Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature
Abstract
:1. Introduction
2. Results
2.1. Physiological Changes Induced by Low Temperature
2.2. Cellular Proteome Dynamics
2.3. Exoproteome Dynamics
3. Discussion
4. Material and Methods
4.1. Culture Conditions and Proteomics Sample Preparation
4.2. NanoLC/MS-MS Analysis
4.3. Clustering and Statistical Analyses
4.4. Analytical Procedures and Phenotypic Characterization
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Begley, M.; Hill, C. Stress adaptation in foodborne pathogens. Annu. Rev. Food Sci. Technol. 2015, 6, 191–210. [Google Scholar] [CrossRef]
- Van Strijp, J.A.; Bitter, W. Pathogens under stress. FEMS Microbiol. Rev. 2014, 38, 1089–1090. [Google Scholar] [CrossRef] [Green Version]
- Bleuven, C.; Landry, C.R. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc. Biol. Sci. 2016, 283, 20161458. [Google Scholar] [CrossRef]
- Mogk, A.; Huber, D.; Bukau, B. Integrating protein homeostasis strategies in prokaryotes. Cold Spring Harb. Perspect. Biol. 2011, 3, a004366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensimon, A.; Heck, A.J.; Aebersold, R. Mass spectrometry-based proteomics and network biology. Annu. Rev. Biochem. 2012, 81, 379–405. [Google Scholar] [CrossRef] [PubMed]
- Barria, C.; Malecki, M.; Arraiano, C.M. Bacterial adaptation to cold. Microbiology 2013, 159, 2437–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus species with pathogenic potential. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Guinebretiere, M.H.; Thompson, F.L.; Sorokin, A.; Normand, P.; Dawyndt, P.; Ehling-Schulz, M.; Svensson, B.; Sanchis, V.; Nguyen-The, C.; Heyndrickx, M.; et al. Ecological diversification in the Bacillus cereus Group. Environ. Microbiol 2008, 10, 851–865. [Google Scholar] [CrossRef]
- Guinebretiere, M.H.; Velge, P.; Couvert, O.; Carlin, F.; Debuyser, M.L.; Nguyen-The, C. Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. J. Clin. Microbiol. 2010, 48, 3388–3391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008, 32, 579–606. [Google Scholar] [CrossRef] [Green Version]
- Doll, V.M.; Ehling-Schulz, M.; Vogelmann, R. Concerted action of sphingomyelinase and non-hemolytic enterotoxin in pathogenic Bacillus cereus. PLoS ONE 2013, 8, e61404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omer, H.; Alpha-Bazin, B.; Brunet, J.L.; Armengaud, J.; Duport, C. Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Front. Microbiol. 2015, 6, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramarao, N.; Sanchis, V. The pore-forming haemolysins of Bacillus cereus: A review. Toxins 2013, 5, 1119–1139. [Google Scholar] [CrossRef] [Green Version]
- Ehling-Schulz, M.; Frenzel, E.; Gohar, M. Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Front. Microbiol. 2015, 6, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinebretiere, M.H.; Auger, S.; Galleron, N.; Contzen, M.; De Sarrau, B.; De Buyser, M.L.; Lamberet, G.; Fagerlund, A.; Granum, P.E.; Lereclus, D.; et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J. Syst. Evol. Microbiol. 2013, 63, 31–40. [Google Scholar]
- Stevens, M.J.A.; Tasara, T.; Klumpp, J.; Stephan, R.; Ehling-Schulz, M.; Johler, S. Whole-genome-based phylogeny of Bacillus cytotoxicus reveals different clades within the species and provides clues on ecology and evolution. Sci. Rep. 2019, 9, 1984. [Google Scholar] [CrossRef] [Green Version]
- Kalamas, A.G. Anthrax. Anesthesiol. Clin. North Am. 2004, 22, 533vii–540vii. [Google Scholar] [CrossRef]
- Koehler, T.M. Bacillus anthracis physiology and genetics. Mol. Asp. Med. 2009, 30, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.C.; Popova, T.G.; Jorgensen, S.C.; Dong, L.; Chandhoke, V.; Bailey, C.L.; Popov, S.G. Degradation of circulating von Willebrand factor and its regulator ADAMTS13 implicates secreted Bacillus anthracis metalloproteases in anthrax consumptive coagulopathy. J. Biol. Chem. 2008, 283, 9531–9542. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.C.; Popova, T.G.; Millis, B.A.; Mukherjee, D.V.; Zhou, W.; Liotta, L.A.; Petricoin, E.F.; Chandhoke, V.; Bailey, C.; Popov, S.G. Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J. Biol. Chem. 2006, 281, 31408–31418. [Google Scholar] [CrossRef] [Green Version]
