Botulinum Toxin: An Update on Pharmacology and Newer Products in Development
Abstract
:1. Introduction
2. Structure and Types
3. Mechanism of Action of BoNT at the Neuromuscular Junction
4. Salient Prescribing Information of Conventional Botulinum Toxins
5. Newer Botulinum Toxin Currently in Development Stage
6. Recombinant Botulinum Toxin and Application of In Silico Drug Development
7. Non-Clostridial Botulinum Toxins
8. Chimeric Botulinum Toxins
9. BoNTs with Modified Target Specificity
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erbguth, F. From poison to remedy: The chequered history of botulinum toxin. J. Neural Transm. 2008, 115, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.B.; Magoon, E.H.; McNeer, K.; Stager, D. Botulinum treatment of strabismus in children. Trans. Am. Ophthalmol. Soc. 1989, 87, 174. [Google Scholar] [PubMed]
- Scott, A.B. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. J. Pediatr. Ophthalmol. Strabismus 1980, 17, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Lew, M.F. Review of the FDA-approved uses of botulinum toxins, including data suggesting efficacy in pain reduction. Clin. J. Pain 2002, 18, S142–S146. [Google Scholar] [CrossRef]
- Apostolidis, A.; Fowler, C. The use of botulinum neurotoxin type A (BoNTA) in urology. J. Neural Transm. 2008, 115, 593–605. [Google Scholar] [CrossRef]
- Soares, A.; Andriolo, R.B.; Atallah, Á.N.; da Silva, E.M. Botulinum toxin for myofascial pain syndromes in adults. Cochrane Database Syst. Rev. 2012, 4. [Google Scholar] [CrossRef]
- Segura-Aguilar, J.; Tizabi, Y. Botulinum Neurotoxin, an Example of Successful Translational Research. Clin. Pharmacol. Transl. Med. 2018, 2, 125. [Google Scholar]
- Dolly, J.; Aoki, K. The structure and mode of action of different botulinum toxins. Eur. J. Neurol. 2006, 13, 1–9. [Google Scholar] [CrossRef]
- Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998, 5, 898–902. [Google Scholar] [CrossRef]
- Kumar, R.; Dhaliwal, H.P.; Kukreja, R.V.; Singh, B.R. The botulinum toxin as a therapeutic agent: Molecular structure and mechanism of action in motor and sensory systems. Semin. Neurol. 2016, 36, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Jabbari, B. Botulinum Toxin Treatment in Clinical Medicine; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Eleopra, R.; Tugnoli, V.; Quatrale, R.; Rossetto, O.; Montecucco, C. Different types of botulinum toxin in humans. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, S53–S59. [Google Scholar] [CrossRef] [PubMed]
- Aoki, K.; Guyer, B. Botulinum toxin type A and other botulinum toxin serotypes: A comparative review of biochemical and pharmacological actions. Eur. J. Neurol. 2001, 8, 21–29. [Google Scholar] [CrossRef]
- Schiavo, G.; Malizio, C.; Trimble, W.S.; De Laureto, P.P.; Milan, G.; Sugiyama, H.; Johnson, E.A.; Montecucco, C. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J. Biol. Chem. 1994, 269, 20213–20216. [Google Scholar] [PubMed]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Arndt, J.W.; Jacobson, M.J.; Abola, E.E.; Forsyth, C.M.; Tepp, W.H.; Marks, J.D.; Johnson, E.A.; Stevens, R.C. A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. J. Mol. Biol. 2006, 362, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, E.L.; Chattopadhyay, A.; McNamee, M.G. Desensitization of the nicotinic acetylcholine receptor: Molecular mechanisms and effect of modulators. Cell. Mol. Neurobiol. 1989, 9, 141–178. [Google Scholar] [CrossRef]
- Kao, I.; Drachman, D.B.; Price, D.L. Botulinum toxin: Mechanism of presynaptic blockade. Science 1976, 193, 1256–1258. [Google Scholar] [CrossRef]
