A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy
Abstract
:1. Introduction
2. Results
Calibration Model Results
3. Discussion
3.1. Mycotoxin’s Contamination Occurrences and the NIR Calibration Approach
3.2. NIR Calibrations
3.3. Practical Application
4. Conclusions
5. Materials and Methods
5.1. Sample Collection, Preparation, and Analysis
5.2. Discriminant Cut-Off Limits Applied to Mycotoxin Groups
5.3. Outlier Spectra Detection, Re-Sampling Procedure, Development, and Evaluation of Classification Models
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bernardes, T.F.; Rêgo, A.C. Study on the practices of silage production and utilization on Brazilian dairy farms. J. Dairy Sci. 2014, 97, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Bellingeri, A.; Cabrera, V.E.; Gallo, A.; Liang, D.; Masoero, F. A survey of dairy cattle management, crop planning, and forages cost of production in Northern Italy. Ital. J. Anim. Sci. 2019, 18, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Richard, E.; Heutte, N.; Bouchart, V.; Garon, D. Evaluation of fungal contamination and mycotoxin production in maize silage. Anim. Feed Sci. Technol. 2019, 148, 309–320. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A.T. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [Green Version]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Kiessling, K.H.; Pettersson, H.; Sandholm, K.; Olsen, M. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Appl. Environ. Microbiol. 1984, 47, 1070–1073. [Google Scholar] [CrossRef] [Green Version]
- Fink-Gremmels, J. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Grenier, B.; Applegate, T.J. Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Kokoszynski, D.; Bernacki, Z.; Grabowicz, M.; Stanczak, K. Effect of corn silage and quantitative feed restriction on growth performance, body measurements, and carcass tissue composition in White Kołuda W31 geese. Poult. Sci. 2014, 93, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on mycotoxin issues in ruminants: Occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F.; Spanjer, M.C.; Scholten, J.M.; te Giffel, M.C. Occurrence of mycotoxins in feedstuffs of dairy cows and estimation of total dietary intakes. J. Dairy Sci. 2008, 91, 4261–4671. [Google Scholar] [CrossRef] [PubMed]
- Driehuis, F. Silage and the safety and quality of dairy foods: A review. Agric. Food Sci. 2013, 22, 16–34. [Google Scholar] [CrossRef]
- Muck, R.E.; Nadeau, E.M.G.; McAllister, T.A.; Contreras-Govea, F.E.; Santos, M.C.; Kung, L.J. Silage Review: Recent advances and future uses of silage additives. J. Dairy Sci. 2018, 101, 3980–4000. [Google Scholar] [CrossRef]
- Saylor, B.A.; Fernandes, T.; Sultana, H.; Gallo, A.; Ferraretto, L.F. Influence of microbial inoculation and length of storage on fermentation profile, N fractions, and ruminal in situ starch disappearance of whole-plant corn silage. Anim. Feed Sci. Technol. 2020, 267, 114557. [Google Scholar] [CrossRef]
- Gallo, A.; Bernardes, T.F.; Copani, G.; Fortunati, P.; Giuberti, G.; Bruschi, S.; Bryan, K.A.; Nielsen, N.G.; Witt, K.L.; Masoero, F. Effect of inoculation with Lactobacillus buchneri LB1819 and Lactococcus lactis O224 on fermentation and mycotoxin production in maize silage compacted at different densities. Anim. Feed Sci. Technol. 2018, 246, 36–45. [Google Scholar] [CrossRef]
- Cheli, F.; Campagnoli, A.; Dell’Orto, V. Fungal populations and mycotoxins in silages: From occurrence to analysis. Anim. Feed Sci. Technol. 2013, 183, 1–16. [Google Scholar] [CrossRef]
