Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens
Abstract
:1. Introduction
2. Some Ecological and Phylogenetic Aspects of Lichen Symbiosis
3. Lichen Toxicity as Contributed by the Cyanophotobiont Partner
4. Contribution of Nostoc Species to Toxin Production in Lichens
5. Distribution of Toxin-Producing Cyanobacteria in Lichen Species
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Honegger, R. Functional aspects of the lichen symbiosis. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1991, 42, 553–578. [Google Scholar] [CrossRef]
- Hawksworth, D.L.; Grube, M. Lichens redefined as complex ecosystems. New Phytol. 2020, 227, 1281–1283. [Google Scholar] [CrossRef] [PubMed]
- Vrablikova, H.; McEvoy, M.; Solhaug, K.A.; Bartak, M.; Gauslaa, Y. Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J. Photochem. Photobiol. B 2006, 83, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Asplund, J.; Wardle, D.A. How lichens impact on terrestrial community and ecosystem properties. Biol. Rev. 2017, 92, 1720–1738. [Google Scholar] [CrossRef] [PubMed]
- Vančurová, L.; Muggia, L.; Peksa, O.; Řídká, T.; Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 2018, 27, 3016–3033. [Google Scholar] [CrossRef] [PubMed]
- Miadlikowska, J.; Lutzoni, F. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int. J. Plant. Sci. 2000, 161, 925–958. [Google Scholar] [CrossRef] [Green Version]
- Chagnon, P.L.; Magain, N.; Miadlikowska, J.; Lutzoni, F. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia 2018, 187, 767–782. [Google Scholar] [CrossRef] [Green Version]
- Magain, N.; Miadlikowska, J.; Goffinet, B.; Sérusiaux, E.; Lutzoni, F. Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 2017, 66, 74–99. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Álvarez, R.; de Los Ríos, A.; Fernández-Mendoza, F.; Torralba-Burrial, A.; Pérez-Ortega, S. Ecological specialization of two photobiont-specific maritime cyanolichen species of the genus Lichina. PLoS ONE 2015, 10, e0132718. [Google Scholar] [CrossRef] [Green Version]
- Zúñiga, C.; Leiva, D.; Ramírez-Fernández, L.; Carú, M.; Yahr, R.; Orlando, J. Phylogenetic diversity of peltigera cyanolichens and their photobionts in Southern Chile and Antarctica. Microbes Environ. 2015, 30, 172–179. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, H.E.; Miadlikowska, J.; Lutzoni, F. Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur. J. Phycol. 2005, 40, 363–378. [Google Scholar] [CrossRef]
- Rikkinen, J.; Oksanen, I.; Lohtander, K. Lichen guilds share related cyanobacterial symbionts. Science 2002, 297, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirtz, N.; Lumbsch, H.T.; Green, T.G.; Türk, R.; Pintado, A.; Sanch, L.; Schroeter, B. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 2003, 160, 177–183. [Google Scholar] [CrossRef]
- Stenroos, S.; Högnabba, F.; Leena, M.; Hyvönen, J.; Thell, A. High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria. Cladistics 2006, 22, 230–238. [Google Scholar] [CrossRef]
- Kaasalainen, U.; Schmidt, A.; Rikkinen, J. Diversity and ecological adaptations in Palaeogene lichens. Nat. Plants 2017, 3, 17049. [Google Scholar] [CrossRef] [Green Version]
- Prieto, M.; Wedin, M. Dating the diversification of the major lineages of Ascomycota (fungi). PLoS ONE 2013, 8, e65576. [Google Scholar] [CrossRef] [Green Version]
- Beimforde, C.; Feldberg, K.; Nylinder, S.; Rikkinen, J.; Tuovila, H.; Dörfelt, H.; Gube, M.; Jackson, D.J.; Reitner, J.; Seyfullah, L.J.; et al. Estimating the phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Mol. Phylogenet. Evol. 2014, 78, 386–398. [Google Scholar] [CrossRef]
- Divakar, P.K.; Crespo, A.; Kraichak, E.; Leavitt, S.D.; Singh, G.; Schmitt, I.; Lumbsch, T. Using a temporal phylogenetic method to harmonize family and genus-level classification in the largest clade of lichen-forming fungi. Fungal Divers. 2017, 84, 101–117. [Google Scholar] [CrossRef]