- Binz, T.; Rummel, A. Cell entry strategy of clostridial neurotoxins. J. Neurochem. 2009, 109, 1584–1595. [Google Scholar] [CrossRef]
- Dolly, J.O.; Black, J.; Williams, R.S.; Melling, J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 1984, 307, 457–460. [Google Scholar] [CrossRef]
- Rummel, A. Botulinum Neurotoxins; Springer: Berlin/Heidelberg, Germany, 2012; pp. 61–90. [Google Scholar]
- Yao, G.; Zhang, S.; Mahrhold, S.; Lam, K.-H.; Stern, D.; Bagramyan, K.; Perry, K.; Kalkum, M.; Rummel, A.; Dong, M. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A. Nat. Struct. Mol. Biol. 2016, 23, 656–662. [Google Scholar] [CrossRef]
- Jabbari, B. Chapter 2 Basics of Structure and Mechanisms of Function of Botulinum Toxin—How Does it Work? In Botulinum Toxin Treatment What Everyone Should Know, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 11–17. [Google Scholar]
- Burstein, R.; Blumenfeld, A.M.; Silberstein, S.D.; Manack Adams, A.; Brin, M.F. Mechanism of action of OnabotulinumtoxinA in chronic migraine: A narrative review. Headache J. Head Face Pain 2020, 60, 1259–1272. [Google Scholar] [CrossRef]
- Erbguth, F.J. Historical notes on botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov. Disord. Off. J. Mov. Disord. Soc. 2004, 19, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Brin, M.F.; James, C.; Maltman, J. Botulinum toxin type A products are not interchangeable: A review of the evidence. Biol. Targets Ther. 2014, 8, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, M.; Splevins, A.; Picaut, P.; Van der Schans, M.; Langenberg, J.; Noort, D.; Foster, K. AbobotulinumtoxinA (Dysport®), onabotulinumtoxinA (Botox®), and incobotulinumtoxinA (Xeomin®) neurotoxin content and potential implications for duration of response in patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Brin, M.F. Botulinum toxin: Chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 1997, 20, 146–168. [Google Scholar] [CrossRef]
- Fraint, A.; Comella, C. Botulinum Toxin Treatment of Primary Dystonia. In Botulinum Toxin Treatment in Clinical Medicine A Disease-Oriented Approach, 1st ed.; Jabbari, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 13–22. [Google Scholar]
- Scaglione, F. Conversion ratio between Botox®, Dysport®, and Xeomin® in clinical practice. Toxins 2016, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, M.A.; Swope, D.M.; Grimes, D. Diffusion of botulinum toxins. Tremor Other Hyperkinetic Mov. 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Brin, M.F.; Comella, C.L.; Jankovic, J.; Lai, F.; Naumann, M. Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 1353–1360. [Google Scholar] [CrossRef]
- Dressler, D. Five-year experience with incobotulinumtoxinA (Xeomin®): The first botulinum toxin drug free of complexing proteins. Eur. J. Neurol. 2012, 19, 385–389. [Google Scholar] [CrossRef]
- Frevert, J. Xeomin®: An innovative new botulinum toxin type A. Eur. J. Neurol. 2009, 16, 11–13. [Google Scholar] [CrossRef]
- Revance Therapeutics, Inc. Revance Announces U.S. FDA Acceptance of Biologics License Application (BLA) for DAXI to Treat Glabellar (Frown) Lines. Available online: www.businesswire.com (accessed on 10 January 2020).
- Hanna, E.; Pon, K. Updates on Botulinum Neurotoxins in Dermatology. Am. J. Clin. Dermatol. 2020, 21, 157–162. [Google Scholar] [CrossRef] [PubMed]
- scp-admin. Hello jeuveau! (aka newtox). 2019. Available online: https://www.scottsdalecenterforplasticsurgery.com/blog/hello-jeuveau-aka-newtox/ (accessed on 10 January 2020).
- U.S. Food and Drug Administration. Drug Approval Package: Jeuveau. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/761085s000lbl.pdf (accessed on 10 January 2020).
