Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents
Abstract
:1. Introduction
Mycotoxin(s) | Producers | Adverse Effects on Animals | EU Legal Instrument | Value (mg/kg 1) |
---|---|---|---|---|
Aflatoxin B1 (AFB1) | Aspergillus spp., mainly Aspergillus flavus, Aspergillus parasiticus [4] | Centrolobular necrosis, bile duct proliferation, kidney lesions [4] | Maximum limit | 0.02 (feed materials, compound feed for the following animals except dairy animals and young animals: cattle, sheep, goats, pigs, poultry), 0.01 (complementary and complete feed other than the before and below mentioned), 0.005 (compound feed for dairy and young animals) [14] |
Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2) | Aspergillus spp., mainly Aspergillus flavus, Aspergillus parasiticus [4] | Similar to AFB1 [4] | n.a.2 | n.a. |
Deoxynivalenol (DON) | Fusarium spp. [10] | Reduced body weight, reduced feed intake, feed conversion reduction, reproduction disorders, vomiting [10] | Guidance value | 8 (feed materials of cereals and cereal products other than maize by-products), 12 (feed materials of maize by-products), 5 (compound feed other than the following), 0.9 (compound feed for pigs), 2 (compound feed for calves, lambs (young sheep), kids (young goat), and dogs) [15] |
Ergot alkaloids | Claviceps spp. [9] | Reduced body weight, lameness, ill thrift, reduced feed intake, reduced heart weight, duodenum inflammations [9] | Maximum limit | 1000 (feed materials and compound feed containing unground cereals) [14] |
Fumonisin B1 (FB1), fumonisin B2 (FB2) | Fusarium spp. [7] | Lung weight increase, pulmonary oedema, hydrothorax, hepatic necrosis, cholestasis, encephalitis, hepatic nodular hyperplasia, alterations in several serum biochemical parameters [7] | Guidance value for FB1 + FB2 | 60 (feed materials of maize and maize products), 5 (compound feed for pigs, horses, rabbits, and pet animals), 10 (compound feed for fish), 20 (compound feed for poultry, calves, lambs, and kids), 50 (compound feed for adult ruminant and mink) [15] |
Ochratoxin A (OTA) | Aspergillus spp., Penicillium spp. [5] | Kidney lesions, reduced semen quantity and quality, reduced egg production, reduced body weight, increased kidney weight, alterations in several serum biochemical parameters, immunosuppression [5] | Guidance value | 0.25 (feed materials of cereals and cereal products), 0.05 (compound feed for pigs), 0.1 (compound feed for poultry), 0.01 (compound feed for cats and dogs) [15] |
T-2, HT-2 | Fusarium spp. [8] | Reduced body weight, mucosal damage, immunosuppression, infertility of eggs, reduced egg production, reduced feed intake, lesions, serum [8] biochemical parameters, increased heart weight [18] | Guidance value for T-2 + HT-2 | 0.05 (compound feed for cats) [15] |
Zearalenone (ZEN) | Fusarium spp. [6] | Increased cervix swelling, increased weight of uterus, liver, ovarian, reduced ovulation rate, reduced fertility [6] | Guidance value | 2 (feed materials of cereals and cereal products other than maize by-products), 3 (feed materials of maize by-products), 0.1 (compound feed for piglets, gilts, puppies, kittens, dogs, and cats for reproduction), 0.2 (compound feed for adult dogs and cats other than for reproduction), 0.25 (compound feed for sows and fattening pigs), 0.5 (compound feed for calves, dairy cattle, sheep including lambs, and goats including kids) [15] |
2. Results
2.1. Harvest and Post-Harvest Practices of Cereal Raw Materials
2.1.1. Harvest
2.1.2. Drying, Cleaning, and Storage
2.2. Processing during Cereal-Based Feed Production
2.2.1. Milling
2.2.2. Mixing and Mycotoxin Binders
2.2.3. Extrusion
2.2.4. Ensiling
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- MacLachlan, D.J. Estimating the transfer of contaminants in animal feedstuffs to livestock tissues, milk and eggs: A review. Anim. Prod. Sci. 2011, 51, 1067–1078. [Google Scholar] [CrossRef]
- Wilson, K.A.; Kung, R.W.; Wetmore, S.D. Chapter Seven—Toxicology of DNA Adducts Formed upon Human Exposure to Carcinogens: Insights Gained from Molecular Modeling. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 10, pp. 293–360. [Google Scholar]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to Aflatoxin B1 as undesirable substance in animal feed. EFSA J. 2004, 2, 39. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to ochratoxin A (OTA) as undesirable substance in animal feed. EFSA J. 2004, 2, 101. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to Zearalenone as undesirable substance in animal feed. EFSA J. 2004, 2, 89. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to fumonisins as undesirable substances in animal feed. EFSA J. 2005, 3, 235. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J. 2011, 9, 2481. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Ergot alkaloids in food and feed. EFSA J. 2012, 10, 2798. [Google Scholar] [CrossRef]
- EFSA. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef]
- EFSA. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [CrossRef] [Green Version]
- Ropejko, K.; Twarużek, M. Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins 2021, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Directive 2002/32/EC on undesirable substances in animal feed. Off. J. Eur. Union 2002, 140, 10–22.