- Mosser, E.M.; Rest, R.F. The Bacillus anthracis cholesterol-dependent cytolysin, Anthrolysin O, kills human neutrophils, monocytes and macrophages. BMC Microbiol. 2006, 6, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, D.V.; Tonry, J.H.; Kim, K.S.; Ramarao, N.; Popova, T.G.; Bailey, C.; Popov, S.; Chung, M.C. Bacillus anthracis protease InhA increases blood-brain barrier permeability and contributes to cerebral hemorrhages. PLoS ONE 2011, 6, e17921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.; Likitvivatanavong, S.; Gill, S.S.; Soberon, M. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 2011, 41, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [Green Version]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferre, J. Bacterial vegetative insecticidal proteins (Vip) from entomopathogenic bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 329–350. [Google Scholar] [CrossRef] [Green Version]
- Raymond, B.; Federici, B.A. In defense of Bacillus thuringiensis, the safest and most successful microbial insecticide available to humanity—A response to EFSA. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [Green Version]
- Diomande, S.E.; Guinebretiere, M.H.; De Sarrau, B.; Nguyen-the, C.; Broussolle, V.; Brillard, J. Fatty acid profiles and desaturase-encoding genes are different in thermo- and psychrotolerant strains of the Bacillus cereus Group. BMC Res. Notes 2015, 8, 329. [Google Scholar] [CrossRef] [Green Version]
- Pandiani, F.; Brillard, J.; Bornard, I.; Michaud, C.; Chamot, S.; Nguyen-the, C.; Broussolle, V. Differential involvement of the five RNA helicases in adaptation of Bacillus cereus ATCC 14579 to low growth temperatures. Appl. Environ. Microbiol. 2010, 76, 6692–6697. [Google Scholar] [CrossRef] [Green Version]
- Keto-Timonen, R.; Hietala, N.; Palonen, E.; Hakakorpi, A.; Lindstrom, M.; Korkeala, H. Cold shock proteins: A minireview with special emphasis on Csp-family of Enteropathogenic Yersinia. Front. Microbiol. 2016, 7, 1151. [Google Scholar] [CrossRef]
- Ceuppens, S.; Rajkovic, A.; Heyndrickx, M.; Tsilia, V.; Van De Wiele, T.; Boon, N.; Uyttendaele, M. Regulation of toxin production by Bacillus cereus and its food safety implications. Crit. Rev. Microbiol. 2011, 37, 188–213. [Google Scholar] [CrossRef]
- Kranzler, M.; Stollewerk, K.; Rouzeau-Szynalski, K.; Blayo, L.; Sulyok, M.; Ehling-Schulz, M. Temperature exerts control of Bacillus cereus emetic toxin production on post-transcriptional levels. Front. Microbiol. 2016, 7, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Netten, P.; van De Moosdijk, A.; van Hoensel, P.; Mossel, D.A.; Perales, I. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 1990, 69, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Webb, M.D.; Barker, G.C.; Goodburn, K.E.; Peck, M.W. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci. Technol. 2019, 93, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Wouters, J.A.; Kamphuis, H.H.; Hugenholtz, J.; Kuipers, O.P.; de Vos, W.M.; Abee, T. Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl. Environ. Microbiol. 2000, 66, 3686–3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clair, G.; Roussi, S.; Armengaud, J.; Duport, C. Expanding the known repertoire of virulence factors produced by Bacillus cereus through early secretome profiling in three redox conditions. Mol. Cell. Proteom. 2010, 9, 1486–1498. [Google Scholar] [CrossRef] [Green Version]
- Lindback, T.; Fagerlund, A.; Rodland, M.S.; Granum, P.E. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology 2004, 150, 3959–3967. [Google Scholar] [CrossRef] [Green Version]