- Lee, K.; Herrman, T.J.; Nansen, C.; Yun, U. Application of Raman spectroscopy for qualitative and quantitative detection of fumonisins in ground maize samples. J. Cereal Sci. 2013, 1, 1–14. [Google Scholar]
- Gallo, A.; Ghilardelli, F.; Atzori, A.S.; Zara, S.; Novak, B.; Faas, J.; Fancello, F. Co-Occurrence of Regulated and Emerging Mycotoxins in Corn Silage: Relationships with Fermentation Quality and Bacterial Communities. Toxins 2021, 13, 232. [Google Scholar] [CrossRef]
- Gallo, A.; Fancello, F.; Ghilardelli, F.; Zara, S.; Froldi, F.; Spanghero, M. Effects of Several Lactic Acid Bacteria Inoculants on Fermentation and Mycotoxins in Corn Silage. Anim. Feed Sci. Technol. 2021, 277, 114962. [Google Scholar] [CrossRef]
- Gallo, A.; Fancello, F.; Ghilardelli, F.; Zara, S.; Spanghero, M. Effects of several commercial or pure lactic acid bacteria inoculants on fermentation and mycotoxin levels in high-moisture corn silage. Anim. Feed Sci. Technol. 2022, 286, 115256. [Google Scholar] [CrossRef]
- Kovalsky, P.; Kos, G.; Nährer, K.; Schwab, C.; Jenkins, T.; Schatzmayr, G.; Sulyok, M.; Krska, R. Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize–An extensive survey. Toxins 2016, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandicke, J.; de Visschere, K.; Croubels, S.; de Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in flanders’ fields: Occurrence and correlations with fusarium species in whole-plant harvested maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.W.; Subrahmanyam, S.; Piletsky, S.A. Analytical methods for determination of mycotoxins: A review. Anal. Chim. Acta 2009, 632, 168–180. [Google Scholar] [CrossRef]
- Bueno, D.; Istamboulie, G.; Muñoz, R.; Marty, J.L. Determination of mycotoxins in food: A review of bioanalytical to analytical methods. Appl. Spectrosc. Rev. 2015, 50, 728–774. [Google Scholar] [CrossRef]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef]
- Prieto-Simón, B.; Noguer, T.; Campàs, M. Emerging biotools for assessment of mycotoxins in the past decade. TrAC-Trends Analyt. Chem. 2007, 26, 689–702. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Wu, D.; Liu, J.; Wu, Y. Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Front. 2020, 1, 360–381. [Google Scholar] [CrossRef]
- Eshelli, M.; Qader, M.; Jambi, E.; Hursthouse, A.; Rateb, M. Current status and future opportunities of omics tools in mycotoxin research. Toxins 2018, 10, 433. [Google Scholar] [CrossRef] [Green Version]
- Mota, I.; Teixeira-Santos, R.; Rufo, J.C. Detection and Identification of Fungal Species by Electronic Nose Technology: A Systematic Review. Fungal Biol. Rev. 2021, 37, 59–70. [Google Scholar] [CrossRef]
- Aouadi, B.; Zaukuu, J.L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical evolution and food control achievements of near infrared spectroscopy, electronic nose, and electronic tongue—Critical overview. Sensors 2020, 20, 5749. [Google Scholar] [CrossRef] [PubMed]
- Camardo Leggieri, M.; Mazzoni, M.; Fodil, S.; Moschini, M.; Bertuzzi, T.; Prandini, A.; Battilani, P. An electronic nose supported by an artificial neural network for the rapid detection of aflatoxin B1 and fumonisins in maize. Food Control 2021, 123, 107722. [Google Scholar] [CrossRef]
- Greensteet, J.E.; Norris, K.P. The existence of differences between the infrared absorption spectra of bacteria. Spectrochim. Acta 1957, 9, 177–182. [Google Scholar] [CrossRef]
