The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations
4. Conclusions
5. Materials and Methods
5.1. Participants
5.2. Randomization
5.3. Interventions
5.4. RT Procedures
5.5. Outcome Measures
5.6. Body Function and Structures Measures
5.7. Activity and Participation Measures
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Suppliers
Abbreviations
ADL | activities of daily living |
BoNT-A | Botulinum toxin A |
FMA-UE | Fugl-Meyer Assessment for Upper Extremity |
MAL | Motor Activity Log |
MAL-AOU | Motor Activity Log -amount of use |
MAL-QOM | Motor Activity Log -quality of movement |
MAS | Modified Ashworth Scale |
MMSE | Mini Mental State Exam |
RT | robot-assisted training |
SSEQ | Stroke Self-Efficacy Questionnaire |
UE | upper extremity |
WMFT | Wolf Motor Function Test |
References
- Lundström, E.; Terént, A.; Borg, J. Prevalence of disabling spasticity 1 year after first-ever stroke. Eur. J. Neurol. 2008, 15, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Sheean, G.; Lannin, N.A.; Turner-Stokes, L.; Rawicki, B.; Snow, B.J. Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: International consensus statement. Eur. J. Neurol. 2010, 17, 74–93. [Google Scholar] [CrossRef]
- Welmer, A.-K.; Von Arbin, M.; Holmqvist, L.W.; Sommerfeld, D.K. Spasticity and Its Association with Functioning and Health-Related Quality of Life 18 Months after Stroke. Cerebrovasc. Dis. 2006, 21, 247–253. [Google Scholar] [CrossRef]
- Andringa, A.; van de Port, I.; van Wegen, E.; Ket, J.; Meskers, C.; Kwakkel, G. Effectiveness of Botulinum Toxin Treatment for Upper Limb Spasticity Post-stroke Over Different ICF Domains: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2019, 100, 1703–1725. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Novak, I.; Sheean, G.; Singer, B.J.; Ward, A.B. International consensus statement for the use of botulinum toxin treatment in adults and children with neurological impairments—Iintroduction. Eur. J. Neurol. 2010, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bakheit, A.M.; Zakine, B.; Maisonobe, P.; Aymard, C.; Fhedoroff, K.; Hefter, H.; Jacinto, J.; Jost, W.H.; Molteni, F.; Stam, H.; et al. The profile of patients and current practice of treatment of upper limb muscle spasticity with botulinum toxin type A: An international survey. Int. J. Rehabil. Res. 2010, 33, 199–204. [Google Scholar] [CrossRef]
- Mills, P.B.; Finlayson, H.; Sudol, M.; O’Connor, R. Systematic review of adjunct therapies to improve outcomes following botuli-num toxin injection for treatment of limb spasticity. Clin. Rehabil. 2016, 30, 537–548. [Google Scholar] [CrossRef]
- Brewer, B.R.; McDowell, S.K.; Worthen-Chaudhari, L.C. Poststroke Upper Extremity Rehabilitation: A Review of Robotic Systems and Clinical Results. Top. Stroke Rehabil. 2007, 14, 22–44. [Google Scholar] [CrossRef]
- Gandolfi, M.; Valè, N.; Dimitrova, E.K.; Mazzoleni, S.; Battini, E.; Filippetti, M.; Picelli, A.; Santamato, A.; Gravina, M.; Saltuari, L.; et al. Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial. Front. Neurol. 2019, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Pennati, G.V.; Da Re, C.; Messineo, I.; Bonaiuti, D. How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study. Eur. J. Phys. Rehabil. Med. 2014, 51, 381–387. [Google Scholar] [PubMed]
- Saita, K.; Morishita, T.; Hyakutake, K.; Fukuda, H.; Shiota, E.; Sankai, Y.; Inoue, T. Combined therapy using botulinum toxin A and single-joint hybrid assistive limb for upper-limb disability due to spastic hemiplegia. J. Neurol. Sci. 2017, 373, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, T.; Amano, S.; Hanada, K.; Umeji, A.; Takahashi, K.; Koyama, T.; Domen, K. Therapeutic synergism in the treatment of post-stroke arm paresis utilizing botuli-num toxin, robotic therapy, and constraint-induced movement therapy. PM R 2014, 6, 1054–1058. [Google Scholar] [CrossRef] [PubMed]