- European Commission. Commission Recommendation on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 229, 7–9. [Google Scholar]
- Nevedi. Grondstoffenwijzer—Editie 3. 2019. Available online: https://assets.nevedi.nl/p/229376/Grondstoffenwijzer%20Nevedi%202019%20LR2.pdf.
- SecureFeed. D-13 Risicoclassificatie Diervoeders. 2020. Available online: https://securefeed.eu/nl/borgingssysteem/risicoclassificatie-diervoeders.
- European Commission. Opinion of the Scientific Committee on food on Fusarium toxins part 5: T-2 toxin and HT-2 Toxin. 2001. Available online: https://ec.europa.eu/food/system/files/2016-10/cs_contaminants_catalogue_out88_en.pdf.
- Chiewchan, N.; Mujumdar, A.S.; Devahastin, S. Application of Drying Technology to Control Aflatoxins in Foods and Feeds: A Review. Dry. Technol. 2015, 33, 1700–1707. [Google Scholar] [CrossRef]
- da Costa, R.V.; Queiroz, V.A.V.; Cota, L.V.; da Silva, D.D.; Lanza, F.E.; de Almeida, R.E.M.; Pereira, A.A.; Alves, R.R.; Campos, L.J.M. Delaying harvest for naturally drying maize grain increases the risk of kernel rot and fumonisin contamination. Trop. Plant Pathol. 2018, 43, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Atukwase, A.; Kaaya, A.N.; Muyanja, C. Factors associated with fumonisin contamination of maize in Uganda. J. Sci. Food Agric. 2009, 89, 2393–2398. [Google Scholar] [CrossRef]
- Mansfield, M.A.; Archibald, D.D.; Jones, A.D.; Kuldau, G.A. Relationship of sphinganine analog mycotoxin contamination in maize silage to seasonal weather conditions and to agronomic and ensiling practices. Phytopathology 2007, 97, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Tuncel, N.B. An alternative strategy for corn drying (Zea mays) resulted in both energy savings and reduction of fumonisins B1 and B2 contamination. Int. J. Food Sci. Technol. 2010, 45, 621–628. [Google Scholar] [CrossRef]
- Schaarschmidt, S.; Fauhl-Hassek, C. The Fate of Mycotoxins During the Processing of Wheat for Human Consumption. Compr. Rev. Food Sci. Food Saf. 2018, 17, 556–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaarschmidt, S.; Fauhl-Hassek, C. The fate of mycotoxins during the primary food processing of maize. Food Control 2021, 121, 107651. [Google Scholar] [CrossRef]
- Kamala, A.; Kimanya, M.; Haesaert, G.; Tiisekwa, B.; Madege, R.; Degraeve, S.; Cyprian, C.; De Meulenaer, B. Local post-harvest practices associated with aflatoxin and fumonisin contamination of maize in three agro ecological zones of Tanzania. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 551–559. [Google Scholar] [CrossRef]
- Pascale, M.; Logrieco, A.F.; Graeber, M.; Hirschberger, M.; Reichel, M.; Lippolis, V.; De Girolamo, A.; Lattanzio, V.M.T.; Slettengren, K. Aflatoxin Reduction in Maize by Industrial-Scale Cleaning Solutions. Toxins 2020, 12, 331. [Google Scholar] [CrossRef] [PubMed]
- Lešnik, M.; Vajs, S.; Kramberger, B.; Žerjav, M.; Zemljič, A.; Simončič, A.; Kolmanič, A. Fusarium infected grain removal efficacy in cleaning wheat grain prior to milling. Zemdirbyste 2014, 101, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M. Effect of cleaning, sorting and milling processes in wheat mycotoxin content. Food Control 2016, 60, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Magembe, K.S.; Mwatawala, M.W.; Mamiro, D.P. Mycotoxin contamination in stored maize and groundnuts based on storage practices and conditions in subhumid tropical Africa: The case of kilosa district, Tanzania. J. Food Prot. 2016, 79, 2160–2166. [Google Scholar] [CrossRef] [PubMed]
- Oni, E.O.; Komolafe, C.A.; Badmos, A.O.; Kareem, S.O.; Waheed, M.A.; Oluwafemi, F. Reduction of aflatoxin in freshly harvested maize using solar dryers. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, E.F.; Elmholt, S.; Thrane, U. High-temperature treatment for efficient drying of bread rye and reduction of fungal contaminants. Biosyst. Eng. 2005, 92, 183–195. [Google Scholar] [CrossRef]
