A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites
Abstract
:1. Introduction
2. Results
2.1. Cross-Reactivity between Rabbit Anti-N. atra IgG and Other Cobra Venoms
2.2. The Protein Electrophoretic Profile of Cobra Venoms and Recognized by Rabbit Anti-N. atra IgG
2.3. ICT-Cobra for Transregional Cobra Venom Detection In Vitro
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Venoms and Toxins
5.2. Antibodies and Reagents
5.3. Sandwich Enzyme-Linked Immunosorbent Assay (Sandwich ELISA)
5.4. Gel Electrophoresis and Coomassie Brilliant Blue Staining
5.5. Western Blotting
5.6. Preparation of the Immunochromatographic Assay Kit (ICT-Cobra)
5.7. Venom Detection with ICT-Cobra In Vitro
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasturiratne, A.; Wickremasinghe, A.R.; de Silva, N.; Gunawardena, N.K.; Pathmeswaran, A.; Premaratna, R.; Savioli, L.; Lalloo, D.G.; de Silva, H.J. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008, 5, e218. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Regional Office for South-East Asia Staff. Guidelines for the Management of Snakebites Second Edition; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Abubakar, S.B.; Habib, A.G.; Mathew, J. Amputation and disability following snakebite in Nigeria. Trop. Dr. 2010, 40, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.F.; Layfield, H.J.; Vallance, T.; Patel, K.; Bicknell, A.B.; Trim, S.A.; Vaiyapuri, S. The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins 2019, 11, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Neglected Tropical Diseases. Available online: https://www.who.int/neglected_diseases/en/ (accessed on 27 November 2019).
- Chippaux, J.P. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 2017, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.; White, J. (Eds.) Handbook of Clinical Toxicology of Animal Venoms and Poisons; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Jayawardana, S.; Gnanathasan, A.; Arambepola, C.; Chang, T. Chronic Musculoskeletal Disabilities following Snake Envenoming in Sri Lanka: A Population-Based Study. PLoS Negl. Trop. Dis. 2016, 10, e0005103. [Google Scholar] [CrossRef] [Green Version]
- Theakston, R.D.; Laing, G.D. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins 2014, 6, 1667–1695. [Google Scholar] [CrossRef] [Green Version]
- Hung, D.Z.; Liau, M.Y.; Lin-Shiau, S.Y. The clinical significance of venom detection in patients of cobra snakebite. Toxicon Off. J. Int. Soc. Toxinol. 2003, 41, 409–415. [Google Scholar] [CrossRef]
- Wüster, W.; Thorpe, R.S. Asiatic Cobras: Population Systematics of the Naja naja Species Complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica 1992, 48, 69–85. [Google Scholar]
- Saravu, K.; Somavarapu, V.; Shastry, A.B.; Kumar, R. Clinical profile, species-specific severity grading, and outcome determinants of snake envenomation: An Indian tertiary care hospital-based prospective study. Indian J. Crit. Care Med. 2012, 16, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Theakston, R.; Pugh, R.; Reid, H. Enzyme-linked immunosorbent assay of venom-antibodies in human victims of snake bite. J. Trop. Med. Hyg. 1981, 84, 109–112. [Google Scholar]
- Hung, D.Z.; Yu, Y.J.; Hsu, C.L.; Lin, T.J. Antivenom treatment and renal dysfunction in Russell’s viper snakebite in Taiwan: A case series. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Chang, Z.Y.; Ming, X.; Min, C.L.; Wei, H.; Sheng, L.Y.; Hong, G.X. Fast dipstick dye immunoassay for detection of immunoglobulin G (IgG) and IgM antibodies of human toxoplasmosis. Clin. Diagn. Lab. Immunol. 2005, 12, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, W.; Chan, P.; Bosgoed, F.; Lehmann, K.; Renneberg, I.; Lehmann, M.; Renneberg, R. One-step quantitative cortisol dipstick with proportional reading. J. Immunol. Methods 2003, 281, 109–118. [Google Scholar] [CrossRef]
