Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity?
Abstract
:1. Introduction
2. Climate Change and Aflatoxin Contamination of Maize
3. Aflatoxin Regulation and Food Security in Africa
4. Aflatoxin Predictive Models in Africa
5. Conclusions
6. Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Climate Change: Unpacking the Burden on Food Safety; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Pickova, D.; Ostry, V.; Malir, F. A Recent Overview of Producers and Important Dietary Sources of Aflatoxins. Toxins 2021, 13, 186. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Pankaj, S.; Shi, H.; Keener, K.M. A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends Food Sci. Technol. 2018, 71, 73–83. [Google Scholar] [CrossRef]
- IARC. Review of Human Carcinogens: Chemical Agents and Related Occupations in World Health Organization; International Agency for Research on Cancer: Geneva, Switzerland, 2012. [Google Scholar]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef]
- Udovicki, B.; Audenaert, K.; De Saeger, S.; Rajkovic, A. Overview on the Mycotoxins Incidence in Serbia in the Period 2004–2016. Toxins 2018, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; Janić Hajnal, E.; Šarić, B.; Jovanov, P.; Mandić, A.; Đuragić, O.; Kokić, B. Aflatoxins in maize harvested in the Republic of Serbia over the period 2012–2016. Food Addit. Contam. Part B 2018, 11, 246–255. [Google Scholar] [CrossRef]
- Nleya, N.; Ngoma, L.; Mwanza, M. Aflatoxin Occurrence in Dairy Feeds: A Case of Bulawayo, Zimbabwe, in Aflatoxin B1 Occurrence, Detection and Toxicological Effects; IntechOpen: London, UK, 2019. [Google Scholar]
- Janić Hajnal, E.; Kos, J.; Krulj, J.; Krstović, S.; Jajić, I.; Pezo, L.; Šarić, B.; Nedeljković, N. Aflatoxins contamination of maize in Serbia: The impact of weather conditions in 2015. Food Addit. Contam. Part A 2017, 34, 1999–2010. [Google Scholar] [CrossRef]
- Kachapulula, P.W.; Akello, J.; Bandyopadhyay, R.; Cotty, P.J. Aflatoxin contamination of groundnut and maize in Zambia: Observed and potential concentrations. J. Appl. Microbiol. 2017, 122, 1471–1482. [Google Scholar] [CrossRef] [Green Version]
- Dövényi-Nagy, T.; Rácz, C.; Molnár, K.; Bakó, K.; Szláma, Z.; Jóźwiak, Á.; Farkas, Z.; Pócsi, I.; Dobos, A.C. Pre-harvest modelling and mitigation of aflatoxins in maize in a changing climatic environment—A review. Toxins 2020, 12, 768. [Google Scholar] [CrossRef]
- Doster, M.A.; Michailides, T.J. Relationship between shell discoloration of pistachio nuts and incidence of fungal decay and insect infestation. Plant Dis. 1999, 83, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Doster, M.; Michailides, T. The relationship between date of hull splitting and decay of pistachio nuts by Aspergillus species. Plant Dis. 1995, 79, 766–769. [Google Scholar] [CrossRef]