- Xing, F.; Liu, X.; Wang, L.; Selvaraj, J.N.; Jin, N.; Wang, Y.; Zhao, Y.; Liu, Y. Distribution and variation of fungi and major mycotoxins in pre- and post-nature drying maize in North China Plain. Food Control 2017, 80, 244–251. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Garcia-Cela, E.; Kiaitsi, E.; Sulyok, M.; Krska, R.; Medina, A.; Damico, I.P.; Magan, N. Influence of storage environment on maize grain: CO2 production, dry matter losses and aflatoxins contamination. Food Addit. Contam. Part A—Chem. Anal. Control Expo. Risk Assess. 2019, 36, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.d.G.P.; Pizzutti, I.R.; Brackmann, A.; Reichert, B.; Zorzella Fontana, M.E.; Duarte dos Santos, I.; Cuti, L.K.; Jänisch, B.D.; Panciera, M.P.; Ludwig, V.; et al. Multimycotoxin Determination in Grains: A Comprehensive Study on Method Validation and Assessment of Effectiveness of Controlled Atmosphere Storage in Preventing Mycotoxin Contamination. J. Agric. Food Chem. 2021, 69, 11440–11450. [Google Scholar] [CrossRef]
- Mongkon, W.; Sugita-Konishi, Y.; Chaisri, W.; Suriyasathaporn, W. Aflatoxin B1 contamination of dairy feeds after storage in farm practice in tropical environment. Biocontrol Sci. 2017, 22, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushiro, M. Effects of milling and cooking processes on the deoxynivalenol content in wheat. Int. J. Mol. Sci. 2008, 9, 2127–2145. [Google Scholar] [CrossRef] [Green Version]
- Lee, U.S.; Jang, H.S.; Tanaka, T.; Oh, Y.J.; Cho, C.M.; Ueno, Y. Effect of milling on decontamination of Fusarium mycotoxins nivalenol, deoxynivalenol, and zearalenone in Korean wheat. J. Agric. Food Chem. 1987, 35, 126–129. [Google Scholar] [CrossRef]
- Lancova, K.; Hajslova, J.; Kostelanska, M.; Kohoutkova, J.; Nedelnik, J.; Moravcova, H.; Vanova, M. Fate of trichothecene mycotoxins during the processing: Milling and baking. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 650–659. [Google Scholar] [CrossRef]
- Herrera, M.; Juan, T.; Estopañan, G.; Ariño, A. Comparison of deoxynivalenol, ochratoxin A and aflatoxin B1 levels in conventional and organic durum semolina and the effect of milling. J. Food Nutr. Res. 2009, 48, 92–99. [Google Scholar]
- Hong, S.M.; Kwon, O.K.; Choi, D.S.; Kim, J.H.; Choi, G.H.; Cho, N.J. Diminution of mycotoxins from Fusarium sp. in barley and wheat through post-harvest processing methods. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 297–299. [Google Scholar] [CrossRef]
- Belluco, B.; de Camargo, A.C.; da Gloria, E.M.; Dias, C.T.d.S.; Button, D.C.; Calori-Domingues, M.A. Deoxynivalenol in wheat milling fractions: A critical evaluation regarding ongoing and new legislation limits. J. Cereal Sci. 2017, 77, 284–290. [Google Scholar] [CrossRef]
- Schwake-Anduschus, C.; Proske, M.; Sciurba, E.; Muenzing, K.; Koch, M.; Maul, R. Distribution of deoxynivalenol, zearalenone, and their respective modified analogues in milling fractions of naturally contaminated wheat grains. World Mycotoxin J. 2015, 8, 433–443. [Google Scholar] [CrossRef]
- Edwards, S.G.; Dickin, E.T.; MacDonald, S.; Buttler, D.; Hazel, C.M.; Patel, S.; Scudamore, K.A. Distribution of Fusarium mycotoxins in UK wheat mill fractions. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 1694–1704. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Hazel, C.M.; Patel, S.; Scriven, F. Deoxynivalenol and other Fusarium mycotoxins in bread, cake, and biscuits produced from uk-grown wheat under commercial and pilot scale conditions. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 1191–1198. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Z.; Hossen, S.M.; Sago, Y.; Yoshida, M.; Nakagawa, H.; Nagashima, H.; Okadome, H.; Nakajima, T.; Kushiro, M. Effect of milling on the content of deoxynivalenol, nivalenol, and zearalenone in Japanese wheat. Food Control 2014, 40, 193–197. [Google Scholar] [CrossRef]
- Thammawong, M.; Okabe, M.; Kawasaki, T.; Nakagawa, H.; Nagashima, H.; Okadome, H.; Nakajima, T.; Kushiro, M. Distribution of deoxynivalenol and nivalenol in milling fractions from fusarium-infected Japanese wheat cultivars. J. Food Prot. 2010, 73, 1817–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostelanska, M.; Dzuman, Z.; Malachova, A.; Capouchova, I.; Prokinova, E.; Skerikova, A.; Hajslova, J. Effects of milling and baking technologies on levels of deoxynivalenol and its masked form deoxynivalenol-3-glucoside. J. Agric. Food Chem. 2011, 59, 9303–9312. [Google Scholar] [CrossRef]