- Smits, H.L.; Eapen, C.K.; Sugathan, S.; Kuriakose, M.; Gasem, M.H.; Yersin, C.; Sasaki, D.; Pujianto, B.; Vestering, M.; Abdoel, T.H.; et al. Lateral-flow assay for rapid serodiagnosis of human leptospirosis. Clin. Diagn. Lab. Immunol. 2001, 8, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.; Tse, H. Lateral Flow Immunoassay; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar]
- Faulx, D.; Storey, H.L.; Murray, M.A.; Cantera, J.L.; Hawkins, K.R.; Leader, B.T.; Gallo, K.L.; Santos, T.d.L. Diagnostics for Neglected Tropical Diseases: Defining the Best Tools through Target Product Profiles; PATH: Seattle, WA, USA, 2015. [Google Scholar]
- Hung, D.Z.; Lin, J.H.; Mo, J.F.; Huang, C.F.; Liau, M.Y. Rapid diagnosis of Naja atra snakebites. Clin. Toxicol. (Phila. PA) 2014, 52, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Leong, P.K.; Sim, S.M.; Fung, S.Y.; Sumana, K.; Sitprija, V.; Tan, N.H. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (Neuro Polyvalent Snake Antivenom). PLoS Negl. Trop. Dis. 2012, 6, e1672. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; You, C.H.; Wang, P.J.; Yu, J.S.; Huang, G.J.; Liu, C.H.; Hsieh, W.C.; Lin, C.C. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLoS Negl. Trop. Dis. 2017, 11, e0006138. [Google Scholar] [CrossRef] [Green Version]
- Leong, P.K.; Tan, C.H.; Sim, S.M.; Fung, S.Y.; Sumana, K.; Sitprija, V.; Tan, N.H. Cross neutralization of common Southeast Asian viperid venoms by a Thai polyvalent snake antivenom (Hemato Polyvalent Snake Antivenom). Acta Trop. 2014, 132, 7–14. [Google Scholar] [CrossRef]
- Collaco, R.C.; Randazzo-Moura, P.; Tamascia, M.L.; da Silva, I.R.; Rocha, T.; Cogo, J.C.; Hyslop, S.; Sanny, C.G.; Rodrigues-Simioni, L. Bothrops fonsecai snake venom activities and cross-reactivity with commercial bothropic venom. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2017, 191, 86–100. [Google Scholar] [CrossRef]
- Ratanabanangkoon, K.; Tan, K.Y.; Eursakun, S.; Tan, C.H.; Simsiriwong, P.; Pamornsakda, T.; Wiriyarat, W.; Klinpayom, C.; Tan, N.H. A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia. PLoS Negl. Trop. Dis. 2016, 10, e0004565. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.J.; Faiz, M.A.; Abela-Ridder, B.; Ainsworth, S.; Bulfone, T.C.; Nickerson, A.D.; Habib, A.G.; Junghanss, T.; Fan, H.W.; Turner, M.; et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl. Trop. Dis. 2019, 13, e0007059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.W.; Liu, B.S.; Chien, K.Y.; Chiang, L.C.; Huang, S.Y.; Sung, W.C.; Wu, W.G. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J. Proteom. 2015, 128, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, A.H.; Gutierrez, J.M.; Lohse, B.; Rasmussen, A.R.; Fernandez, J.; Milbo, C.; Lomonte, B. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon Off. J. Int. Soc. Toxinol. 2015, 99, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, K.Y.; Tan, C.H.; Tan, K.Y.; Quraishi, N.H.; Tan, N.H. Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J. Proteom. 2018, 175, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Petras, D.; Sanz, L.; Segura, A.; Herrera, M.; Villalta, M.; Solano, D.; Vargas, M.; Leon, G.; Warrell, D.A.; Theakston, R.D.; et al. Snake venomics of African spitting cobras: Toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J. Proteome Res. 2011, 10, 1266–1280. [Google Scholar] [CrossRef] [PubMed]