- Kaminiaris, M.D.; Camardo Leggieri, M.; Tsitsigiannis, D.I.; Battilani, P. AFLA-pistachio: Development of a mechanistic model to predict the aflatoxin contamination of pistachio nuts. Toxins 2020, 12, 445. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D.; Hope, R.; Mitchell, D. Environmental factors and interactions with mycobiota of grain and grapes: Effects on growth, deoxynivalenol and ochratoxin production by Fusarium culmorum and Aspergillus carbonarius. Toxins 2010, 2, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Leggieri, M.C.; Giorni, P.; Pietri, A.; Battilani, P. Aspergillus flavus and Fusarium verticillioides interaction: Modeling the impact on mycotoxin production. Front. Microbiol. 2019, 10, 2653. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Botai, C.M.; Botai, J.O.; Adeola, A.M. Spatial distribution of temporal precipitation contrasts in South Africa. S. Afr. J. Sci. 2018, 114, 70–78. [Google Scholar] [CrossRef]
- Nji, Q.N.; Babalola, O.O.; Ekwomadu, T.I.; Nleya, N.; Mwanza, M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins 2022, 14, 318. [Google Scholar] [CrossRef]
- Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins 2021, 13, 292. [Google Scholar] [CrossRef]
- Nleya, N.; Adetunji, M.C.; Mwanza, M. Current status of mycotoxin contamination of food commodities in Zimbabwe. Toxins 2018, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojiambo, P.S.; Battilani, P.; Cary, J.W.; Blum, B.H.; Carbone, I. Cultural and genetic approaches to manage aflatoxin contamination: Recent insights provide opportunities for improved control. Phytopathology 2018, 108, 1024–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Bailly, S.; Mahgubi, A.E.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.D.; Orlando, B. Occurrence and identification of Aspergillus section flavi in the context of the emergence of aflatoxins in french maize. Toxins 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Sirma, A.; Lindahl, A.F.; Makita, K.; Senerwa, D.; Mtimet, N.; Kang’ethe, E. The impacts of aflatoxin standards on health and nutrition in sub-Saharan Africa: The case of Kenya. Glob. Food Secur. 2018, 18, 57–61. [Google Scholar] [CrossRef]
- Nji, N.Q.; Christianah, A.M.; Njie, A.C.; Mulunda, M. Biodiversity and Distribution of Aspergillus and Their Toxins in 360 Maize from Western and Eastern Regions of South Africa. Adv. Microbiol. 2022, 12, 121–149. [Google Scholar] [CrossRef]
- Achaglinkame, A.M.; Opoku, N.; Amagloh, F.K. Aflatoxin contamination in cereals and legumes to reconsider usage as complementary food ingredients for Ghanaian infants: A review. J. Nutr. Intermed. Metab. 2017, 10, 1–7. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Zuma-Netshiukhwi, G.; Hlazo, O.; Motholo, S. Evaluating the Effect of Climate Variability on Zea Mays Productivity over Glen Research Station: South Africa. Eur. J. Agric. Food Sci. 2021, 3, 110–120. [Google Scholar]
- Sirma, A.J.; Senerwa, D.M.; Grace, D.; Makita, K.; Mtimet, N.; Kang’ethe, E.K.; Lindahl, J.F. Aflatoxin B1 occurrence in millet, sorghum and maize from four agro-ecological zones in Kenya. Afr. J. Food Adv. Nutr. Dev. 2016, 16, 10991–11003. [Google Scholar] [CrossRef]
- Adisa, O.M.; Botai, J.O.; Adeola, A.M.; Hassen, A.; Botai, C.M.; Darkey, D.; Tesfamariam, E. Application of artificial neural network for predicting maize production in South Africa. Sustainability 2019, 11, 1145. [Google Scholar] [CrossRef] [Green Version]
- Jain, L.K.; Parewa, H.P.; Ratnoo, S. Impact of frontline demonstration on productivity and profitability analysis of cluster bean in Barmer district of Rajasthan. Forage Res. 2019, 44, 283–286. [Google Scholar]