- Pinson-Gadais, L.; Barreau, C.; Chaurand, M.; Gregoire, S.; Monmarson, M.; Richard-Forget, F. Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Addit. Contam. 2007, 24, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Giménez, I.; Herrera, M.; Escobar, J.; Ferruz, E.; Lorán, S.; Herrera, A.; Ariño, A. Distribution of deoxynivalenol and zearalenone in milled germ during wheat milling and analysis of toxin levels in wheat germ and wheat germ oil. Food Control 2013, 34, 268–273. [Google Scholar] [CrossRef]
- Duarte, S.C.; Pena, A.; Lino, C.M. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiol. 2010, 27, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Banks, J.; MacDonald, S.J. Fate of ochratoxin A in the processing of whole wheat grains during milling and bread production. Food Addit. Contam. 2003, 20, 1153–1163. [Google Scholar] [CrossRef]
- Zebiri, S.; Mokrane, S.; Verheecke-Vaessen, C.; Choque, E.; Reghioui, H.; Sabaou, N.; Mathieu, F.; Riba, A. Occurrence of ochratoxin A in Algerian wheat and its milling derivatives. Toxin Rev. 2019, 38, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Osborne, B.G.; Ibe, F.; Brown, G.L.; Petagine, F.; Scudamore, K.A.; Banks, J.N.; Hetmanski, M.T.; Leonard, C.T. The effects of milling and processing on wheat contaminated with ochratoxin A. Food Addit. Contam. 1996, 13, 141–153. [Google Scholar] [CrossRef]
- Franzmann, C.; Schröder, J.; Münzing, K.; Wolf, K.; Lindhauer, M.G.; Humpf, H.U. Distribution of ergot alkaloids and ricinoleic acid in different milling fractions. Mycotoxin Res. 2011, 27, 13–21. [Google Scholar] [CrossRef]
- Khatibi, P.A.; Berger, G.; Wilson, J.; Brooks, W.S.; McMaster, N.; Griffey, C.A.; Hicks, K.B.; Nghiem, N.P.; Schmale, D.G. A comparison of two milling strategies to reduce the mycotoxin deoxynivalenol in barley. J. Agric. Food Chem. 2014, 62, 4204–4213. [Google Scholar] [CrossRef] [PubMed]
- Schollenberger, M.; Müller, H.M.; Rüfle, M.; Suchy, S.; Drochner, W. Redistribution of 16 Fusarium toxins during commercial dry milling of maize. Cereal Chem. 2008, 85, 557–560. [Google Scholar] [CrossRef]
- Bryła, M.; Szymczyk, K.; Jędrzejczak, R.; Obiedziński, M.W. Free and hidden fumonisins in various fractions of maize dry milled under model conditions. LWT—Food Sci. Technol. 2015, 64, 171–176. [Google Scholar] [CrossRef]
- Pietri, A.; Zanetti, M.; Bertuzzi, T. Distribution of aflatoxins and fumonisins in dry-milled maize fractions. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 372–380. [Google Scholar] [CrossRef]
- Coradi, P.C.; Maier, D.E.; Channaiah, L.H.; Campabadal, C. Effects of the Processing on the Distribution of Aflatoxin and Fumonisin Levels in Corn Fractions and Feeds. J. Food Process Eng. 2016, 39, 215–225. [Google Scholar] [CrossRef]
- Scudamore, K.A.; Patel, S. Fusarium mycotoxins in milling streams from the commercial milling of maize imported to the UK, and relevance to current legislation. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 744–753. [Google Scholar] [CrossRef] [Green Version]
- Magallanes López, A.M.; Manthey, F.A.; Simsek, S. Wet milling technique applied to deoxynivalenol-contaminated wheat dry-milled fractions. Cereal Chem. 2019, 96, 487–496. [Google Scholar] [CrossRef]
- Aly, S.E. Distribution of aflatoxins in product and by-products during glucose production from contaminated corn. Food/Nahr. 2002, 46, 341–344. [Google Scholar] [CrossRef]
- Massarolo, K.C.; Rodrigues, P.; Ferreira, C.F.J.; Kupski, L.; Badiale-Furlong, E. Simultaneous distribution of aflatoxins B1 and B2, and fumonisin B1 in corn fractions during dry and wet-milling. J. Food Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.-H.; Moon, J.-Y.; An, J.-A.; Kim, Y.-W.; Chung, S.-H.; Lee, C. Distribution analysis of twelve mycotoxins in corn and corn-derived products by LC-MS/MS to evaluate the carry-over ratio during wet-milling. Toxins 2018, 10, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabak, B.; Dobson, A.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Vila-Donat, P.; Marín, S.; Sanchis, V.; Ramos, A.J. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem. Toxicol. 2018, 114, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 Toxin—The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef]