- Beer, K.R.; Shamban, A.T.; Avelar, R.L.; Gross, J.E.; Jonker, A. Efficacy and safety of prabotulinumtoxinA for the treatment of glabellar lines in adult subjects: Results from 2 identical phase III studies. Dermatol. Surg. 2019, 45, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, Y.; Jeong, G.J.; Noh, H.; Sun, S.; Hwang, C.H.; Oh, T.S.; Kim, B.J. A multicenter, randomized, open-label comparative study of prabotulinumtoxinA with two different dosages and diverse proportional injection styles for the reduction of gastrocnemius muscle hypertrophy in Asian women. Dermatol. Ther. 2019, 32, e13009. [Google Scholar] [CrossRef] [PubMed]
- Rzany, B.-J.; Ascher, B.; Avelar, R.L.; Bergdahl, J.; Bertucci, V.; Bodokh, I.; Carruthers, J.A.; Cartier, H.; Delmar, H.; Denfeld, R. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Single-Dose, Phase III, Non-Inferiority Study Comparing PrabotulinumtoxinA and OnabotulinumtoxinA for the Treatment of Moderate to Severe Glabellar Lines in Adult Patients. Aesthetic Surg. J. 2020, 40, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Lee, Y.H.; Hong, J.P.; Oh, T.S. Safety, efficacy, and onset of a novel botulinum toxin type A (Nabota) for the treatment of glabellar frown lines: A single-arm, prospective, phase 4 clinical study. Arch. Craniofacial Surg. 2018, 19, 168. [Google Scholar] [CrossRef]
- Garcia-Murray, E.; Villasenor, M.L.V.; Acevedo, B.; Luna, S.; Lee, J.; Waugh, J.M.; Hornfeldt, C.S. Safety and efficacy of RT002, an injectable botulinum toxin type A, for treating glabellar lines: Results of a phase 1/2, open-label, sequential dose-escalation study. Dermatol. Surg. 2015, 41, S47–S55. [Google Scholar] [CrossRef]
- Comella, C.; Brashear, A.; Jankovic, J.; Patel, A.; Truong, D.; Evatt, M.; Chung, C.; Rubio, R. A Phase 2, Open-Label, Dose-Escalating Study To Evaluate The Safety And Preliminary Efficacy Of Daxibotulinumtoxina For Injection (Rt002). Toxicon 2016, 123, S18. [Google Scholar] [CrossRef]
- Jankovic, J.; Truong, D.; Patel, A.T.; Brashear, A.; Evatt, M.; Rubio, R.G.; Oh, C.K.; Snyder, D.; Shears, G.; Comella, C. Injectable DaxibotulinumtoxinA in Cervical Dystonia: A Phase 2 Dose-Escalation Multicenter Study. Mov. Disord. Clin. Pract. 2018, 5, 273–282. [Google Scholar] [CrossRef]
- Truong, D.; Comella, C.; Jankovic, J.; Brashear, A.; Patel, A.; Evatt, M.; Oh, C.; Snyder, D.; Rubio, R. Safety and efficacy of DaxibotulinumtoxinA for injection (RT002) in cervical dystonia (CD): Results of a phase 2, dose escalating study. Parkinsonism Relat. Disord. 2018, 46, e27. [Google Scholar] [CrossRef]
- Do, K.H.; Chun, M.H.; Paik, N.-J.; Park, Y.G.; Lee, S.-U.; Kim, M.-W.; Kim, D.-K. Safety and efficacy of letibotulinumtoxinA (BOTULAX®) in treatment of post stroke upper limb spasticity: A randomized, double blind, multi-center, phase III clinical trial. Clin. Rehabil. 2017, 31, 1179–1188. [Google Scholar] [CrossRef]
- Chang, H.J.; Hong, B.Y.; Lee, S.-J.; Lee, S.; Park, J.H.; Kwon, J.-Y. Efficacy and safety of letibotulinum toxin a for the treatment of dynamic equinus foot deformity in children with cerebral palsy: A randomized controlled trial. Toxins 2017, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Chung, D.H.; Kim, S.E.; Paik, J.-S.; Kim, N.; La, T.Y.; Son, J.H.; Ahn, H.B.; Yang, J.W.; Woo, K.I. Efficacy and safety of letibotulinum toxin a for the treatment of essential blepharospasm. J. Korean Ophthalmol. Soc. 2020, 61, 227–234. [Google Scholar] [CrossRef]
- Lee, W.; Ahn, T.H.; Cheon, G.W.; Lee, M.J.; Yang, E.J. Comparative analysis of botulinum toxin injection after corrective rhinoplasty for deviated nose and alar asymmetry. J. Cosmet. Dermatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Yoelin, S.G.; Dhawan, S.S.; Vitarella, D.; Ahmad, W.; Hasan, F.; Abushakra, S. Safety and efficacy of EB-001, a novel type E botulinum toxin, in subjects with glabellar frown lines: Results of a phase 2, randomized, placebo-controlled, ascending-dose study. Plast. Reconstr. Surg. 2018, 142, 847e–855e. [Google Scholar] [CrossRef] [PubMed]