- Goulden, J.D.S.; Sharpe, M.E. The infrared absorption spectra of lactobacilli. J. Gen. Microbiol. 1958, 19, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.M.C.; Dennis, C.; Grant, A. Screening of tomato purée for excessive mould content by near-infrared spectroscopy: A preliminary evaluation. J. Sci. Food Agric. 1987, 39, 349–355. [Google Scholar] [CrossRef]
- Levasseur-Garcia, C. Updated overview of infrared spectroscopy methods for detecting mycotoxins on cereals (corn, wheat, and barley). Toxins 2018, 10, 10010038. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Wu, Q.; Liu, P.; Jiang, X.; Fang, Y.; Cao, C. Detection of Aspergillus spp. contamination levels in peanuts by near infrared spectroscopy and electronic nose. Food Control 2018, 93, 1–8. [Google Scholar] [CrossRef]
- Shen, S.; Wu, Q.; Shao, X.; Zhang, Q. Non-destructive and rapid evaluation of aflatoxins in brown rice by using near-infrared and mid-infrared spectroscopic techniques. J. Food Sci. Technol. 2018, 55, 1175–1184. [Google Scholar] [CrossRef]
- Teye, E.; Huang, X.-Y.; Afoakwa, N. Review on the potential use of near infrared spectroscopy (nirs) for the measurement of chemical residues in food. Am. J. Food Sci. Technol. 2013, 1, 1–8. [Google Scholar]
- Min, H.; Cho, B.-K. Spectroscopic techniques for nondestructive detection of fungi and mycotoxins in agricultural materials: A review. J. Biosyst. Eng. 2015, 40, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Mallmann, C.A.; Mallmann, A.O.; Tyska, D. Survey of Mycotoxin in Brazilian Corn by NIR Spectroscopy-Year 2019. Glob. J. Nutri. Food Sci. 2020, 3. [Google Scholar] [CrossRef]
- Weaver, A.C.; Weaver, D.M.; Adams, N.; Yiannikouris, A. Co-Occurrence of 35 Mycotoxins: A Seven-Year Survey of Corn Grain and Corn Silage in the United States. Toxins 2021, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, M.L.G.; Alonso, V.A.; Sager, R.; Morlaco, M.B.; Magnoli, C.E.; Astoreca, A.L.; Rosa, C.A.R.; Chiacchiera, S.M.; Dalcero, A.M.; Cavaglieri, L.R. Fungi and selected mycotoxins from pre- and post fermented corn silage. J. Appl. Microbiol. 2008, 104, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Liu, C.; Dudaš, T.; Loc, M.; Bagi, F.; Der Fels-Klerx, V. Improved aflatoxin and fumonisin forecasting models for maize (PREMA and PREFUM), using combined mechanistic and Bayesian network modelling–Serbia as a case study. Front. Microbiol. 2021, 12, 630. [Google Scholar]
- Sexton, J.; Everingham, Y.; Donald, D.; Staunton, S.; White, R. Investigating the identification of atypical sugarcane using NIR analysis of online mill data. Comput. Electron. Agric. 2020, 168, 105111. [Google Scholar] [CrossRef]
- Amirruddin, A.D.; Muharam, F.M.; Ismail, M.H.; Tan, N.P.; Ismail, M.F. Synthetic Minority Over-sampling TEchnique (SMOTE) and Logistic Model Tree (LMT)-Adaptive Boosting algorithms for classifying imbalanced datasets of nutrient and chlorophyll sufficiency levels of oil palm (Elaeis guineensis) using spectroradiometers and unmanned aerial vehicles. Comput. Electron. Agric. 2022, 193, 106646. [Google Scholar]
- Hong, X.Z.; Fu, X.S.; Wang, Z.L.; Zhang, L.; Yu, X.P.; Ye, Z.H. Tracing geographical origins of teas based on FT-NIR spectroscopy: Introduction of model updating and imbalanced data handling approaches. J. Anal. Methods Chem. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Jackson, C.M.; Adam, E. Machine Learning Classification of Endangered Tree Species in a Tropical Submontane Forest Using WorldView-2 Multispectral Satellite Imagery and Imbalanced Dataset. Remote Sens. 2021, 13, 4970. [Google Scholar] [CrossRef]