- Kolosova, A.; Stroka, J. Evaluation of the effect of mycotoxin binders in animal feed on the analytical performance of standardised methods for the determination of mycotoxins in feed. Food Addit. Contam. Part A—Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1959–1971. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Hanna, M.; Bullerman, L. Stability of Zearalenone during Extrusion of Corn Grits. J. Food Prot. 2000, 62, 1482–1484. [Google Scholar] [CrossRef] [PubMed]
- Cetin, Y.; Bullerman, L.B. Evaluation of Reduced Toxicity of Zearalenone by Extrusion Processing as Measured by the MTT Cell Proliferation Assay. J. Agric. Food Chem. 2005, 53, 6558–6563. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Guy, R.C.E.; Kelleher, B.; MacDonald, S.J. Fate of the fusarium mycotoxins, deoxynivalenol, nivalenol and zearalenone, during extrusion of wholemeal wheat grain. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.M.; Dalcero, A.M.; Rosa, C.A.R.; Chiacchiera, S.M.; Cavaglieri, L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef]
- Sultana, N.; Iftikhar, S.; Hanif, N.Q.; Tahira, I. Natural incidence of aspergillus mycoflora and mycotoxins in fresh and ensiled maize fodder. Pak. J. Zool. 2017, 49, 475–480. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Wang, T.; Jia, T.; Xu, Z.; Wang, X.; Yu, Z. Effect of inoculants and storage temperature on the microbial, chemical and mycotoxin composition of corn silage. Asian-Australas. J. Anim. Sci. 2018, 31, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Cavallarin, L.; Tabacco, E.; Antoniazzi, S.; Borreani, G. Aflatoxin accumulation in whole crop maize silage as a result of aerobic exposure. J. Sci. Food Agric. 2011, 91, 2419–2425. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, F.; Prencipe, S.; Spadaro, D.; Gullino, M.L.; Cavallarin, L.; Piano, S.; Tabacco, E.; Borreani, G. Increase in aflatoxins due to Aspergillus section Flavi multiplication during the aerobic deterioration of corn silage treated with different bacteria inocula. J. Dairy Sci. 2019, 102, 1176–1193. [Google Scholar] [CrossRef] [Green Version]
- Keller, L.A.M.; González Pereyra, M.L.; Keller, K.M.; Alonso, V.A.; Oliveira, A.A.; Almeida, T.X.; Barbosa, T.S.; Nunes, L.M.T.; Cavaglieri, L.R.; Rosa, C.A.R. Fungal and mycotoxins contamination in corn silage: Monitoring risk before and after fermentation. J. Stored Prod. Res. 2013, 52, 42–47. [Google Scholar] [CrossRef]
- Juan, C.; Mannai, A.; Ben Salem, H.; Oueslati, S.; Berrada, H.; Juan-García, A.; Mañes, J. Mycotoxins presence in pre- and post-fermented silage from Tunisia. Arab. J. Chem. 2020, 13, 6753–6761. [Google Scholar] [CrossRef]
- Jensen, T.; De Boevre, M.; De Saeger, S.; Preußke, N.; Sönnichsen, F.D.; Kramer, E.; Klink, H.; Verreet, J.-A.; Birr, T. Effect of ensiling duration on the fate of deoxynivalenol, zearalenone and their derivatives in maize silage. Mycotoxin Res. 2020, 36, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, M.L.G.; Alonso, V.A.; Sager, R.; Morlaco, M.B.; Magnoli, C.E.; Astoreca, A.L.; Rosa, C.A.R.; Chiacchiera, S.M.; Dalcero, A.M.; Cavaglieri, L.R. Fungi and selected mycotoxins from pre- and postfermented corn silage. J. Appl. Microbiol. 2008, 104, 1034–1041. [Google Scholar] [CrossRef]
- Mansfield, M.A.; De Wolf, E.D.; Kuldau, G.A. Relationships between weather conditions, agronomic practices, and fermentation characteristics with deoxynivalenol content in fresh and ensiled maize. Plant Dis. 2005, 89, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Mokoena, M.P.; Chelule, P.K.; Gqaleni, N. Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J. Food Prot. 2005, 68, 2095–2099. [Google Scholar] [CrossRef]
- Vandicke, J.; De Visschere, K.; Ameye, M.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Multi-Mycotoxin Contamination of Maize Silages in Flanders, Belgium: Monitoring Mycotoxin Levels from Seed to Feed. Toxins 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Visconti, A.; Haidukowski, E.M.; Pascale, M.; Silvestri, M. Reduction of deoxynivalenol during durum wheat processing and spaghetti cooking. Toxicol. Lett. 2004, 153, 181–189. [Google Scholar] [CrossRef]