- Link, A.J.; Phillips, D.; Church, G.M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: Application to open reading frame characterization. J. Bacteriol. 1997, 179, 6228–6237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Barash, J.R.; Conrad, F.; Lou, J.; Tam, C.; Cheng, L.W.; Arnon, S.S.; Marks, J.D. The Novel Clostridial Neurotoxin Produced by Strain IBCA10-7060 Is Immunologically Equivalent to BoNT/HA. Toxins 2020, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Webb, R.P. Engineering of botulinum neurotoxins for biomedical applications. Toxins 2018, 10, 231. [Google Scholar] [CrossRef] [Green Version]
- Dover, N.; Barash, J.R.; Hill, K.K.; Xie, G.; Arnon, S.S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect. Dis. 2014, 209, 192–202. [Google Scholar] [CrossRef]
- Barash, J.R.; Arnon, S.S. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J. Infect. Dis. 2014, 209, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Masuyer, G.; Zhang, J.; Shen, Y.; Lundin, D.; Henriksson, L.; Miyashita, S.-I.; Martínez-Carranza, M.; Dong, M.; Stenmark, P. Identification and characterization of a novel botulinum neurotoxin. Nat. Commun. 2017, 8, 1–10. [Google Scholar]
- Zornetta, I.; Arrigoni, G.; Anniballi, F.; Bano, L.; Leka, O.; Zanotti, G.; Binz, T.; Montecucco, C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain. Sci. Rep. 2016, 6, 30257. [Google Scholar] [CrossRef]
- Mansfield, M.J.; Adams, J.B.; Doxey, A.C. Botulinum neurotoxin homologs in non-Clostridium species. FEBS Lett. 2015, 589, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Lebreton, F.; Mansfield, M.J.; Miyashita, S.-I.; Zhang, J.; Schwartzman, J.A.; Tao, L.; Masuyer, G.; Martínez-Carranza, M.; Stenmark, P. Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 2018, 23, 169–176.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Meng, J.; Lawrence, G.W.; Zurawski, T.H.; Sasse, A.; Bodeker, M.O.; Gilmore, M.A.; Fernández-Salas, E.; Francis, J.; Steward, L.E. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J. Biol. Chem. 2008, 283, 16993–17002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zurawski, T.H.; Bodeker, M.O.; Meng, J.; Boddul, S.; Aoki, K.R.; Dolly, J.O. Longer-acting and highly potent chimaeric inhibitors of excessive exocytosis created with domains from botulinum neurotoxin A and B. Biochem. J. 2012, 444, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Pellett, S.; Bradshaw, M.; Tepp, W.H.; Pier, C.L.; Whitemarsh, R.C.; Chen, C.; Barbieri, J.T.; Johnson, E.A. The light chain defines the duration of action of botulinum toxin serotype A subtypes. mBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez-Cintron, E.J.; Beske, P.H.; Tenezaca, L.; Tran, B.Q.; Oyler, J.M.; Glotfelty, E.J.; Angeles, C.A.; Syngkon, A.; Mukherjee, J.; Kalb, S.R. Engineering botulinum neurotoxin C1 as a molecular vehicle for intra-neuronal drug delivery. Sci. Rep. 2017, 7, 42923. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, Z.; Dong, M.; Sun, S.; Chapman, E.R.; Jackson, M.B. Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 2011, 50, 2711–2713. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Peng, L.; Berntsson, R.P.-A.; Liu, S.M.; Park, S.; Yu, F.; Boone, C.; Palan, S.; Beard, M.; Chabrier, P.-E. Engineered botulinum neurotoxin B with improved efficacy for targeting human receptors. Nat. Commun. 2017, 8, 1–10. [Google Scholar]
- Guo, J.; Pan, X.; Zhao, Y.; Chen, S. Engineering Clostridia Neurotoxins with elevated catalytic activity. Toxicon 2013, 74, 158–166. [Google Scholar] [CrossRef] [PubMed]
Trade Name | Proprietary Name | Manufacturer | US FDA Approved | US FDA Approved Indication | Year of Approval |
---|---|---|---|---|---|
Botox | OnabotulinumtoxinA | Allergan inc. | Yes | Blepharospasm | 1989 |
Hemifacial spasm | 1989 | ||||
Strabismus | 1989 | ||||
Cervical dystonia | 2000 | ||||
Migraine | 2010 | ||||
Upper limb spasticity | 2010 | ||||
Lower limb spasticity (adult) | 2014 | ||||
Bladder (NDO) | 2011 | ||||
Bladder (OB) | 2013 | ||||