- Chauhan, Y.; Wright, G.; Rachaputi, N. Modelling climatic risks of aflatoxin contamination in maize. Aust. J. Exp. Agric. 2008, 48, 358–366. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, H. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chin. Sci. Bull. 2015, 61, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- Mapfumo, P.; Chagwiza, C.; Antwi, M. Impact of rainfall variability on maize yield in the KwaZulu-Natal, North-West and Free State provinces of South Africa (1987–2017). J. Agribus. Rural. Dev. 2020, 58, 359–367. [Google Scholar]
- Compaore, H.; Samandoulougou, S.; Tapsoba, F.W.; Bambara, A.; Ratongue, H.; Sawadogo, I.; Kabore, D.; Ouattara-Sourabie, P.B.; Sawadogo-Lingani, H.E. Aflatoxigenic potential of Aspergillus section Flavi isolated from maize seeds, in Burkina Faso. Afr. J. Microbiol. Res. 2021, 15, 420–428. [Google Scholar]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110–122. [Google Scholar] [CrossRef]
- Nguegwouo, E.; Tchuenchieu, A.; Tene, H.M.; Fokou, E.; Nama, G.M.; Saeger, S.D.; Etoa, F.X. Mycotoxin contamination of food and associated health risk in Cameroon: A 25-years review (1993–2018). Eur. J. Nutr. Food Saf. 2019, 52–65. [Google Scholar] [CrossRef]
- Bamba, S.; Biego, H.M.; Coulibaly, A.; Yves, N.B.; Daouda, S. Determination of the Level of Aflatoxins Contamination in Maize (Zea mays L.) Produced in Five Regions of Côte d’Ivoire. Asian Res. J. Agric. 2021, 14, 21–31. [Google Scholar] [CrossRef]
- Kortei, N.K.; Annan, T.; Akonor, P.T.; Richard, S.A.; Annan, H.A.; Kyei-Baffour, V.; Akuamoa, F.; Akpaloo, P.G.; Esua-Amoafo, P. The occurrence of aflatoxins and human health risk estimations in randomly obtained maize from some markets in Ghana. Sci. Rep. 2021, 11, 1–3. [Google Scholar] [CrossRef]
- Ankwasa, E.M.; Francis, I.; Ahmad, T. Update on mycotoxin contamination of maize and peanuts in East African Community Countries. J. Food Sci. Nutr. Ther. 2021, 7, 001–010. [Google Scholar]
- Misihairabgwi, J.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods 2017, 4, 145–153. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Ayeni, K.I.; Akinyemi, M.O.; Sulyok, M.; Oyedele, O.A.; Babalola, D.A.; Ogara, I.M.; Krska, R. Dietary risk assessment and consumer awareness of mycotoxins among household consumers of cereals, nuts and legumes in north-central Nigeria. Toxins 2021, 13, 635. [Google Scholar] [CrossRef] [PubMed]
- Nishimwe, K.; Wanjuki, I.; Karangwa, C.; Darnell, R.; Harvey, J. An initial characterization of aflatoxin B1 contamination of maize sold in the principal retail markets of Kigali, Rwanda. Food Control 2017, 73, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Boni, S.B.; Beed, F.; Kimanya, M.E.; Koyano, E.; Mponda, O.; Mamiro, D.; Kaoneka, B.; Bandyopadhyay, R.; Korie, S.; Mahuku, G. Aflatoxin contamination in Tanzania: Quantifying the problem in maize and groundnuts from rural households. World Mycotoxin J. 2021, 14, 553–564. [Google Scholar] [CrossRef]
- Baglo, D.E.; Faye, A.; Fall, M. Determination of Aflatoxin in Maize Produced in Two Regions of Togo. Adv. Food Technol. Nutr. Sci. Open J. 2020, 6, 42–46. [Google Scholar] [CrossRef]
- Akello, J.; Ortega-Beltran, B.; Katati, J.; Atehnkeng, J.; Augusto, C.; Mwila, M. Prevalence of aflatoxin-and fumonisin-producing fungi associated with cereal crops grown in Zimbabwe and their associated risks in a climate change scenario. Foods 2021, 10, 287. [Google Scholar] [CrossRef]