- Ríos, G.; Zakhia-Rozis, N.; Chaurand, M.; Richard-Forget, F.; Samson, M.F.; Abecassis, J.; Lullien-Pellerin, V. Impact of durum wheat milling on deoxynivalenol distribution in the outcoming fractions. Food Addit. Contam. Part A 2009, 26, 487–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheli, F.; Campagnoli, A.; Ventura, V.; Brera, C.; Berdini, C.; Palmaccio, E.; Dell’Orto, V. Effects of industrial processing on the distributions of deoxynivalenol, cadmium and lead in durum wheat milling fractions. LWT-Food Sci. Technol. 2010, 43, 1050–1057. [Google Scholar] [CrossRef]
- Brera, C.; Peduto, A.; Debegnach, F.; Pannunzi, E.; Prantera, E.; Gregori, E.; De Giacomo, M.; De Santis, B. Study of the influence of the milling process on the distribution of deoxynivalenol content from the caryopsis to cooked pasta. Food Control 2013, 32, 309–312. [Google Scholar] [CrossRef]
- L’vova, L.S.; Kizlenko, O.I.; Shul’gina, A.P.; Omel’chenko, M.D.; Bystryakova, Z.K. Distribution of deoxynivalenol in products of processing Fusarium-affected soft and hard wheats and barley. Appl. Biochem. Microbiol. 1998, 34, 444–449. [Google Scholar]
- Samar, M.M.; Fontán, C.F.; Resnik, S.L.; Pacin, A.M.; Castillo, M. Distribution of deoxynivalenol in wheat, wheat flour, bran, and gluten, and variability associated with the test procedure. J. AOAC Int. 2003, 86, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Young, J.C.; Fulcher, R.G.; Hayhoe, J.H.; Scott, P.M.; Dexter, J.E. Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats. J. Agric. Food Chem. 1984, 32, 659–664. [Google Scholar] [CrossRef]
- Scott, P.M.; Kanhere, S.R.; Dexter, J.E.; Brennan, P.W.; Trenholm, H.L. Distribution of the trichothecene mycotoxin deoxynivalenol (vomitoxin) during the milling of naturally contaminated hard red spring wheat and its fate in baked products. Food Addit. Contam. 1984, 1, 313–323. [Google Scholar] [CrossRef]
- Tkachuk, R.; Dexter, J.E.; Tipples, K.H.; Nowicki, T.W. Removal by specific gravity table of tombstone kernels and associated trichothecenes from wheat infected with Fusarium head blight. Cereal Chem. 1991, 68, 428–431. [Google Scholar]
- Nishio, Z.; Takata, K.; Ito, M.; Tanio, M.; Tabiki, T.; Yamauchi, H.; Ban, T. Deoxynivalenol distribution in flour and bran of spring wheat lines with different levels of Fusarium head blight resistance. Plant Dis. 2010, 94, 335–338. [Google Scholar] [CrossRef]
- Abbas, H.K.; Mirocha, C.J.; Pawlosky, R.J.; Pusch, D.J. Effect of cleaning, milling, and baking on deoxynivalenol in wheat. Appl. Environ. Microbiol. 1985, 50, 482–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trigo-Stockli, D.M.; Deyoe, C.W.; Satumbaga, R.F.; Pedersen, J.R. Distribution of deoxynivalenol and zearalenone in milled fractions of wheat. Cereal Chem. 1996, 73, 388–391. [Google Scholar]
- Thammawong, M.; Okadome, H.; Shiina, T.; Nakagawa, H.; Nagashima, H.; Nakajima, T.; Kushiro, M. Distinct distribution of deoxynivalenol, nivalenol, and ergosterol in Fusarium-infected Japanese soft red winter wheat milling fractions. Mycopathologia 2011, 172, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, T.W.; Gaba, D.G.; Dexter, J.E.; Matsuo, R.R.; Clear, R.M. Retention of the fusarium mycotoxin deoxynivalenol in wheat during processing and cooking of spaghetti and noodles. J. Cereal Sci. 1988, 8, 189–202. [Google Scholar] [CrossRef]
- Banu, I.; Dragoi, L.; Aprodu, I. From wheat to sourdough bread: A laboratory scale study on the fate of deoxynivalenol content. Qual. Assur. Saf. Crops 2014, 6, 53–60. [Google Scholar] [CrossRef]
- Wang, L.; Shao, H.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Chen, Z. Effect of ozone treatment on deoxynivalenol and wheat quality. PLoS ONE 2016, 11, e0147613. [Google Scholar] [CrossRef] [PubMed]
- Young, J.C.; Subryan, L.M.; Potts, D.; McLaren, M.E.; Gobran, F.H. Reduction in levels of deoxynivalenol in contaminated wheat by chemical and physical treatment. J. Agric. Food Chem. 1986, 34, 461–465. [Google Scholar] [CrossRef]
