24 h | 24 h | 30 min | 30 min |
Minimum animal number 1 test | App. 50 animals | 15 animals | App. 60 animals | 10 animals | App. 50 animals | App. 60 animals |
Readout parameter | Temperature decrease or death | Death | Death | Death | Temperature decrease | Temperature decrease |
Acceptance criteria | Residual activity of PTx or the number of animals that die is not higher than specified by the NRA. If a vaccine lot fails in a single test, it should pass 2 additional test for release. | The vaccine complies if in the group that receives the vaccine stored at 2–8 °C or 37 °C, there are no deaths or no more deaths than in the group that receives the reference vaccine. If one mouse dies in one or both of the vaccine groups, repetition is allowed with the same number of mice or more. The vaccine is accepted when overall death rate is 5% or less. | One undiluted single human dose of 0.5 mL sensitizes no more than 10% of mice injected. If the vaccine fails to meet the criterion in a first test, it should pass 2 additional tests. | The vaccine complies with the test if in the group that receives the vaccine, there is no more than one death. If more than one mouse dies in the negative control group or the vaccine group, repetition is allowed with the same number of mice or more. The vaccine is accepted when overall death rate is 6.25% or less. | The histamine-sensitizing toxicity of both test samples at 4 °C and 37 °C shall be no higher than 0.8 HSU/mL in mice upon statistical analysis. | The histamine-sensitizing toxicity of both test samples at 4 °C and 37 °C shall be no higher than 0.4 HSU/mL in mice upon statistical analysis. |
Validity criteria | 1. Less than 5% deaths in the negative control group. 2. Demonstrated sensitivity of mice strain. 3. When linearity of log dose-response to PTx is demonstrated 1 positive control group suffice. | 1. No mice die in the negative control group. 2. Sensitivity of the mice is demonstrated (e.g., 30% of the mice die in the positive control group). 3. A suitable mouse strain has a toxin LD50 between 6 IU and 50 IU. | 1. PTx control group should show that mice used are sensitized by a dose of PTx below 100 ng, in terms of the HSD50. 2. No more than 10% of mice should die in the negative/diluent group. | 1. There are at least 16 mice challenged per group. 2. No more than one mouse dies in the negative control group. 3. Sensitivity of the mice is demonstrated, i.e., at least seven mice die in the positive control group (=43.75%, mice injected with 400 ng of PTx). | n.s. | n.s. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markey, K.; Asokanathan, C.; Feavers, I. Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins 2019, 11, 417. https://doi.org/10.3390/toxins11070417
Markey K, Asokanathan C, Feavers I. Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins. 2019; 11(7):417. https://doi.org/10.3390/toxins11070417
Chicago/Turabian StyleMarkey, Kevin, Catpagavalli Asokanathan, and Ian Feavers. 2019. "Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines" Toxins 11, no. 7: 417. https://doi.org/10.3390/toxins11070417
APA StyleMarkey, K., Asokanathan, C., & Feavers, I. (2019). Assays for Determining Pertussis Toxin Activity in Acellular Pertussis Vaccines. Toxins, 11(7), 417. https://doi.org/10.3390/toxins11070417