Forehead wrinkles | 2018 | ||||
Xeomin | IncobotulinumtoxinA | Merz Pharmaceuticals | Yes | Cervical dystonia | 2010 |
Blepharospasm | 2010 | ||||
Frown lines | 2011 | ||||
Upper limb spasticity | 2015 | ||||
Sialorrhea in adults | 2018 | ||||
Dysport | AbobotulinumtoxinA | Ipsen Pharmaceuticals | Yes | Cervical dystonia | 2009 |
Frown lines and wrinkles | 2009 | ||||
Upper limb spasticity (adults) | 2015 | ||||
Lower limb spasticity (children) | 2016 | ||||
Lower limb spasticity (adult) | 2017 | ||||
Myobloc/Neurobloc | RimabotulinumtoxinB | US—WorldMed—Solstice | Yes | Cervical dystonia | 2009 |
Proscine/ Prosigne | Type A | Lanzhou Institute, China | No | ||
Meditoxin/inotox | Type A | Meditox, South Korea | No |
Proprietary Name | Serotype | Strain | Complex Size | Excipient | Stabilisation and Solubilisation | Unit/Vial | Neurotoxin Protein (ng/vial) |
---|---|---|---|---|---|---|---|
Botox (onabotulinumtoxinA) | A | Hall | 900 kD | HSA (500 µg) Sodium chloride | Vacuum drying and normal saline | 50, 100, 200 | 5 |
Xeomin (IncobotulinumtoxinA | A | Hall | 150 kD | HSA (1 µg) Sucrose | Lyophilisation and normal saline | 100, 200 | 0.6 |
Dysport (AbobotulinumtoxinA) | A | Hall | 500 kD | HSA (125 µg) Lactose | Lyophilisation and normal saline | 300, 500 | 4.35 |
Myobloc/Neurobloc (RimabotulinumtoxinB) | B | Bean | 700 kD | HSA (500 µg/mL) Sodium succinate Sodium chloride solution | Solution | 2000, 5000, 10,000 | ~25, 50, 100 |
Proprietary Name | Manufacturer | Trade Names (or Alternative names) | US FDA Approved | Advantages | Disadvantages |
---|---|---|---|---|---|
PrabotulinumtoxinA | Evolus, Inc. (USA) | Neuronox, Nabota | Yes, 2019; Glabellar Lines | Equivalent to botox Lower cost | |
DaxibotulinumtoxinA | Revence Therapeutics (USA) | RT002 | Yes, 2020; Glabellar Lines | No HSA Long duration (24 weeks) | |
LetibotulinumtoxinA | Hugel Pharma (Korea) | Botulax | No | Lower potency than Xeomin | |
BotulinumtoxinE | BoNTi. Inc. (USA) | EB-001 | No | Onset of action—24 h | Duration—2–4 weeks |
Liquid Toxins | 1. Medytox (Korea) 2. Galderma (Switzerland) 3. Allergan (USA) | Innotox | No | Lower risk of error in preparation | Costly |
Serial Number | Author | Investigational Product | Study Design | Indication | Results |
---|---|---|---|---|---|
PrabotulinumtoxinA | |||||
1 | Beer KR et al. 2019 [39] | PrabotulinumtoxinA | Results from two identical phase III studies | Glabellar lines | Single dose of 20-U prabotulinumtoxinA was safe and effective for the treatment of glabellar lines. |
2 | Suh Y, 2019 [40] | PrabotulinumtoxinA with two different dosages | Multicenter, randomised, open-label comparative study | Gastrocnemius muscle hypertrophy | BTX at both dosages can be safely and effectively applied for calf muscle contouring without disturbing gait during walking or running. |
3 | Rzany BJ, 2020 [41] | Comparing PrabotulinumtoxinA and OnabotulinumtoxinA | Randomised, double-blind, placebo-controlled, single-dose, phase III, non-inferiority study | Moderate to Severe Glabellar Lines | A single treatment of 20 U prabotulinumtoxinA was safe and effective and noninferior to 20 U onabotulinumtoxinA for the treatment of moderate to severe glabellar lines. |
4 | Song S, 2018 [42] | Novel botulinum toxin type A (Nabota) | Single-arm, prospective, phase 4 clinical study | Glabellar frown lines | Onset of action was observed in the majority of subjects by 2 days after administration of Nabota. In addition, Nabota was found to be safe and effective for the treatment of glabellar frown lines. |
Daxibotulinumtoxin | |||||
1 | Garcia-Murray E, 2015 [43] | RT002 (Daxibotulinum toxin) | Phase 1/2, open-label, sequential dose-escalation study | Glabellar lines | RT002 is a safe and effective BoNTA product with an extended duration of action. |
2 | Comella C, 2017 [44] | Daxibotulinumtoxin | Phase 2, open-label, dose-escalating study | Isolated cervical dystonia | DaxibotulinumtoxinA for injection up to 300 U in CD patients appears to be well tolerated. |