- Li, S. Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front. Neurol. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wu, T.; Hu, X.; Wang, T. Efficacy and safety of botulinum toxin type A for upper limb spasticity after stroke or trau-matic brain injury: A systematic review with meta-analysis and trial sequential analysis. Eur. J. Phys. Rehabil. Med. 2017, 53, 256–267. [Google Scholar] [CrossRef]
- Elia, A.E.; Filippini, G.; Calandrella, D.; Albanese, A. Botulinum neurotoxins for post-stroke spasticity in adults: A systematic re-view. Mov. Disord. 2009, 24, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.N.; Pliatsios, V.; Starr, R.; Wolfe, R.; Graham, H.K. Biomechanical transformation of the gastroc-soleus muscle with botuli-num toxin A in children with cerebral palsy. Dev. Med. Child. Neurol. 2000, 42, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Formaggio, E.; Geroin, C.; Storti, S.F.; Boscolo Galazzo, I.; Bortolami, M.; Saltuari, L.; Picelli, A.; Waldner, A.; Manganotti, P.; et al. Quantification of Upper Limb Motor Recovery and EEG Power Changes after Ro-bot-Assisted Bilateral Arm Training in Chronic Stroke Patients: A Prospective Pilot Study. Neural Plast. 2018, 2018, 8105480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.; Meskers, C.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabilit. Neural Repair 2016, 31, 107–121. [Google Scholar] [CrossRef]
- Verdaasdonk, E.; Stassen, L.; Van Wijk, R.; Dankelman, J. The influence of different training schedules on the learning of psy-chomotor skills for endoscopic surgery. Surg. Endosc. 2007, 21, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, S.; Morgan, P.; Datta, V.; Chang, A.; Darzi, A. Practice distribution in procedural skills training. Surg. Endosc. Other Interv. Tech. 2002, 16, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Shea, C.H.; Lai, Q.; Black, C.; Park, J.-H. Spacing practice sessions across days benefits the learning of motor skills. Hum. Mov. Sci. 2000, 19, 737–760. [Google Scholar] [CrossRef]
- Shebilske, W.L.; Goettl, B.P.; Corrington, K.; Day, E.A. Interlesson spacing and task-related processing during complex skill acquisi-tion. J. Exp. Psychol. Appl. 1999, 5, 413–437. [Google Scholar] [CrossRef]
- Nadeau, S.E.; Davis, S.E.; Wu, S.S.; Dai, Y.; Richards, L.G. A pilot randomized controlled trial of D-cycloserine and distributed prac-tice as adjuvants to constraint-induced movement therapy after stroke. Neurorehabil Neural Repair 2014, 28, 885–895. [Google Scholar] [CrossRef]
- Benjamin, A.S.; Tullis, J. What makes distributed practice effective? Cogn. Psychol. 2010, 61, 228–247. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Grone, B.; Colas, D.; Appelbaum, L.; Mourrain, P. Synaptic plasticity in sleep: Learning, homeostasis and disease. Trends Neurosci. 2011, 34, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.H.; Lo, A.; Peduzzi, P.; Bravata, D.M.; Huang, G.D.; Krebs, H.I.; Ringer, R.J.; Federman, D.G.; Richards, L.G.; Haselkorn, J.K.; et al. An Economic Analysis of Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke. Stroke 2011, 42, 2630–2632. [Google Scholar] [CrossRef] [Green Version]
- Donovan, J.; Radosevich, D. A Meta-Analytic Review of the Distribution of Practice Effect: Now You See It, Now You Don’t. J. Appl. Psychol. 1999, 84, 795–805. [Google Scholar] [CrossRef]
- Simone, P.M.; Bell, M.C.; Cepeda, N.J. Diminished but Not Forgotten: Effects of Aging on Magnitude of Spacing Effect Benefits. J. Gerontol. Ser. B 2012, 68, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Foley, N.; Pereira, S.; Salter, K.; Meyer, M.; Andrew McClure, J.; Teasell, R. Are recommendations regarding inpatient therapy intensity following acute stroke really evidence-based? Top. Stroke Rehabil. 2012, 19, 96–103. [Google Scholar] [CrossRef]