- Duport, C.; Alpha-Bazin, B.; Armengaud, A.J. Advanced proteomics as a powerful tool for studying toxins of human bacterial pathogens. Toxins 2019, 11, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivaji, S.; Prakash, J.S. How do bacteria sense and respond to low temperature? Arch. Microbiol. 2010, 192, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, I.A.; Zhang, Z.; Mehla, J.; Goodacre, N.; Babu, M.; Emili, A.; Uetz, P.; Saier, M.H., Jr. The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli. J. Biol. Chem. 2017, 292, 14250–14257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, V.J.; Kern, J.W.; Theriot, J.A.; Schneewind, O.; Missiakas, D. Surface-layer (S-layer) proteins sap and EA1 govern the binding of the S-layer-associated protein BslO at the cell septa of Bacillus anthracis. J. Bacteriol. 2012, 194, 3833–3840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutscher, J.; Francke, C.; Postma, P.W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 2006, 70, 939–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorca, G.L.; Chung, Y.J.; Barabote, R.D.; Weyler, W.; Schilling, C.H.; Saier, M.H., Jr. Catabolite repression and activation in Bacillus subtilis: Dependency on CcpA, HPr, and HprK. J. Bacteriol. 2005, 187, 7826–7839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Voort, M.; Kuipers, O.P.; Buist, G.; de Vos, W.M.; Abee, T. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiol. 2008, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, K.; Zheng, W.; Crooke, E.; Wang, Y.H.; Inouye, M. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol. Microbiol. 2001, 39, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Senesi, S.; Ghelardi, E. Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins 2010, 2, 1690–1703. [Google Scholar] [CrossRef]
- Jessberger, N.; Krey, V.M.; Rademacher, C.; Bohm, M.E.; Mohr, A.K.; Ehling-Schulz, M.; Scherer, S.; Martlbauer, E. From genome to toxicity: A combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Front. Microbiol. 2015, 6, 560. [Google Scholar]
- Phadtare, S.; Severinov, K. RNA remodeling and gene regulation by cold shock proteins. RNA Biol. 2010, 7, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Shannon, J.G.; Ross, C.L.; Koehler, T.M.; Rest, R.F. Characterization of anthrolysin O, the Bacillus anthracis cholesterol-dependent cytolysin. Infect. Immun. 2003, 71, 3183–3189. [Google Scholar] [CrossRef] [Green Version]
- Oda, M.; Takahashi, M.; Matsuno, T.; Uoo, K.; Nagahama, M.; Sakurai, J. Hemolysis induced by Bacillus cereus sphingomyelinase. Biochim. Biophys. Acta 2010, 1798, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Madeira, J.P.; Alpha-Bazin, B.; Armengaud, J.; Duport, C. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation. Front. Microbiol. 2015, 6, 342. [Google Scholar] [CrossRef]
- Madeira, J.P.; Omer, H.; Alpha-Bazin, B.; Armengaud, J.; Duport, C. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. J. Proteom. 2016, 146, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, E.M.; Allain, F.; Gaillard, J.C.; Pible, O.; Armengaud, J. Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol. Biol. 2014, 1197, 275–285. [Google Scholar] [PubMed]
- Klein, G.; Mathe, C.; Biola-Clier, M.; Devineau, S.; Drouineau, E.; Hatem, E.; Marichal, L.; Alonso, B.; Gaillard, J.C.; Lagniel, G.; et al. RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology 2016, 10, 1555–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stastitical Softw. 2008, 25, 1–18. [Google Scholar]
- Husson, F.; Josse, J.; Pagès, J. Principal Component Methods-Hierarchical Clustering-Partitional Clustering: Why Would We Need to Choose for Visualizing Data? Technical Report-Agrocampus. Available online: http://factominer.free.fr/more/HCPC_husson_josse.pdf (accessed on 6 October 2020).