- Malih, I.; Ahmad rusmili, M.R.; Tee, T.Y.; Saile, R.; Ghalim, N.; Othman, I. Proteomic analysis of Moroccan cobra Naja haje legionis venom using tandem mass spectrometry. J. Proteom. 2014, 96, 240–252. [Google Scholar] [CrossRef]
- Lauridsen, L.P.; Laustsen, A.H.; Lomonte, B.; Gutierrez, J.M. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. J. Proteom. 2017, 150, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Petras, D.; Heiss, P.; Sussmuth, R.D.; Calvete, J.J. Venom Proteomics of Indonesian King Cobra, Ophiophagus hannah: Integrating Top-Down and Bottom-Up Approaches. J. Proteome Res. 2015, 14, 2539–2556. [Google Scholar] [CrossRef]
- Mackessy, S.P.; Heyborne, W.H. Cysteine-Rich Secretory Proteins in Reptile Venoms; CRC Press Inc.: London, UK, 2009; pp. 325–336. [Google Scholar]
- Sakurai, Y.; Takatsuka, H.; Yoshioka, A.; Matsui, T.; Suzuki, M.; Titani, K.; Fujimura, Y. Inhibition of human platelet aggregation by L-amino acid oxidase purified from Naja naja kaouthia venom. Toxicon Off. J. Int. Soc. Toxinol. 2001, 39, 1827–1833. [Google Scholar] [CrossRef]
- Vogel, C.-W.; Müller-Eberhard, H. The cobra venom factor-dependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate. J. Biol. Chem. 1982, 257, 8292–8299. [Google Scholar]
- Markland, F.S.; Swenson, S. Snake venom metalloproteinases. Toxicon Off. J. Int. Soc. Toxinol. 2013, 62, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Méndez, I.; Gutiérrez, J.M.; Angulo, Y.; Calvete, J.J.; Lomonte, B. Comparative study of the cytolytic activity of snake venoms from African spitting cobras (Naja spp., Elapidae) and its neutralization by a polyspecific antivenom. Toxicon Off. J. Int. Soc. Toxinol. 2011, 58, 558–564. [Google Scholar] [CrossRef]
- Anderson, V.E.; Gerardo, C.J.; Rapp-Olsson, M.; Bush, S.P.; Mullins, M.E.; Greene, S.; Toschlog, E.A.; Quackenbush, E.; Rose, S.R.; Schwartz, R.B.; et al. Early administration of Fab antivenom resulted in faster limb recovery in copperhead snake envenomation patients. Clin. Toxicol. (Phila. PA) 2019, 57, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Nimorakiotakis, V.B.; Winkel, K.D. Prospective assessment of the false positive rate of the Australian snake venom detection kit in healthy human samples. Toxicon Off. J. Int. Soc. Toxinol 2016, 111, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Sauceda, J.C.; Lin, Z.; Ott, S.; Basova, E.; Goryacheva, I.; Biselli, S.; Lin, J.; Niessner, R.; Knopp, D. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens. Bioelectron. 2009, 25, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Khreich, N.; Lamourette, P.; Boutal, H.; Devilliers, K.; Créminon, C.; Volland, H. Detection of Staphylococcus enterotoxin B using fluorescent immunoliposomes as label for immunochromatographic testing. Anal. Biochem. 2008, 377, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Molinelli, A.; Grossalber, K.; Fuhrer, M.; Baumgartner, S.; Sulyok, M.; Krska, R. Development of qualitative and semiquantitative immunoassay-based rapid strip tests for the detection of T-2 toxin in wheat and oat. J. Agric. Food Chem. 2008, 56, 2589–2594. [Google Scholar] [CrossRef] [PubMed]
- Pawade, B.S.; Salvi, N.C.; Shaikh, I.K.; Waghmare, A.B.; Jadhav, N.D.; Wagh, V.B.; Pawade, A.S.; Waykar, I.G.; Potnis-Lele, M. Rapid and selective detection of experimental snake envenomation—Use of gold nanoparticle based lateral flow assay. Toxicon Off. J. Int. Soc. Toxinol. 2016, 119, 299–306. [Google Scholar] [CrossRef]
- Liu, C.C.; Yu, J.S.; Wang, P.J.; Hsiao, Y.C.; Liu, C.H.; Chen, Y.C.; Lai, P.F.; Hsu, C.P.; Fann, W.C.; Lin, C.C. Development of sandwich ELISA and lateral flow strip assays for diagnosing clinically significant snakebite in Taiwan. PLoS Negl. Trop. Dis. 2018, 12, e0007014. [Google Scholar] [CrossRef] [Green Version]