- Von, V.; Berlin, M.S. Learning the Non-Coding Genome. 2017. Available online: https://refubium.fu-berlin.de/bitstream/handle/fub188/23332/Dissertation_Schubach.pdf?sequence=3&isAllowed=y (accessed on 22 March 2022).
- Cheng, X.; Vella, A.; Stasiewicz, M.J. Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy. Food Control 2019, 98, 253–261. [Google Scholar] [CrossRef]
- Chen, C.; Liaw, A.; Breiman, L. Using Random Forest to Learn Imbalanced Data; University of California: Berkeley, CA, USA, 2004; Volume 110, pp. 1–12, 24. [Google Scholar]
- Berardo, N.; Pisacane, V.; Battilani, P.; Scandolara, A.; Pietri, A.; Marocco, A. Rapid detection of kernel rots and mycotoxins in maize by near-infrared reflectance spectroscopy. J. Agric. Food Chem. 2005, 53, 8128–8134. [Google Scholar] [CrossRef] [PubMed]
- Stępień, Ł. Fusarium: Mycotoxins, taxonomy, pathogenicity. Microorganisms 2020, 8, 1404. [Google Scholar] [CrossRef] [PubMed]
- Birr, T.; Jensen, T.; Preußke, N.; Sönnichsen, F.D.; De Boevre, M.; De Saeger, S.; Hasler, M.; Verreet, J.-A.; Klink, H. Occurrence of Fusarium Mycotoxins and Their Modified Forms in Forage Maize Cultivars. Toxins 2021, 13, 110. [Google Scholar] [CrossRef]
- Tallada, J.; Wicklow, D.; Pearson, T.; Armstrong, P. Detection of fungus-infected corn kernels using near-infrared reflectance spectroscopy and color imaging. Trans. ASABE 2011, 54, 1151–1158. [Google Scholar] [CrossRef]
- Rocchetti, G.; Ghilardelli, F.; Bonini, P.; Lucini, L.; Masoero, F.; Gallo, A. Changes of Milk Metabolomic Profiles Resulting from a Mycotoxins-Contaminated Corn Silage Intake by Dairy Cows. Metabolites 2021, 11, 475. [Google Scholar] [CrossRef] [PubMed]
- Levasseur-Garcia, C.; Kleiber, D. A method for the allotment of maize contaminated by toxins. J. Near Infrared Spectrosc. 2015, 23, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Tyska, D.; Mallmann, A.O.; Vidal, J.K.; Almeida, C.A.A.D.; Gressler, L.T.; Mallmann, C.A. Multivariate method for prediction of fumonisins B1 and B2 and zearalenone in Brazilian maize using Near Infrared Spectroscopy (NIR). PLoS ONE 2021, 16, e0244957. [Google Scholar]
- Auerbach, H.; Oldenburg, E.; Weissbach, F. Incidence of penicillium roqueforti and roquefortine C in silages. J. Sci. Food Agric. 1998, 76, 565–572. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Peiris, K.H.S.; Pumphrey, M.O.; Dong, Y.; Maghirang, E.B.; Berzonsky, W.; Dowell, F.E. Near-infrared spectroscopic method for identification of fusarium head blight damage and prediction of deoxynivalenol in single wheat kernels. Cereal Chem. 2010, 87, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Huang, Y.; Jiang, X.S.; Fang, Y.; Li, P.; Liu, Q.; Hu, Q.H.; Liu, X.Q. On-line prediction of hazardous fungal contamination in stored maize by integrating Vis/NIR spectroscopy and computer vision. Spectrochim. Acta Part A-Mol. Biomol. Spectr. 2020, 229, 118012. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.H.; Lee, I. Research advancements in optical imaging and spectroscopic techniques for non destructive detection of mold infection and mycotoxins in cereal grains and nuts. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4612–4651. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Kang, X.; Su, J.; Qiu, J.; Liu, X.; Xu, J.; Shia, J.; Mohamed, S.R. Rapid detection of fumonisin B1 and B2 in ground corn samples using smartphone-controlled portable near-infrared spectrometry and chemometrics. Food Chem. 2022, 384, 132487. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.; Tung, I.C.; Chiu, C.F.; Tsai, I.L.; Shih, H.C.; Chen, S.; Chuang, Y.K. Determination of aflatoxin B1 level in rice (Oryza sativa L.) through near-infrared spectroscopy and an improved simulated annealing variable selection method. Food Control 2022, 136, 108886. [Google Scholar] [CrossRef]