- Tanaka, T.; Hasegawa, A.; Yamamoto, S.; Matsuki, Y.; Ueno, Y. Residues of Fusarium mycotoxins, nivalenol, deoxynivalenol and zearalenone, in wheat and processed food after milling and baking. Food Hyg. Saf. Sci. 1986, 27, 653–655. [Google Scholar] [CrossRef]
- Tibola, C.S.; Fernandes, J.M.C.; Guarienti, E.M.; Nicolau, M. Distribution of Fusarium mycotoxins in wheat milling process. Food Control 2015, 53, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Savi, G.D.; Piacentini, K.C.; Tibola, C.S.; Santos, K.; Sousa Maria, G.; Scussel, V.M. Deoxynivalenol in the wheat milling process and wheat-based products and daily intake estimates for the Southern Brazilian population. Food Control 2016, 62, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Vaclavikova, M.; Malachova, A.; Veprikova, Z.; Dzuman, Z.; Zachariasova, M.; Hajslova, J. ‘Emerging’ mycotoxins in cereals processing chains: Changes of enniatins during beer and bread making. Food Chem. 2013, 136, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Pascale, M.; Haidukowski, M.; Lattanzio, V.M.T.; Silvestri, M.; Ranieri, R.; Visconti, A. Distribution of T-2 and HT-2 toxins in milling fractions of durum wheat. J. Food Prot. 2011, 74, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Scudamore, K.A.; Patel, S.; Edwards, S. HT-2 toxin and T-2 toxin in commercial cereal processing in the United Kingdom, 2004–2007. World Mycotoxin J. 2009, 2, 357–365. [Google Scholar] [CrossRef]
- Peng, C.; Wang, L.; An, F.; Zhang, L.; Wang, Y.; Li, S.; Wang, C.; Liu, H. Fate of ochratoxin A during wheat milling and some Chinese breakfast processing. Food Control 2015, 57, 142–146. [Google Scholar] [CrossRef]
- Njapau, H.; Muzungaile, E.M.; Changa, R.C. The effect of village processing techniques on the content of aflatoxins in corn and peanuts in Zambia. J. Sci. Food Agric. 1998, 76, 450–456. [Google Scholar] [CrossRef]
- Mutungi, C.; Lamuka, P.; Arimi, S.; Gathumbi, J.; Onyango, C. The fate of aflatoxins during processing of maize into muthokoi—A traditional Kenyan food. Food Control 2008, 19, 714–721. [Google Scholar] [CrossRef]
- Matumba, L.; Monjerezi, M.; Chirwa, E.; Lakudzala, D.; Mumba, P. Natural occurrence of AFB1 in maize and effect of traditional maize flour production on AFB1 reduction, in Malawi. Afr. J. Food Sci. 2009, 3, 413–425. [Google Scholar]
- Castells, M.; Marín, S.; Sanchis, V.; Ramos, A.J. Distribution of fumonisins and aflatoxins in corn fractions during industrial cornflake processing. Int. J. Food Microbiol. 2008, 123, 81–87. [Google Scholar] [CrossRef]
- Romer, T. Detecting mycotoxins in corn and corn-milling products. Feedstuffs 1984, 56, 22–23. [Google Scholar]
- Brera, C.; Catano, C.; de Santis, B.; Debegnach, F.; de Giacomo, M.; Pannunzi, E.; Miraglia, M. Effect of industrial processing on the distribution of aflatoxins and zearalenone in corn-milling fractions. J. Agric. Food Chem. 2006, 54, 5014–5019. [Google Scholar] [CrossRef] [PubMed]
- Brera, C.; Debegnach, F.; Grossi, S.; Miraglia, M. Effect of industrial processing on the distribution of fumonisin B1 in dry milling corn fractions. J. Food Prot. 2004, 67, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Generotti, S.; Cirlini, M.; Dall’Asta, C.; Suman, M. Influence of the industrial process from caryopsis to cornmeal semolina on levels of fumonisins and their masked forms. Food Control 2015, 48, 170–174. [Google Scholar] [CrossRef]
- Vanara, F.; Reyneri, A.; Blandino, M. Fate of fumonisin B1 in the processing of whole maize kernels during dry-milling. Food Control 2009, 20, 235–238. [Google Scholar] [CrossRef]
- Vanara, F.; Scarpino, V.; Blandino, M. Fumonisin distribution in maize dry-milling products and by-products: Impact of two industrial degermination systems. Toxins 2018, 10, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpino, V. Fate of moniliformin during different large-scale maize dry-milling processes. LWT-Food Sci. Technol. 2020, 123, 109098. [Google Scholar] [CrossRef]
- Katta, S.K.; Cagampang, A.E.; Jackson, L.S.; Bullerman, L.B. Distribution of Fusarium molds and fumonisins in dry-milled corn fractions. Cereal Chem. J. 1997, 74, 858–863. [Google Scholar] [CrossRef]