- Madeira, J.P.; Alpha-Bazin, B.M.; Armengaud, J.; Duport, C. Methionine residues in exoproteins and their recycling by methionine sulfoxide reductase AB serve as an antioxidant strategy in Bacillus cereus. Front. Microbiol. 2017, 8, 1342. [Google Scholar] [CrossRef] [PubMed]
- Salvetti, S.; Faegri, K.; Ghelardi, E.; Kolsto, A.B.; Senesi, S. Global gene expression profile for swarming Bacillus cereus bacteria. Appl. Environ. Microbiol. 2011, 77, 5149–5156. [Google Scholar] [CrossRef] [Green Version]
Category | Uniprot ID | Protein Name | Function | Subcellular Localization | Log2FC * | ||
---|---|---|---|---|---|---|---|
EE | LE | S | |||||
Amino acid metabolism | B7HRM0 | SpeD1 | S-adenosylmethionine decarboxylase proenzyme | Cytoplasm | 5.5 | 3.8 | 2.7 |
B7HUY1 | GcvH | Glycine cleavage system H protein | Cytoplasm | 1.3 | 1.7 | 2.7 | |
B7I0F3 | TrpA | Tryptophan synthase alpha chain | Cytoplasm | 1.3 | 1.9 | 3.4 | |
Carbohydrate transport and metabolism | B7HN27 | Hpr | Phosphocarrier protein | Cytoplasm | 2.5 | 1.9 | 2.5 |
Cell motility | B7HLW0 | Flagellin | Extracellular | 2.3 | 3.9 | 5.5 | |
B7HLU1 | HAP2 | Flagellar hook-associated protein 2 | Extracellular | 1.4 | 3.1 | 7.9 | |
Cell wall, membrane, envelope biogenesis | B7HXP4 | Sap-like | Crystal protein | Cell wall | 3.3 | 2.5 | 3.4 |
B7HZM0 | Putative S-layer protein | Cell wall | 1.1 | 2.9 | 4.3 | ||
B7HVI8 | EntA | Enterotoxin | Cell wall | 1.0 | 5.9 | 7.0 | |
B7HWK4 | S-layer domain protein | Cell wall | 2.7 | 3.0 | 5.8 | ||
B7HXE3 | EntC | Enterotoxin cell wall binding protein | Cell wall | 1.7 | 1.8 | 2.6 | |
B7HYP7 | S-layer domain protein | Cell wall | 2.9 | 3.4 | 5.3 | ||
B7HK52 | Putative internalin | Cell wall | 1.6 | 4.7 | 6.2 | ||
B7HNA1 | Putative cell wall peptidase | Cell wall | 2.2 | 1.9 | 3.5 | ||
Function unknown | B7HR52 | Uncharacterized protein | Cytoplasm | 1.0 | 5.1 | 5.6 | |
B7HZU9 | Uncharacterized protein | Cytoplasm | 2.8 | 2.2 | 0.7 | ||
B7HNT3 | Uncharacterized protein | Cytoplasm | 5.9 | 6.5 | 2.0 | ||
B7HK67 | Conserved domain protein | Cytoplasm | 4.5 | 4.8 | 4.5 | ||
B7HTP5 | Uncharacterized protein | Cytoplasm | 1.9 | 5.3 | 6.7 | ||
B7HR49 | MbtH-like protein | Cytoplasm | 3.2 | 4.3 | 6.9 | ||
B7HT63 | Uncharacterized protein | Membrane | 3.3 | 0.1 | 8.3 | ||
General function only | B7HK99 | Flavodoxin | Cytoplasm | 1.5 | 2.6 | 4.1 | |
B7HWD7 | Ferrous iron transport protein A | Cytoplasm | 0.6 | 1.4 | 2.5 | ||
Inorganic ion transport and metabolism | B7HS68 | Lipoyl-binding domain-containing protein | Cytoplasm | 3.0 | 0.8 | 2.3 | |
Lipid transport and metabolism | B7HLI3 | Acp | Acyl carrier protein | Cytoplasm | 4.6 | 1.9 | 2.1 |
B7HX67 | Lipoteichoic acid synthase | Cytoplasm | –1.0 | 3.3 | 6.8 | ||
B7HYD4 | Glycerophosphoryl diester phosphodiesterase | Cytoplasm | NS | 1.8 | 3.3 | ||
B7HUU3 | NifU domain protein | Cytoplasm | 2.0 | 1.2 | 1.4 | ||