- Sanhajariya, S.; Duffull, S.B.; Isbister, G.K. Pharmacokinetics of Snake Venom. Toxins 2018, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Faiz, M.A.; Ahsan, M.F.; Ghose, A.; Rahman, M.R.; Amin, R.; Hossain, M.; Tareq, M.N.U.; Jalil, M.A.; Kuch, U.; Theakston, R.D.G.; et al. Bites by the Monocled Cobra, Naja kaouthia, in Chittagong Division, Bangladesh: Epidemiology, Clinical Features of Envenoming and Management of 70 Identified Cases. Am. J. Trop. Med. Hyg. 2017, 96, 876–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghose, A.; Faiz, M.A. Snake Envenomation in Bangladesh. In Clinical Toxinology in Asia Pacific and Africa; Gopalakrishnakone, P., Faiz, A., Fernando, R., Gnanathasan, C.A., Habib, A.G., Yang, C.-C., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2015; pp. 233–249. [Google Scholar] [CrossRef]
- Deb, D.D.; Sayeed, A.A.; Basher, A.; Hung, D.Z.; Ghose, A. Applicability of an immunochromatographic rapid cobra test in patients with suspected cobra bite in Bangladesh. In Proceedings of the 12th Asia Pacific Association of Medical Toxicology, Dubai, UAE, 21–23 November 2013. [Google Scholar]
- Harris, J.B.; Faiz, M.A.; Rahman, M.R.; Jalil, M.M.A.; Ahsan, M.F.; Theakston, R.D.G.; Warrell, D.A.; Kuch, U. Snake bite in Chittagong Division, Bangladesh: A study of bitten patients who developed no signs of systemic envenoming. Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 320–327. [Google Scholar] [CrossRef]
- De la Rosa, G.; Olvera, F.; Archundia, I.G.; Lomonte, B.; Alagon, A.; Corzo, G. Horse immunization with short-chain consensus alpha-neurotoxin generates antibodies against broad spectrum of elapid venomous species. Nat. Commun. 2019, 10, 3642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.S.; Wu, W.G.; Lin, M.H.; Li, C.H.; Jiang, B.R.; Wu, S.C.; Leng, C.H.; Sung, W.C. Identification of Immunoreactive Peptides of Toxins to Simultaneously Assess the Neutralization Potency of Antivenoms against Neurotoxicity and Cytotoxicity of Naja atra Venom. Toxins 2017, 10, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Venom | Venom Concentrations (ng/mL) | |||||
---|---|---|---|---|---|---|
0 | 5 | 10 | 50 | 100 | 500 | |
N. atra | 0 a | 100 | 100 | 100 | 100 | 100 |
N. siamensis | 0 | 75 | 100 | 100 | 100 | 100 |
N. kaouthia | 0 | 100 | 100 | 100 | 100 | 100 |
N. naja | 0 | 100 | 100 | 100 | 100 | 100 |
N. nigricollis | 0 | 0 | 0 | 58.33 | 50 | 100 |
N. haje | 0 | 16.7 | 25 | 100 | 100 | 100 |
N. melanoleuca | 0 | 0 | 50 | 91.7 | 100 | 100 |
O. hannah | 0 | 0 | 0 | 0 | 0 | 0 |
Venoms | Origin |
---|---|
N. atra | Taiwan |
N. kaouthia | Thailand |
N. naja | India |
N. siamensis | Thailand |
N. nigricollis | West Africa |
N. haje | - a |
N. melanoleuca | Cameroon |
O. hannah | Indonesia |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-H.; Sung, W.-C.; Liao, J.-W.; Hung, D.-Z. A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites. Toxins 2020, 12, 572. https://doi.org/10.3390/toxins12090572
Lin J-H, Sung W-C, Liao J-W, Hung D-Z. A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites. Toxins. 2020; 12(9):572. https://doi.org/10.3390/toxins12090572
Chicago/Turabian StyleLin, Jing-Hua, Wang-Chou Sung, Jiunn-Wang Liao, and Dong-Zong Hung. 2020. "A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites" Toxins 12, no. 9: 572. https://doi.org/10.3390/toxins12090572
APA StyleLin, J. -H., Sung, W. -C., Liao, J. -W., & Hung, D. -Z. (2020). A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites. Toxins, 12(9), 572. https://doi.org/10.3390/toxins12090572