- Broggi, L.E.; Resnik, S.L.; Pacin, A.M.; González, H.H.L.; Cano, G.; Taglieri, D. Distribution of fumonisins in dry-milled corn fractions in Argentina. Food Addit. Contam. 2002, 19, 465–469. [Google Scholar] [CrossRef]
- Bordini, J.G.; Ono, M.A.; Garcia, G.T.; Fazani, V.H.M.; Vizoni, É.; Rodrigues, K.C.B.; Hirooka, E.Y.; Ono, E.Y.S. Impact of industrial dry-milling on fumonisin redistribution in non-transgenic corn in Brazil. Food Chem. 2017, 220, 438–443. [Google Scholar] [CrossRef]
- Bordini, J.G.; Ono, M.A.; Garcia, G.T.; Vizoni, É.; Amador, I.R.; Hirozawa, M.T.; Ono, E.Y.S. Transgenic versus conventional corn: Fate of fumonisins during industrial dry milling. Mycotoxin Res. 2019, 35, 169–176. [Google Scholar] [CrossRef]
- Burger, H.M.; Shephard, G.S.; Louw, W.; Rheeder, J.P.; Gelderblom, W.C.A. The mycotoxin distribution in maize milling fractions under experimental conditions. Int. J. Food Microbiol. 2013, 165, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Aprodu, I.; Banu, I. Co-occurrence of fumonisins and T-2 toxins in milling maize fractions under industrial conditions. CyTA—J. Food 2015, 13, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Patey, A.L.; Gilbert, J. Fate of Fusarium mycotoxins in cereals during food processing and methods for their detoxification. In Fusarium—Mycotoxins, Taxonomy, Pathogenicity; Chelkowski, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; Volume 2, pp. 399–420. [Google Scholar]
- Aly, S.E.; Hathout, A.S. Fate of aflatoxin B1 in contaminated corn gluten during acid hydrolysis. J. Sci. Food Agric 2011, 91, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Yahl, K.R.; Watson, S.A.; Smith, R.J.; Barabolok, R. Laboratory wet-milling of corn containing high levels of aflatoxin and a survey of commercial wet-milling products. Cereal Chem. 1971, 48, 385–391. [Google Scholar]
- Okeke, C.A.; Ezekiel, C.N.; Sulyok, M.; Ogunremi, O.R.; Ezeamagu, C.O.; Šarkanj, B.; Warth, B.; Krska, R. Traditional processing impacts mycotoxin levels and nutritional value of ogi—A maize-based complementary food. Food Control 2018, 86, 224–233. [Google Scholar] [CrossRef]
- Kamimura, H. Removal of mycotoxins during food processing. マイコトキシン (JSM Mycotoxins) 1999, 1999, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.A.; Richard, J.L.; Eckhoff, S.R. Distribution of fumonisins in food and feed products prepared from contaminated corn. In Fumonisins in Food; Jackson, L.S., DeVries, J.W., Bullerman, L.B., Eds.; Springer: Boston, MA, USA, 1996; pp. 317–322. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Fate of Fusarium mycotoxins during processing of Nigerian traditional infant foods (ogi and soybean powder). Food Res. Int. 2019, 116, 408–418. [Google Scholar] [CrossRef]
- Bennett, G.A.; Vandegraft, E.E.; Shotwell, O.L.; Watson, S.A.; Bocan, B.J. Zearalenone: Distribution in wet-milling fractions from contaminated corn. Cereal Chem. 1978, 55, 455–460. [Google Scholar]
- Lauren, D.R.; Ringrose, M.A. Determination of the fate of three Fusarium mycotoxins through wet-milling of maize using an improved HPLC analytical technique. Food Addit. Contam. 1997, 14, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.J.; Rosen, J.D. Distribution of T-2 toxin in wet-milled corn products. J. Food Sci. 1981, 46, 877–879. [Google Scholar] [CrossRef]
- Wood, G.M. Effects of processing on mycotoxins in maize. Chem. Ind. 1982, 18, 972–974. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmans, Y.; Schaarschmidt, S.; Fauhl-Hassek, C.; van der Fels-Klerx, H.J. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins 2022, 14, 301. https://doi.org/10.3390/toxins14050301
Hoffmans Y, Schaarschmidt S, Fauhl-Hassek C, van der Fels-Klerx HJ. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins. 2022; 14(5):301. https://doi.org/10.3390/toxins14050301
Chicago/Turabian StyleHoffmans, Yvette, Sara Schaarschmidt, Carsten Fauhl-Hassek, and H.J. van der Fels-Klerx. 2022. "Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents" Toxins 14, no. 5: 301. https://doi.org/10.3390/toxins14050301
APA StyleHoffmans, Y., Schaarschmidt, S., Fauhl-Hassek, C., & van der Fels-Klerx, H. J. (2022). Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins, 14(5), 301. https://doi.org/10.3390/toxins14050301