- Ojuri, O.T.; Ezekiel, C.N.; Sulyok, M.; Ezeokoli, O.T.; Oyedele, O.A.; Ayeni, K.I.; Eskola, M.K.; Šarkanj, B.; Hajšlová, J.; Adeleke, R.A.; et al. Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food Chem. Toxicol. 2018, 121, 37–50. [Google Scholar] [CrossRef]
- Onyeke, C.C.; Obasi, E.J.; Ajuziogu, G.C.; Onoja, U.S.; Osibe, D.A.; Nweze, E.I.; Ikwuagwu, O.E.; Eyo, J.E. Aflatoxins composition of maize (Zea mays L.), guinea corn (Sorghum bicolor L.) cold paps and peanut (Arachis hypogea L.) butter in Nsukka, Nigeria. J. Basic Pharmacol. Toxicol. 2017, 1, 18–22. [Google Scholar]
- Ambler, K.; de Brauw, A.; Godlonton, S. Measuring postharvest losses at the farm level in Malawi. Aust. J. Agric. Resour. Econ. 2018, 62, 139–160. [Google Scholar] [CrossRef]
- Edelman, B.; Aberman, N.-L. Promoting Exports of Low-Aflatoxin Groundnut from Malawi; MaSSP Policy Note; International Food Policy Research Institute: Washington, DC, USA, 2015. [Google Scholar]
- Senerwa, D.M.; Mtimet, N.; Sirma, A.J.; Nzuma, J.; Kang’ethe, E.K.; Lindahl, J.F.; Grace, D. Prevalence of aflatoxin in feeds and cow milk from five counties in kenya. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11004–11021. [Google Scholar] [CrossRef]
- Stepman, F. Scaling-up the impact of aflatoxin research in Africa. The role of social sciences. Toxins 2018, 10, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drammeh, W.; Hamid, N.A.; Rohana, A. Determinants of household food insecurity and its association with child malnutrition in Sub-Saharan Africa: A review of the literature. Curr. Res. Nutr. Food Sci. J. 2019, 7, 610–623. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022; 260p. [Google Scholar]
- OECD/FAO. OECD-FAO Agricultural Outlook 2018–2027; OECD: Paris, France, 2018. [Google Scholar]
- Hoffmann, V.; Moser, C. You get what you pay for: The link between price and food safety in Kenya. Agric. Econ. 2017, 48, 449–458. [Google Scholar] [CrossRef]
- Ayyat, M.; Labib, H.M.; Mahmoud, H.K. A probiotic cocktail as a growth promoter in Nile tilapia (Oreochromis niloticus). J. Appl. Aquac. 2014, 26, 208–215. [Google Scholar] [CrossRef]
- Ayedun, B.; Okpachu, G.; Manyong, V.; Atehnkeng, J.; Akinola, A.; Abu, G.A.; Bandyopadhyay, R.; Abdoulaye, T. An assessment of willingness to pay by maize and groundnut farmers for aflatoxin biocontrol product in Northern Nigeria. J. Food Prot. 2017, 80, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Matumba, L.; Monjerezi, M.; Kankwamba, H.; Njoroge, S.; Ndilowe, P.; Kabuli, H.; Kambewa, D.; Njapau, H. Knowledge, attitude, and practices concerning presence of molds in foods among members of the general public in Malawi. Mycotoxin Res. 2016, 32, 27–36. [Google Scholar] [CrossRef]
- Misihairabgwi, J.M.; Ezekiel, C.N.; Sulyok, M.; Shephard, G.S.; Krska, R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016). Crit. Rev. Food Sci. Nutr. 2019, 59, 43–58. [Google Scholar] [CrossRef] [Green Version]
- EAC—East Africa Community. Disposal and alternative uses of aflatoxin-contaminated food. EAC Policy Brief No. 8 on Aflatoxin Prevention and Control. 2018. Available online: https://www.eac.int/documents/category/aflatoxin-prevention-and-control (accessed on 2 August 2022).