- Mishra, G.; Panda, B.K.; Ramirez, W.A.; Jung, H.; Singh, C.B.; Lee, S.H.; Lee, I. Application of SWIR hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of Aflatoxin B1 in single kernel almonds. LWT 2022, 155, 112954. [Google Scholar] [CrossRef]
- Tyska, D.; Mallmann, A.O.; Simões, C.T.; da Silva, C.R.; Gressler, L.T.; Mallmann, C.A. Prediction of fumonisins B1 and B2 in corn distiller’s dried grains with solubles through near-infrared reflectance spectroscopy. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef]
- Caramês, E.T.D.S.; Piacentini, K.C.; Alves, L.T.; Pallone, J.A.L.; Rocha, L.D.O. NIR Spectroscopy and Chemometric Tools to Identify High Content of Deoxynivalenol in Barley. Food Addit. Contam. Part A 2020, 37, 1542–1552. [Google Scholar] [CrossRef]
- Da Conceição, R.R.P.; Simeone, M.L.F.; Queiroz, V.A.V.; De Medeiros, E.P.; De Araújo, J.B.; Coutinho, W.M.; Da Silva, D.D.; De Araújo Miguel, R.; De Paula Lana, U.G.; De Resende Stoianoff, M.A. Application of near-infrared hyperspectral (NIR) imagescombined with multivariate image analysis in the differentiation of two mycotoxicogenic Fusarium species associated with maize. Food Chem. 2021, 344, 128615. [Google Scholar] [CrossRef]
- Tyska, D.; Mallmann, A.; Gressler, L.T.; Mallmann, C.A. Near-infrared spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour and its applicability in the industry. Food Addit. Contam. Part A 2021, 38, 1958–1968. [Google Scholar] [CrossRef]
- Ikoyi, A.Y.; Younge, B.A. Influence of forage particle size and residual moisture on near infrared reflectance spectroscopy (NIRS) calibration accuracy for macro-mineral determination. Anim. Feed. Sci. Technol. 2020, 270, 114674. [Google Scholar] [CrossRef]
- Ely, D.R.; Thommes, M.; Carvajal, M.T. Analysis of the effects of particle size and densification on NIR spectra. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 63–67. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of >500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Bruschi, S.; Fortunati, P.; Masoero, F. Technical note: Relationship between in situ NDF degradability and enzymatic NDF hydrolysis in forages, non forage fibrous feeds, and crop residues. J. Anim. Sci. 2017, 95, 4172–4180. [Google Scholar]
- Carvalho, B.F.; Avila, C.L.S.; Pinto, J.C.; Pereira, M.N.; Schwan, R.F. Effects of propionic acid and Lactobacillus buchneri (UFLA SIL 72) addition on fermentative and microbiological characteristics of sugar cane silage treated with and without calcium oxide. Grass Forage Sci. 2012, 67, 462–471. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Nie, L.; Xu, D.; Yin, W.; Li, L.; Zang, H. Spectra selection methods: A novel optimization way for treating dynamic spectra and in-line near infrared modeling. J. Innov. Opt. Health Sci. 2020, 13, 2050015. [Google Scholar] [CrossRef]
- Upadhyay, R.; Gupta, A.; Mishra, H.N.; Bhat, S.N. At-line quality assurance of deep-fried instant noodles using pilot scale visible-NIR spectroscopy combined with deep-learning algorithms. Food Control 2022, 133, 108580. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Schubach, M.; Re, M.; Robinson, P.N.; Valentini, G. Imbalance-aware machine learning for predicting rare and common disease-associated non-coding variants. Sci. Rep. 2017, 7, 2959. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 9, 225–247. [Google Scholar] [CrossRef]