- Huneck, S. The significance of lichens and their metabolites. Naturwissenschaften 1999, 86, 559–570. [Google Scholar] [CrossRef]
- Cocchietto, M.; Skert, N.; Nimis, P.L.; Sava, G. A review on usnic acid, an interesting natural compound. Naturwissenschaften 2002, 89, 137–146. [Google Scholar] [CrossRef]
- Bondarenko, B.N.; Lysenko, Z.A.; Rogozhina, A.P.; Dykhovichnaya, D.E.; Illarionova, R.P. [Vydelenie usninovoĭ kisloty iz aktinomitseta shtamm C-2167]. Isolation of usnic acid from the actinomycete C-2167. Mikrobiologiia 1969, 38, 620–623. (In Russian) [Google Scholar] [PubMed]
- Komiya, T.; Shibata, S. Formation of lichen substances by mycobionts of lichens. Isolation of (+) usnic acid and salazinic acid from mycobionts of Ramalina spp. Chem. Pharm. Bull. 1969, 17, 1305–1306. [Google Scholar] [CrossRef] [Green Version]
- Takeshi, S.; Igarashi, M. Structure of (−)-mycousnine, (+)-isomycousnine and (+)-oxymycousnine, new usnic acid derivatives from phytopathogenic Mycosphaerella nawae. Agric. Biol. Chem. 1990, 54, 2231–2237. [Google Scholar] [CrossRef] [Green Version]
- Coley, P.D. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 1988, 74, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, U.; Fewer, D.P.; Jokela, J.; Wahlsten, M.; Sivonen, K.; Rikkinen, J. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 5886–5891. [Google Scholar] [CrossRef] [Green Version]
- Moreira, C.; Martins, J.; Vasconcelos, V.; Antunes, A. Genomics perspectives on cyanobacteria research. In Handbook of Algal Science, Technology and Medicine, 1st ed.; Konur, O., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 147–159. [Google Scholar]
- Shishido, T.K.; Humisto, A.; Jokela, J.; Liu, L.; Wahlsten, M.; Tamrakar, A.; Fewer, D.P.; Permi, P.; Andreote, A.P.; Fiore, M.F.; et al. Antifungal compounds from cyanobacteria. Mar. Drugs 2015, 13, 2124–2140. [Google Scholar] [CrossRef] [Green Version]
- Tomsickova, J.; Ondrej, M.; Cerny, J.; Hrouzek, P.; Kopecky, J. Analysis and detection of scytophycin variants by HPLC-ESI-MS. Chem. Nat. Compd. 2014, 49, 1170–1171. [Google Scholar] [CrossRef]
- Shahmohamadloo, R.S.; Poirier, D.G.; Ortiz Almirall, X.; Bhavsar, S.P.; Sibley, P.K. Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. Ecotoxicol. Environ. Saf. 2020, 188, 109945. [Google Scholar] [CrossRef]
- Guedes, I.A.; Pacheco, A.B.F.; Vilar, M.C.P.; Mello, M.M.; Marinho, M.M.; Lurling, M.; Azevedo, S.M.F.O. Intraspecific variability in response to phosphorus depleted conditions in the cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii. Harmful Algae 2019, 86, 96–105. [Google Scholar] [CrossRef]
- Kaasalainen, U.; Jokela, J.; Fewer, D.P.; Sivonen, K.; Rikkinen, J. Microcystin production in the tripartite cyanolichen Peltigera leucophlebia. Mol. Plant. Microbe Interact. 2009, 22, 695–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Apeldoorn, M.E.; van Egmond, H.P.; Speijers, G.J.; Bakker, G.J. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007, 51, 7–60. [Google Scholar] [CrossRef] [PubMed]
- Meriluoto, J.; Spoof, L.; Codd, J. (Eds.) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; John Wiley & Sons, Ltd.: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Stone, S.; Adams, M.S.; Stauber, J.L.; Jolley, D.F.; Warne, M.S.J. Development and application of a multispecies toxicity test with tropical freshwater microalgae. Environ. Pollut. 2019, 250, 97–106. [Google Scholar] [CrossRef]
- Tran, N.H.; Li, Y.; Reinhard, M.; He, Y.; Gin, K.Y. A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and 15N-microcystins as isotopically labelled internal standards. Sci. Total Environ. 2020, 738, 139727. [Google Scholar] [CrossRef] [PubMed]