- Rose, M.L.; Pierce, J.E.; Scharp, V.L.; Off, C.A.; Babbitt, E.M.; Griffin-Musick, J.R.; Cherney, L.R. Developments in the application of Intensive Comprehensive Aphasia Programs: An international survey of practice. Top. Stroke Rehabil. 2013, 20, 379–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, A.C.; Talelli, P.; Crook, L.; Austin, D.; Farrell, R.; Hoad, D.; O’Keeffe, A.G.; Marsden, J.F.; Fitzpatrick, R.; Greenwood, R.; et al. Exploratory Randomized Double-Blind Placebo-Controlled Trial of Botulinum Therapy on Grasp Release After Stroke (PrOMBiS). Neurorehabilit. Neural Repair 2019, 34, 51–60. [Google Scholar] [CrossRef]
- Picelli, A.; Santamato, A.; Chemello, E.; Cinone, N.; Cisari, C.; Gandolfi, M.; Ranieri, M.; Smania, N.; Baricich, A. Adjuvant treatments associated with botulinum toxin injection for managing spas-ticity: An overview of the literature. Ann. Phys. Rehabil. Med. 2019, 62, 291–296. [Google Scholar] [CrossRef]
- Dolly, O. Synaptic Transmission: Inhibition of Neurotransmitter Release by Botulinum Toxins. Headache. J. Head Face Pain 2003, 43, 16–24. [Google Scholar] [CrossRef]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Ringer, R.J.; Wagner, T.; Krebs, H.I.; Volpe, B.; et al. Robot-Assisted Therapy for Long-Term Upper-Limb Impairment after Stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodgers, H.; Bosomworth, H.; I Krebs, H.; van Wijck, F.; Howel, D.; Wilson, N.; Aird, L.; Alvarado, N.; Andole, S.; Cohen, D.; et al. Robot assisted training for the upper limb after stroke (RATULS): A multicentre randomised controlled trial. Lancet 2019, 394, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Francis, H.P.; Wade, D.; Turner-Stokes, L.; Kingswell, R.S.; Dott, C.S.; A Coxon, E. Does reducing spasticity translate into functional benefit? An exploratory meta-analysis. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1547–1551. [Google Scholar] [CrossRef]
- Urbaniak, G.; Plous, S. Research Randomizer; Version 4.0; Computer Software. Retrieved on 22 June 2013. Available online: http://.randomizer.org/ (accessed on 20 May 2021).
- Fugl Meyer, A.R.; Jaasko, L.; Leyman, I. The post stroke hemiplegic patient. I. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar]
- Platz, T.; Pinkowski, C.; Van Wijck, F.; Kim, I.-H.; Di Bella, P.; Johnson, G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005, 19, 404–411. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Pandyan, A.D.; Johnson, G.R.; Price, C.; Curless, R.H.; Barnes, M.P.; Rodgers, H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin. Rehabil. 1999, 13, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Uswatte, G.; Taub, E.; Stuss, D.; Winocur, G.; Robertson, I. Constraint-induced movement therapy: New approaches to outcome measurement in rehabilitation. In Cognitive Neurorehabilitation; Cambridge University Press: New York, NY, USA, 1999; pp. 215–229. [Google Scholar]
- Morris, D.M.; Uswatte, G.; Crago, J.E.; Cook, E.W.; Taub, E. The reliability of the Wolf Motor Function Test for assessing upper ex-tremity function after stroke. Arch. Phys. Med. Rehabil. 2001, 82, 750–755. [Google Scholar] [CrossRef] [Green Version]
- Uswatte, G.; Taub, E.; Morris, D.; Light, K.; Thompson, P.A. The Motor Activity Log-28: Assessing daily use of the hemiparetic arm after stroke. Neurology 2006, 67, 1189–1194. [Google Scholar] [CrossRef]
- Uswatte, G.; Taub, E.; Morris, D.; Vignolo, M.; McCulloch, K. Reliability and Validity of the Upper-Extremity Motor Activity Log-14 for Measuring Real-World Arm Use. Stroke 2005, 36, 2493–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Lee, J.; Beckerman, H.; Knol, D.; De Vet, H.; Bouter, L. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke 2004, 35, 1410–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, F.; Partridge, C.; Reid, F. The Stroke Self-Efficacy Questionnaire: Measuring individual confidence in functional perfor-mance after stroke. J. Clin. Nurs. 2008, 17, 244–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Condensed Group (n = 18) | Distributed Group (n = 18) | p |