Chemical and Biological Parameters (% DM) | ||
---|---|---|
Items | Mean | Standard Deviation |
DM (% fresh matter) | 34.34 | 2.38 |
Ash | 5.78 | 0.13 |
CP | 8.26 | 0.44 |
EE | 2.94 | 0.09 |
NDF | 37.24 | 1.27 |
ADF | 24.74 | 0.92 |
ADL | 3.00 | 0.16 |
NDIP | 1.02 | 0.13 |
ADIP | 0.74 | 0.09 |
24 h NDFD (% NDF) | 50.64 | 1.80 |
Starch | 31.54 | 2.77 |
Fermentative and Organoleptic Parameters (% DM) | ||
Mean | Standard Deviation | |
pH (dmnl) | 3.82 | 0.13 |
Acetic acid | 3.19 | 0.50 |
Propionic acid | 0.18 | 0.14 |
Butyric acid | 0.005 | 0.003 |
Lactic acid | 3.21 | 0.82 |
Lactic to Acetic | 1.32 | 0.59 |
Ethanol | 0.52 | 0.13 |
1,2 propanediol | 0.50 | 0.21 |
N-NH3 (% Total N) | 10.46 | 2.56 |
Items | Mean | Sd 3 | Skewness | Kurtosis | 25% Percentile | 50% Percentile | 75% Percentile |
---|---|---|---|---|---|---|---|
Sum of mycotoxins | 5895.70 | 7252.46 | 2.08 | 4.37 | 1208.68 | 2643.24 | 7235.01 |
Sum of R&E-Fusarium toxins 1 | 4781.04 | 6539.44 | 2.33 | 5.54 | 981.76 | 2077.46 | 5446.44 |
Sum of E-Fusarium toxins 2 | 2453.83 | 3571.47 | 2.82 | 8.19 | 641.81 | 1187.43 | 2125.63 |
Sum of Fumonisins | 2181.59 | 3430.07 | 2.25 | 4.58 | 256.67 | 620.21 | 2476.63 |
Sum of Penicillium toxins | 177.74 | 221.88 | 2.25 | 6.44 | 30.66 | 67.67 | 243.14 |
Count of mycotoxins | 26.20 | 6.42 | 0.44 | −0.07 | 21.50 | 26.00 | 30.50 |
Count of R&E-Fusarium toxins 1 | 15.33 | 3.61 | 0.51 | 1.67 | 13 | 16 | 17 |
Count of E-Fusarium toxins 2 | 7.02 | 1.73 | 0.00 | 0.76 | 6 | 7 | 8 |
Count of Fumonisins | 5.45 | 1.61 | −0.46 | −0.25 | 4 | 6 | 7 |
Count of Penicillium toxins | 3.61 | 1.25 | 0.26 | −0.16 | 3 | 4 | 4 |
TOTAL SUM of Mycotoxins | ||||||
---|---|---|---|---|---|---|
Cut off 4000 µg/kg DM | Cut off 7000 µg/kg DM | Cut off 10,000 µg/kg DM | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 25.7 ± 2.7 | 6.3 ± 2.7 | 35.6 ± 2.4 | 5.4 ± 2.4 | 42.9 ± 2.1 | 3.1 ± 2.1 |
Class2 | 4.6 ± 2.3 | 25.5 ± 2.3 | 1.3 ± 1.5 | 35.8 ± 1.5 | 0.4 ± 0.9 | 40.7 ± 0.9 |
Accuracy | 82.2 ± 5.9% | 91.5 ± 3.5% | 96.0 ± 2.7% | |||
Sensitivity | 80.2 ± 8.5% | 86.9 ± 5.9% | 93.2 ± 4.6% | |||
Specificity | 81.3 ± 8.0% | 96.6 ± 4.0% | 99.2 ± 2.2% | |||
CI 2 | (70.4 ± 6.9%), (90.6 ± 4.3%) | (83.1 ± 4.4%), (96.5 ± 2.2%) | (89.7 ± 3.7%), (98.8 ± 1.4%) | |||
p value | <0.05 | <0.05 | <0.05 | |||
TOTAL COUNT of mycotoxins | ||||||
Cut off n = 28 | Cut off n = 31 | Cut off n = 34 | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 30.9 ± 2.4 | 5.1 ± 2.4 | 38.9 ± 1.7 | 4.2 ± 1.7 | 46.3 ±1.7 | 2.7 ±1.7 |
Class2 | 3.2 ± 2.2 | 28.9 ± 2.2 | 0.6 ± 1.1 | 38.4 ± 1.1 | 0.03 ± 0.3 | 44.0 ± 0.3 |
Accuracy | 87.8 ± 4.4% | 94.2 ± 2.6% | 97.1 ± 1.8% | |||
Sensitivity | 85.7 ± 6.7% | 90.4 ± 3.9% | 94.6 ± 3.5% | |||
Specificity | 90.2 ± 6.7% | 98.5 ± 2.8% | 99.9 ± 0.7% | |||
CI 2 | (77.8 ± 5.3%), (94.3 ± 3.0%) | (86.9 ± 3.4%), (98.1 ± 1.5%) | (91.5 ± 2.7%), (99.3 ± 0.7%) | |||
p value | <0.05 | <0.05 | <0.05 |
SUM of R&E-Fusarium Toxins 2 | ||||||
---|---|---|---|---|---|---|
Cut off 1500 µg/kg DM | Cut off 2000 µg/kg DM | Cut off 2500 µg/kg DM | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 17.4 ± 2.4 | 6.6 ± 2.4 | 25.2 ± 2.5 | 6.8 ± 2.5 | 29.89 ± 2.53 | 8.11 ± 2.53 |
Class2 | 5.1 ± 2.7 | 23.9 ± 2.7 | 3.7 ± 2.5 | 35.3 ± 2.5 | 2.86 ± 2.44 | 43.14 ± 2.44 |
Accuracy | 77.9 ± 6.1% | 85.1 ± 4.8% | 86.9 ± 4.0% | |||
Sensitivity | 72.6 ± 10.0% | 78.6 ± 7.8% | 78.7 ± 6.7% | |||
Specificity | 82.4 ± 9.2% | 90.4 ± 6.5% | 93.8 ± 5.3% | |||
CI 3 | (64.6 ± 6.8%), (88.0 ± 4.7%) | (74.8 ± 5.6%), (92.3 ± 3.5%) | (77.9 ± 4.7%), (93.2 ± 2.9%) | |||