Posttranslational modification, protein turnover, chaperones | B7HND4 | Putative protease | Extracellular | 5.4 | 5.7 | 8.7 | |
B7HTG8 | Neutral metalloproteinase | Extracellular | 4.8 | 5.7 | 8.0 | ||
A1BYI | Neutral metalloproteinase | Extracellular | 4.7 | 5.3 | 7.8 | ||
B7HN40 | Peptidyl-prolyl cis-trans isomerase | Cytoplasm | 1.1 | 0.7 | 2.2 | ||
Toxin (pathogenesis) | B7HW98 | PlC | Phospholipase C | Extracellular | 2.2 | 5.5 | 7.9 |
B7HMQ4 | NheC | Enterotoxin C | Extracellular | 0.9 | 4.3 | 7.8 | |
B7HMQ2 | NheA | Enterotoxin A | Extracellular | 2.0 | 5.8 | 9.7 | |
B7HMQ3 | NheB | Enterotoxin B | Extracellular | 2.9 | 5.4 | 10.1 | |
B7HXW4 | CLO | Thiol-activated cytolysin | Extracellular | 3.8 | 5.3 | 9.1 | |
Transcription | B7HTX1 | CspD | Cold shock protein | Cytoplasm | 3.6 | 1.1 | 1.3 |
B7HPY6 | DNA-binding protein | Cytoplasm | 3.4 | 6.4 | 6. |
Category | Uniprot ID | Protein Name | Function | Log2(FC) * | ||
---|---|---|---|---|---|---|
EE | LE | S | ||||
Cell wall, membrane, envelope biogenesis | B7HNA1 | Cell wall peptidase | 2.9 | 4.8 | 4.7 | |
B7HX69 | Cell wall hydrolase | 1.7 | 2.9 | 2.5 | ||
B7HX23 | Cell wall endopeptidase | NS | 5.6 | 6.1 | ||
B7HXP5 | EA1 | S-layer crystal protein | NS | 1.5 | 3.4 | |
B7HXE3 | EntC | Enterotoxin | NS | 2.6 | 5.3 | |
Flagella | B7HLW0 | Flagellin | 2.5 | 5.0 | 5.5 | |
Protease | A1BYI0 | Neutral metalloproteinase | 5.0 | 4.6 | 6.4 | |
B7HKS1 | Neutral metalloproteinase | NS | 2.9 | 4.4 | ||
B7HND4 | Protease | 3.0 | 4.1 | 5.2 | ||
B7HTG8 | Neutral metalloproteinase | 2.5 | 4.8 | 6.5 | ||
B7HW94 | InhA | Immune inhibitor A metalloprotease | NS | 0.6 | 2.1 | |
Toxin (Pathogenesis) | B7HXW4 | CLO | Thiol-activated cytolysin | 5.3 | 3.7 | 5.5 |
B7HMQ2 | NheA | Enterotoxin A | 2.1 | 3.8 | 4.1 | |
B7HMQ3 | NheB | Enterotoxin B | 4.2 | 4.2 | 5.4 | |
Unknown | B7HXS3 | Uncharacterized protein | 1.2 | 5.8 | 7.2 | |
B7HWA6 | 3D domain-containing protein | 0.7 | 3.9 | 4.7 | ||
A1BYH8 | Uncharacterized protein | –1.9 | 5.0 | 6.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duport, C.; Rousset, L.; Alpha-Bazin, B.; Armengaud, J. Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins 2020, 12, 645. https://doi.org/10.3390/toxins12100645
Duport C, Rousset L, Alpha-Bazin B, Armengaud J. Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins. 2020; 12(10):645. https://doi.org/10.3390/toxins12100645
Chicago/Turabian StyleDuport, Catherine, Ludivine Rousset, Béatrice Alpha-Bazin, and Jean Armengaud. 2020. "Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature" Toxins 12, no. 10: 645. https://doi.org/10.3390/toxins12100645
APA StyleDuport, C., Rousset, L., Alpha-Bazin, B., & Armengaud, J. (2020). Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome Dynamics During Growth at Low Temperature. Toxins, 12(10), 645. https://doi.org/10.3390/toxins12100645