---|---|---|---|
Sex (Male/Female) | 14/4 | 13/5 | 0.7 |
lesion side (left/right) | 8/10 | 11/7 | 0.32 |
Age (years) | 51.73 (13.21) | 53 (8.27) | 0.73 |
Type (infarction/hemorrhage) | 13/5 | 9/9 | 0.17 |
Time since stroke (months) | 38.89 (21.12) | 29.11 (25.83) | 0.22 |
Number of strokes (1st time/ 2nd time) | 16/2 | 17/1 | 0.55 |
Height (cm) | 167.72 (6.65) | 165.36 (8.59) | 0.36 |
Weight (kg) | 71.72 (2.9) | 72.94 (2.99) | 0.77 |
Outcome Measure | Pre-Test | Mid-Test | Post-Test | Follow-Up | ||||
---|---|---|---|---|---|---|---|---|
Condensed | Distributed | Condensed | Distributed | Condensed | Distributed | Condensed | Distributed | |
FMA_UE | 29.44 (7.95) | 27.17 (7.52) | 31.72 (8.28) | 28.61 (8.07) | 32.89 (8.35) | 29.11 (7.44) | 33.22 (8.48) | 29.61 (8.28) |
SSEQ | 7.12 (1.35) | 6.55 (1.44) | 7.69 (1.31) | 7.12 (1.05) | 7.85 (1.43) | 7.39 (1.06) | 7.68 (1.77) | 7.33 (1.17) |
WMFT Time | 7.26 (2.61) | 8.06 (3.62) | 7.00 (2.68) | 8.29 (3.10) | 6.31 (2.29) | 7.89 (3.24) | 6.29 (2.36) | 7.86 (3.10) |
WMFT Function | 2.25 (0.48) | 2.09 (0.40) | 2.27 (0.51) | 2.15 (0.43) | 2.32 (0.48) | 2.20 (0.39) | 2.33 (0.43) | 2.19 (0.37) |
MAL AOU | 0.74 (0.44) | 0.66 (0.48) | N/A | 1.18 (0.59) | 1.43 (0.78) | 1.21 (0.67) | 1.38 (0.85) | |
MAL QOM | 0.57 (0.37) | 0.50 (0.39) | N/A | 1.00 (0.47) | 1.12 (0.66) | 1.06 (0.54) | 1.13 (0.73) | |
MAS Proximal | 1.37 (0.41) | 1.41 (0.45) | 1.04 (0.49) | 1.19 (0.51) | 1.17 (0.43) | 1.33 (0.51) | 1.24 (0.49) | 1.36 (0.55) |
MAS Distal | 1.51 (0.44) | 1.72 (0.49) | 1.06 (0.55) | 1.27 (0.56) | 1.10 (0.55) | 1.43 (0.50) | 1.19 (0.60) | 1.62 (0.38) |
Outcome Measure | Effect | F (df) | p |
---|---|---|---|
FMA_UE | Within-group | 15.59 (3,102) | <0.001 |
Between-groups | 1.49 (1,34) | 0.23 | |
Time × group | 0.93 (3,102) | 0.43 | |
SSEQ | Within group | 11.04 (3,102) | <0.001 |
Between groups | 1.45 (1,34) | 0.23 | |
Time × group | 0.25 (3,102) | 0.86 | |
WMFT Time | Within group | 2.12 (3,102) | 0.10 |
Between groups | 2.17 (1,34) | 0.15 | |
Time × group | 0.65 (3,102) | 0.59 | |
WMFT Function | Within group | 4.88 (3,102) | 0.003 |
Between groups | 0.88 (1,34) | 0.35 | |
Time × group | 0.24 (3,102) | 0.87 | |
MAL AOU | Within group | 46.74 (2,68) | <0.001 |
Between groups | 0.35 (1,34) | 0.56 | |
Time × group | 2.77 (2,68) | 0.07 | |
MAL QOM | Within group | 46.20 (2,68) | <0.001 |
Between groups | 0.05 (1,34) | 0.82 | |
Time × group | 0.76 (2,68) | 0.47 | |
MAS Proximal | Within group | 16.069 (3,32) | <0.001 |
Between groups | 0.578 (1,34) | 0.452 | |
Time × group | 0.802 (3,32) | 0.455 | |
MAS Distal | Within group | 26.58 (3,102) | <0.001 |
Between groups | 3.45 (1,34) | 0.07 | |
Time × group | 1.85 (3,102) | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, J.-W.; Chen, Y.-W.; Chen, Y.-J.; Pong, Y.-P.; Wu, W.-C.; Chang, K.-C.; Wu, C.-Y. The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins 2021, 13, 539. https://doi.org/10.3390/toxins13080539
Hung J-W, Chen Y-W, Chen Y-J, Pong Y-P, Wu W-C, Chang K-C, Wu C-Y. The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins. 2021; 13(8):539. https://doi.org/10.3390/toxins13080539
Chicago/Turabian StyleHung, Jen-Wen, Yen-Wei Chen, Yi-Ju Chen, Ya-Ping Pong, Wen-Chi Wu, Ku-Chou Chang, and Ching-Yi Wu. 2021. "The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects" Toxins 13, no. 8: 539. https://doi.org/10.3390/toxins13080539
APA StyleHung, J.-W., Chen, Y.-W., Chen, Y.-J., Pong, Y.-P., Wu, W.-C., Chang, K.-C., & Wu, C.-Y. (2021). The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins, 13(8), 539. https://doi.org/10.3390/toxins13080539