p value | <0.05 | <0.05 | <0.05 | |||
Count of R&E-Fusarium toxins 2 | ||||||
Cut off n = 13 | Cut off n = 14 | Cut off n = 15 | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 12.8 ± 2.0 | 5.2 ± 2.0 | 18.5 ± 2.4 | 7.49 ± 2.35 | 24.1 ± 2.5 | 7.9 ± 2.5 |
Class2 | 5.2 ± 2.7 | 15.8 ± 2.7 | 5.3 ± 2.7 | 25.67 ± 2.73 | 4.7 ± 2.7 | 33.3 ± 2.7 |
Accuracy | 73.3 ± 7.7% | 77.5 ± 5.6% | 82.0 ± 4.9% | |||
Sensitivity | 71.2 ± 10.9% | 71.2 ± 9.1% | 75.4 ± 7.8% | |||
Specificity | 75.1 ± 12.9% | 82.8 ± 8.8% | 85.6 ± 7.2% | |||
CI 3 | (57.0 ± 8.3%), (85.9 ± 5.8%) | (64.6 ± 6.2%), (87.4 ± 4.3%) | (71.1 ± 5.6%), (90.1 ± 3.8%) | |||
p value | 0.049 ± 0.091 | <0.05 | <0.05 |
SUM of E-Fusarium Toxins 2 | ||||||
---|---|---|---|---|---|---|
Cut off 700 µg/kg DM | Cut off 1000 µg/kg DM | Cut off 1200 µg/kg DM | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 13.3 ± 2.3 | 6.67 ± 2.28 | 23.8 ± 2.7 | 8.3 ± 2.7 | 27.1 ± 2.8 | 8.0 ± 2.8 |
Class2 | 3.3 ± 1.9 | 33.66 ± 1.92 | 2.2 ± 1.8 | 56.8 ± 1.8 | 1.5 ± 1.7 | 63.6± 1.7 |
Accuracy | 82.4 ± 5.2% | 88.5 ± 3.1% | 90.6 ± 3.1% | |||
Sensitivity | 66.7 ± 11.3% | 74.2 ± 8.5% | 77.3 ± 8.0% | |||
Specificity | 91.0 ± 5.2% | 96.2 ± 3.1% | 97.8 ± 2.7% | |||
CI 3 | (70.2 ± 6.1%), (91.1 ± 3.7%) | (80.1 ± 3.8%), (94.1 ± 2.2%) | (83.2 ± 3.8%), (95.4 ± 2.2%) | |||
p value | 0.019 ± 0.046 | <0.05 | <0.05 | |||
COUNT of E-Fusarium toxins 2 | ||||||
Cut off n = 6 | Cut off n = 7 | Cut off n = 8 | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 16.0 ± 2.2 | 7.0 ± 2.3 | 30.6 ± 2.9 | 8.4 ± 2.9 | 51.1 ± 2.2 | 3.9 ±2.2 |
Class2 | 5.2 ± 2.3 | 21.8 ± 2.3 | 2.26 ± 2.18 | 51.7 ± 2.2 | 0 | 76 |
Accuracy | 75.7 ± 5.8% | 88.5 ± 3.8% | 97.0 ± 1.7% | |||
Sensitivity | 69.7 ± 9.9% | 78.4 ± 7.3% | 92.9 ± 4.0% | |||
Specificity | 80.9 ± 8.5% | 95.8 ± 4.0% | 100.0% | |||
CI 3 | (61.6 ± 6.4%), (86.6 ± 4.5%) | (80.3 ± 4.5%), (94.1 ± 2.8%) | (92.6 ± 2.4%), (99.1 ± 0.9%) | |||
p value | <0.05 | <0.05 | <0.05 |
SUM of Fumonisins | ||||||
---|---|---|---|---|---|---|
Cut off 400 µg/kg DM | Cut off 700 µg/kg DM | Cut off 1000 µg/kg DM | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 13.5 ± 2.1 | 5.5 ± 2.1 | 27.1 ± 3.0 | 7.0 ± 3.0 | 34.8 ± 2.7 | 6.2 ± 2.7 |
Class2 | 5.2 ± 2.2 | 11.8 ± 2.2 | 4.9 ± 2.5 | 26.1 ± 2.5 | 2.9 ± 2.3 | 34.1 ± 2.3 |
Accuracy | 70.5 ± 7.3% | 81.8 ± 5.2% | 88.3 ± 4.3% | |||
Sensitivity | 70.8 ± 11.1% | 79.6 ± 8.7% | 84.9 ± 6.6% | |||
Specificity | 69.3 ± 12.8% | 84.3 ± 8.0% | 92.2 ±6.3% | |||
CI 2 | (52.8 ± 7.6%), (84.0 ± 5.7%) | (70.44 ± 6.0%), (90.1 ± 3.9%) | (79.2 ± 5.2%), (94.3 ± 3.0%) | |||
p value | 0.074 ± 0.121 | <0.05 | <0.05 | |||
COUNT of Fumonisins | ||||||
Cut off n = 4 | Cut off n = 5 | Cut off n = 6 | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 13.5 ± 2.1 | 4.5 ± 2.1 | 25.0 ± 2.1 | 6.0 ± 2.1 | 45.2 ± 2.9 | 5.8 ± 2.9 |
Class2 | 5.6 ± 2.0 | 9.4 ± 2.0 | 5.7 ± 2.6 | 21.3 ± 2.6 | 1.0 ± 1.4 | 43.0 ± 1.4 |
Accuracy | 69.5 ± 7.8% | 79.8 ± 5.3% | 92.8 ± 3.3% | |||
Sensitivity | 75.2 ± 11.7% | 80.6 ± 6.8% | 88.7 ± 5.6% | |||
Specificity | 62.7 ± 13.5% | 78.9 ± 9.6% | 97.6 ± 3.1% | |||
CI 2 | (51.3 ± 8.2%), (84.0 ± 5.9%) | (67.3 ± 5.9%), (89.0 ± 4.0%) | (85.8 ± 4.2%), (96.9 ± 2.2%) | |||
p value | 0.122 ± 0.153 | <0.05 | <0.05 |
SUM of Penicillium Toxins | ||||||
---|---|---|---|---|---|---|
Cut off 150 µg/kg DM | Cut off 250 µg/kg DM | Cut off 350 µg/kg DM | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 24.9 ± 2.4 | 7.1 ± 2.4 | 36.8 ± 2.1 | 4.2 ± 2.1 | 42.8 ± 2.3 | 4.3 ± 2.3 |
Class2 | 4.5 ± 2.7 | 24.5 ± 2.7 | 1.3 ± 1.8 | 35.7 ± 1.8 | 0.1 ± 0.7 | 41.9 ± 0.7 |