- Keller, B.; Russo, T.; Rembold, F.; Chauhan, Y.; Battilani, P.; Wenndt, A.; Connett, M. The potential for aflatoxin predictive risk modelling in sub-Saharan Africa: A review. World Mycotoxin J. 2022, 15, 101–118. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Marvin, H.J. Prediction of food fraud type using data from Rapid Alert System for Food and Feed (RASFF) and Bayesian network modelling. Food Control 2016, 61, 180–187. [Google Scholar] [CrossRef]
- Marvin, D.C.; Koh, L.P.; Lynam, A.J.; Wich, S.; Davies, A.B.; Krishnamurthy, R.; Stokes, E.; Starkey, R.; Asner, G.P. Integrating technologies for scalable ecology and conservation. Glob. Ecol. Conserv. 2016, 7, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Liu, C.; Dudaš, T.N.; Loc, M.Č.; Bagi, F.F.; Van der Fels-Klerx, H.J. Improved aflatoxins and fumonisins forecasting models for maize (PREMA and PREFUM), using combined mechanistic and Bayesian Network modeling—Serbia as a case study. Front. Microbiol. 2021, 12, 643604. [Google Scholar] [CrossRef] [PubMed]
- Buriticá, J.A.; Tesfamariam, S. Consequence-based framework for electric power providers using Bayesian belief network. Int. J. Electr. Power Energy Syst. 2015, 64, 233–241. [Google Scholar] [CrossRef]
- Battilani, P.; Barbano, C.; Piva, G. Aflatoxin B1 contamination in maize related to the aridity index in North Italy. World Mycotoxin J. 2008, 1, 449–456. [Google Scholar] [CrossRef]
- Walker, S.H.; Duncan, D.B. Estimation of the probability of an event as a function of several independent variables. Biometrika 1967, 54, 167–179. [Google Scholar] [CrossRef]
- Chauhan, Y.; Tatnell, J.; Krosch, S.; Karanja, J.; Gnonlonfin, B.; Wanjuki, I.; Wainaina, J.; Harvey, J. An improved simulation model to predict pre-harvest aflatoxin risk in maize. Field Crops Res. 2015, 178, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Battilani, P.; Leggieri, M.C.; Rossi, V.; Giorni, P. AFLA-maize, a mechanistic model for Aspergillus flavus infection and aflatoxin B1 contamination in maize. Comput. Electron. Agric. 2013, 94, 38–46. [Google Scholar] [CrossRef]
- Warnatzsch, E.A.; Reay, D.S.; Camardo Leggieri, M.; Battilani, P. Climate Change Impact on Aflatoxin Contamination Risk in Malawi’s Maize Crops. Front. Sustain. Food Syst. 2020, 4, 591792. [Google Scholar] [CrossRef]
- Masuoka, P.; Chamberlin, J.; Elias, M. Modeling the distribution and probability of aflatoxin occurrence using environmental data. Aflatoxin control; IFPRI Working paper 2. Int. Food Policy Res. Instit. 2010. [Google Scholar]
- Battilani, P.; Toscano, P.; der Fels-Klerx, V.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Chowdhury, A.; Terejanu, G.; Chanda, A.; Banerjee, S. A stacked gaussian process for predicting geographical incidence of aflatoxin with quantified uncertainties. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3 November 2015; pp. 1–4. [Google Scholar]
- Smith, L.E.; Stasiewicz, M.; Hestrin, R.; Morales, L.; Mutiga, S.; Nelson, R.J. Examining environmental drivers of spatial variability in aflatoxin accumulation in Kenyan maize: Potential utility in risk prediction models. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11086–11105. [Google Scholar] [CrossRef]
- Yoo, E.; Kerry, R.; Ingram, B.; Ortiz, B.; Scully, B. Defining and characterizing Aflatoxin contamination risk areas for corn in Georgia, USA: Adjusting for collinearity and spatial correlation. Spat. Stat. 2018, 28, 84–104. [Google Scholar] [CrossRef] [Green Version]
- Damianidis, D.; Ortiz, B.V.; Windham, G.L.; Bowen, K.L.; Hoogenboom, G.; Scully, B.T.; Hagan, A.; Knappenberger, T.; Woli, P.; Williams, W.P. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop Prot. 2018, 113, 64–74. [Google Scholar] [CrossRef]