- Kleinteich, J.; Puddick, J.; Wood, S.A.; Hildebrand, F.; Laughinghouse, H.D., IV; Pearce, D.A.; Dietrich, D.R.; Wilmotte, A. Toxic cyanobacteria in Svalbard: Chemical diversity of microcystins detected using a liquid chromatography mass spectrometry precursor ion screening method. Toxins 2018, 10, 147. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, I.; Jokela, J.; Fewer, D.P.; Wahlsten, M.; Rikkinen, J.; Sivonen, K. Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl. Environ. Microbiol. 2004, 70, 5756–5763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivonen, K.; Namikoshi, M.; Evans, W.R.; Fardig, M.; Carmichael, W.W.; Rinehart, K.L. Three new microcystins, cyclic heptapeptide hepatotoxins, from Nostoc sp. strain 152. Chem. Res. Toxicol. 1992, 5, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Beattie, K.A.; Kaya, K.; Sano, T.; Codd, G.A. Three dehydrobutyrine-containing microcystins from Nostoc. Phytochemistry 1998, 47, 1289–1292. [Google Scholar] [CrossRef]
- Singh, D.P.; Tyagi, M.B.; Kumar, A.; Thakur, J.K.; Kumar, A. Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World J. Microb. Biotechnol. 2001, 17, 15–22. [Google Scholar] [CrossRef]
- Hrouzek, P.; Tomek, P.; Kopecký, J. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: Is their cytotoxicity environmentally dependent? Environ. Toxicol. 2011, 26, 345–358. [Google Scholar] [CrossRef]
- Kurmayer, R. The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions. J. Phycol. 2011, 47, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Jokela, J.; Heinilä, L.M.P.; Shishido, T.K.; Wahlsten, M.; Fewer, D.P.; Fiore, M.F.; Wang, H.; Haapaniemi, E.; Permi, P.; Sivonen, K. Production of high amounts of hepatotoxin nodularin and new protease inhibitors pseudospumigins by the Brazilian benthic Nostoc sp. CENA543. Front. Microbiol. 2017, 8, 1963. [Google Scholar] [CrossRef]
- Gehringer, M.M.; Adler, L.; Roberts, A.A.; Moffitt, M.C.; Mihali, T.K.; Mills, T.J.T.; Fieker, C.; Neilan, B.A. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J. 2012, 6, 1834–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikkinen, J. Relations between cyanobacterial symbionts in lichens and plants. In Prokaryotic Symbionts in Plants; Pawlowski, K., Ed.; Springer-Verlag: Berlin, Germany, 2009; pp. 265–270. [Google Scholar]
- Rikkinen, J. Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 2013, 6, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Vankova, D.; Pasheva, M.; Kiselova-Kaneva, Y.; Ivanov, D.; Ivanova, D. Mechanisms of Cyanotoxin Toxicity—Carcinogenicity, Anticancer Potential, and Clinical Toxicology. In Medical Toxicology; Pınar, E., Tomohisa, O., Eds.; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Yi, X.; Liu, W.; Zhang, C.; Massey, I.Y.; Yang, F.; Tian, L. A review of nephrotoxicity of microcystins. Toxins 2020, 12, 693. [Google Scholar] [CrossRef] [PubMed]
- Fidor, A.; Konkel, R.; Mazur-Marzec, H. Bioactive peptides produced by cyanobacteria of the genus Nostoc: A review. Mar. Drugs 2019, 17, 561. [Google Scholar] [CrossRef] [Green Version]
- Cirés, S.; Ballot, A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 2016, 54, 21–43. [Google Scholar] [CrossRef]
- Myllys, L.; Stenroos, S.; Thell, A.; Kuusinen, M. High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol. 2007, 173, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Kaasalainen, U.; Fewer, D.P.; Jokela, J.; Wahlsten, M.; Sivonen, K.; Rikkinen, J. Lichen species identity and diversity of cyanobacterial toxins in symbiosis. New Phytol. 2013, 198, 647–651. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, D.; Yaneva, G.; Potoroko, I.; Ivanova, D.G. Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens. Toxins 2021, 13, 321. https://doi.org/10.3390/toxins13050321
Ivanov D, Yaneva G, Potoroko I, Ivanova DG. Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens. Toxins. 2021; 13(5):321. https://doi.org/10.3390/toxins13050321
Chicago/Turabian StyleIvanov, Dobri, Galina Yaneva, Irina Potoroko, and Diana G. Ivanova. 2021. "Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens" Toxins 13, no. 5: 321. https://doi.org/10.3390/toxins13050321
APA StyleIvanov, D., Yaneva, G., Potoroko, I., & Ivanova, D. G. (2021). Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens. Toxins, 13(5), 321. https://doi.org/10.3390/toxins13050321