Accuracy | 81.0 ± 5.8% | 92.9 ± 3.4% | 95.1 ± 2.8% | |||
Sensitivity | 77.9 ± 7.4% | 89.8 ± 5.2% | 91.0 ± 4.9% | |||
Specificity | 84.4 ± 9.2% | 96.4 ± 4.8% | 99.7 ± 1.6% | |||
CI 2 | (69.1 ± 6.6%), (89.7 ± 4.4%) | (85.0 ± 4.4%), (97.3 ± 2.0%) | (88.5 ± 3.8%), (98.4 ± 1.5%) | |||
p value | <0.05 | <0.05 | <0.05 | |||
COUNT of Penicillium toxins | ||||||
Cut off n = 3 | Cut off n = 4 | Cut off n = 5 | ||||
Class1 | Class2 | Class1 | Class2 | Class1 | Class2 | |
Class1 | 24.0 ± 2.6 | 6.0 ± 2.6 | 42.5 ± 2.4 | 4.5 ± 2.4 | 56.4 ± 1.5 | 1.6 ± 1.5 |
Class2 | 5.2 ± 2.1 | 21.8 ± 2.1 | 0.9 ± 1.4 | 41.4 ± 1.4 | 0 | 52.0 ± 0 |
Accuracy | 80.2 ± 5.3% | 94.0 ± 3.1% | 98.6 ± 1.3% | |||
Sensitivity | 79.9 ± 8.6% | 90.5 ± 5.0% | 97.3 ± 2.5% | |||
Specificity | 80.6 ±7.8% | 97.9 ± 3.3% | 100.00% | |||
CI 2 | (67.7 ± 5.9%), (89.5 ± 4.0%) | (87.0 ± 4.0%), (97.7 ± 1.8%) | (94.3 ± 2.1%), (99.7 ± 0.5%) | |||
p value | <0.05 | <0.05 | <0.05 |
Feed Matrix | Target Mycotoxin | Wavelength | Statistical Model * | Results Obtained | Practical Application | Source |
---|---|---|---|---|---|---|
Ground corn samples | Fumonisin B1 and B2 | 900–1700 nm | PLS, SVM, and LPLS-S | R2 prediction = 0.71–0.91 RMSEP = 12.08–22.58 mg/kg | Pocket-sized NIR spectrometers controlled by a smartphone | [65] |
PCA, PLS-DA, and SVM-DA | Prediction accuracy = 86.3–88.2% Error in prediction = 11.8–13.7% | |||||
Rice (Oryza sativa L.) | Aflatoxin B1 | 400–2498 nm | MSA + PLS | Low-aflatoxin-level (≤35 μg/kg): R2 calibration = 0.72–0.99 RMSEC = 0.11–5.02 μg/kg High-aflatoxin-level (>35 μg/kg): R2 calibration = 0.72–0.99 RMSEC = 0.56–13.74 μg/kg | Monitoring aflatoxin B1 contamination in milled rice during postharvest storage | [66] |
Almonds | Aflatoxin B1 | 900–1700 nm | PLS | R2 = 0.786–0.958 RMSEP = 0.089–0.197 μg/g | Commercial application | [67] |
Distiller’s dried grains | Fumonisin B1 and B2 | 400–2500 nm | PLS | FB1 R2 = 0.80 FB2 R2 = 0.79 | Potential to support decision making regarding the use of feed ingredients and, consequently, to protect animal health | [68] |
Barley (Hordeum vulgare) | Deoxynivalenol (cut off limit cut off 1250 µg/kg) | 10,000 cm−1–4000 cm−1 | PLS-DA | Sensitivity in cross-validation = 90.9% Specificity in cross-validation = 89.9% | Green technique to monitor DON contamination | [69] |
Corn products | Fusarium verticillioides and F. graminearum | 1000–2500 nm | PLS-DA | Accuracy = 99.7% | Monitoring the safety of feed and food supply | [70] |
Wheat flour | Deoxynivalenol | PLS-DA and PC-LDA | Contamination level ≤ 450 μg kg−1 Accuracy (PLS-DA) = 85–87.5% Error (PLS-DA) = 10–15% error; Accuracy (PC-LDA) = 85% Error (PC-LDA) = 10–15% error | Screening method to evaluate DON contamination to support decision making in industries | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghilardelli, F.; Barbato, M.; Gallo, A. A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy. Toxins 2022, 14, 323. https://doi.org/10.3390/toxins14050323
Ghilardelli F, Barbato M, Gallo A. A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy. Toxins. 2022; 14(5):323. https://doi.org/10.3390/toxins14050323
Chicago/Turabian StyleGhilardelli, Francesca, Mario Barbato, and Antonio Gallo. 2022. "A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy" Toxins 14, no. 5: 323. https://doi.org/10.3390/toxins14050323
APA StyleGhilardelli, F., Barbato, M., & Gallo, A. (2022). A Preliminary Study to Classify Corn Silage for High or Low Mycotoxin Contamination by Using near Infrared Spectroscopy. Toxins, 14(5), 323. https://doi.org/10.3390/toxins14050323