3 | Jankovic J, 2018 [45] | DaxibotulinumtoxinA | Phase 2, open-label (Level II), dose-Escalation Study | Isolated cervical Dystonia | The study shows that daxibotulinumtoxinA for injection (RT002) appears to be generally safe and well tolerated, and it may provide a long-lasting reduction in CD symptoms. |
4 | Truong D, 2018 [46] | DaxibotulinumtoxinA | Phase 2, dose-escalation study | Cervical dystonia | DaxibotulinumtoxinA appears to be generally safe and well tolerated, and it may provide a long-lasting reduction in CD symptoms |
Letibotulinumtoxin | |||||
1 | Do KH, 2017 [47] | LetibotulinumtoxinA (BOTULAX®) | Randomised, double blind, multi-center, phase III clinical trial | Post stroke upper limb spasticity | The efficacy and safety of Botulax were comparable with those of Botox in the treatment of post-stoke upper limb spasticity. |
2 | Chang HJ, 2017 [48] | Letibotulinum toxin | Randomised controlled trial | Dynamic equinus foot deformity in children with cerebral palsy | Letibotulinum toxin A is as effective and safe as that of onabotulinum toxin A for the treatment of dynamic equinus foot deformity in children with spastic CP. |
3 | Kim JH, 2020 [49] | Letibotulinum toxin | Randomised controlled trial | Essential blepharospasm | Based on the study results, BOTULAX® is considered to be an effective and safe treatment for essential blepharospasm. |
4 | Lee W, 2020 [50] | LetibotulinumtoxinA (BOTULAX®) | Retrospective study | Deviated nose and alar asymmetry | Botulinum toxin effectively restricted the paranasal muscles without any significant adverse events. We recommend injecting botulinum toxin after corrective rhinoplasty to prevent the recurrence of deviation by facial mimetic muscles. |
Botulinum toxin E | |||||
1 | Yoelin SG, 2018 [51] | EB-001 (Botulinum toxin E) | Phase 2, randomised, placebo-controlled, ascending-dose study | Glabellar frown lines | In this clinical study of glabellar frown lines, EB-001 showed favorable safety, tolerability, and dose-dependent efficacy, with an 80% response rate at the highest dose. The maximum clinical effect of EB-001 was seen within 24 h and lasted between 14 and 30 days, which supports its development for aesthetic and therapeutic applications where fast onset and short duration of effect are desirable. |
Year | Name | Authors | Organism | Genome | Recombinant Form | Mechanism of Action | Antisera |
---|---|---|---|---|---|---|---|
2015 | BoNT/Wo | Mansfield, M.J. et al. [59] | Weissella oryzae, isolated from fermented Japanese rice | SG25 genome | E. coli codon optimised ORFs encoding the LC and RBD were expressed and purified | Cleave recombinant rat VAMP-2 at the W89-W90 peptide bond | Weak cross -reaction with the anti-BoNT/C and the antiBoNT/D antisera |
2018 | eBoNT/J | Brundt et al. [60] | Enterococcus sp. | Novel BoNT gene cluster-3G1_DIV0629, with ntnh gene and orfX arrangement | Cleaves VAMP-2 between A67 and D68 | ||
2018 | BoNT/En | Zhang et al. [61] | Enterococcus faecium strain IDI0629, isolated from cow feces | A recombinant BoNT/En toxin was produced in limited amounts | Cleaves VAMP-2 between A67 and D68 SNAP-25 cleavage products indicated the cleavage occurs between K69 and D70 | There was no observed cross-reactivity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, S.; Baker, M.R.; Chatterjee, S.; Kumar, H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins 2021, 13, 58. https://doi.org/10.3390/toxins13010058
Choudhury S, Baker MR, Chatterjee S, Kumar H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins. 2021; 13(1):58. https://doi.org/10.3390/toxins13010058
Chicago/Turabian StyleChoudhury, Supriyo, Mark R. Baker, Suparna Chatterjee, and Hrishikesh Kumar. 2021. "Botulinum Toxin: An Update on Pharmacology and Newer Products in Development" Toxins 13, no. 1: 58. https://doi.org/10.3390/toxins13010058
APA StyleChoudhury, S., Baker, M. R., Chatterjee, S., & Kumar, H. (2021). Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins, 13(1), 58. https://doi.org/10.3390/toxins13010058