- Jiang, M.P.; Zheng, S.Y.; Wang, H.; Zhang, S.Y.; Yao, D.S.; Xie, C.F.; Liu, D.L. Predictive model of aflatoxin contamination risk associated with granary-stored corn with versicolorin A monitoring and logistic regression. Food Addit. Contam. Part A 2019, 36, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Van der Fels-Klerx, H.J.; Vermeulen, L.C.; Gavai, A.K.; Liu, C. Climate change impacts on aflatoxin B1 in maize and aflatoxin M1 in milk: A case study of maize grown in Eastern Europe and imported to the Netherlands. PLoS ONE 2019, 14, e0218956. [Google Scholar] [CrossRef] [Green Version]
- Hutton, B.; Salanti, G.; Caldwell, D.M.; Chaimani, A.; Schmid, C.H.; Cameron, C.; Ioannidis, J.P.; Straus, S.; Thorlund, K.; Jansen, J.P.; et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: Checklist and explanations. Ann. Intern. Med. 2015, 162, 777–784. [Google Scholar] [CrossRef] [Green Version]
Country | Mycotoxin | Contamination Levels (ppb) | Contamination Rate (%) | Regulatory Limit (ppb) | References |
---|---|---|---|---|---|
Burkina Faso | AF | 0.93-59 | 70 | 20 | [39] |
Burundi | AF | LOD-117 | 100 | 10 | [40] |
Cameroon | AFB1 | 6-645 | 22 | 20 | [41] |
Côte d’Ivoire | AF | 30-91 | 96 | 20 | [42] |
Ghana | AFB1 | 0.38-348 | 80 | 15 | [43] |
Kenya | AFB1 | 1.69-403 | 97 | 5 | [44] |
Malawi | AF | 0.7-140 | 21 | 3 | [45] |
Nigeria | AF | LOD955 | 57 | 20 | [46] |
Rwanda | AFB1 | 2-52 | 66 | 5 | [47] |
South Africa | AF | LOD-1082 | 28 | 5 | [29] |
Tanzania | AF | LOD-162 | 80 | 10 | [48] |
Togo | AF | 0.17-1600 | 100 | 20 | [49] |
Uganda | AF | 22.2-268 | 74 | 10 | [44] |
Zambia | AF | LOD-7408 | 73 | 10 | [12] |
Zimbabwe | AF | LOD-1369 | 52 | 10 | [50] |
Name of Model | Type of Model | Country | Crop | Sample Size | Accuracy | Reference |
---|---|---|---|---|---|---|
APSIM | Hybrid | Australia | Maize | 1379 | 69% | [36] |
APSIM | Hybrid | Kenya/Australia | Maize | N/A | N/A | [73] |
Maxent2 | Empirical | Kenya and Mali | Any crop | N/A | N/A | [76] |
AFLA-maize | Mechanistic | Italy | Maize | 352 | 68% | [74] |
AFLA-maize | Mechanistic | Europe | Maize | N/A | Future projection | [77] |
Stacked gaussian | Empirical | USA | Maize | N/A | Quantified uncertainty | [78] |
Multi-level modelling | Empirical | Kenya | Maize | 2466 | Not predictive | [79] |
AFLA-pistachio | Mechanistic | Greece | Pistachio | 130 | 80% | [16] |
AFLA-maize | Mechanistic | Malawi | Maize | N/A | Future Projection | [75] |
PREMA | Mechanistic and Bayesian Network | Serbia | Maize | 867 | 83 | [69] |
Spatial Poisson profile regression | Empirical | USA | Maize | 45 counties | Not a predictive model | [80] |
Drought index (ARID) | Empirical | USA | Maize | N/A | 82% | [81] |
Risk in storage | Empirical | China | Maize | 28 | 93.3% | [82] |
AFLA-maize + carryover | Mechanistic | Ukraine and Netherlands | Maize | N/A | Future projection | [83] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nji, Q.N.; Babalola, O.O.; Mwanza, M. Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins 2022, 14, 574. https://doi.org/10.3390/toxins14080574
Nji QN, Babalola OO, Mwanza M. Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins. 2022; 14(8):574. https://doi.org/10.3390/toxins14080574
Chicago/Turabian StyleNji, Queenta Ngum, Olubukola Oluranti Babalola, and Mulunda Mwanza. 2022. "Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity?" Toxins 14, no. 8: 574. https://doi.org/10.3390/toxins14080574
APA StyleNji, Q. N., Babalola, O. O., & Mwanza, M. (2022). Aflatoxins in Maize: Can Their Occurrence Be Effectively Managed in Africa in the Face of Climate Change and Food Insecurity? Toxins, 14(8), 574. https://doi.org/10.3390/toxins14080574