Bifunctional M13 Phage as Enzyme Container for the Reinforced Colorimetric–Photothermal Dual-Modal Sensing of Ochratoxin A
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principle of The Proposed dc-ppELISA Method
2.2. Optimization of a Signal Transduction System Based on AuNP Aggregation
2.3. Development of The dc-ppELISA Method
2.4. Analytical Performance of The Proposed dc-ppELISA Method
3. Conclusions
4. Materials and Methods
4.1. Materials and Instruments
4.2. Synthesis of Citrate-capped AuNPs
4.3. Propagation of M13OTA Bacteriophage
4.4. Preparation of Bio-M13OTA and Bio-GOx
4.5. dc-ppELISA Procedure for OTA
4.6. Sample Preparation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, J.; Chen, B.; Rao, J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr. Rev. Food Sci. Food Saf. 2020, 19, 928–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Du, H.; Kebede, H.; Liu, Y.; Xing, F. Contamination status of major mycotoxins in agricultural product and food stuff in Europe. Food Control 2021, 127, 108120. [Google Scholar] [CrossRef]
- Van der Merwe, K.; Steyn, P.; Fourie, L.; Scott, D.B.; Theron, J. Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 1965, 205, 1112–1113. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Salleh, B.; Saad, B.; Abbas, H.; Abel, C.; Shier, W. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Duarte, S.; Lino, C.; Pena, A. Mycotoxin food and feed regulation and the specific case of ochratoxin A: A review of the worldwide status. Food Addit. Contam. 2010, 27, 1440–1450. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Ma, Z.; Zhang, Q.; Li, H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 5444–5461. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) No 105/2010 of 5 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off. J. Eur. Union 2010, 53, 7–8. [Google Scholar]
- Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip 2012, 12, 4240–4243. [Google Scholar] [CrossRef]
- Pei, K.; Xiong, Y.; Xu, B.; Wu, K.; Li, X.; Jiang, H.; Xiong, Y. Colorimetric ELISA for ochratoxin A detection based on the urease-induced metallization of gold nanoflowers. Sens. Actuators B Chem. 2018, 262, 102–109. [Google Scholar] [CrossRef]
- Xiong, Y.; Leng, Y.; Li, X.; Huang, X.; Xiong, Y. Emerging strategies to enhance the sensitivity of competitive ELISA for detection of chemical contaminants in food samples. TrAC Trends Anal. Chem. 2020, 126, 115861. [Google Scholar] [CrossRef]
- Huang, X.; Chen, R.; Xu, H.; Lai, W.; Xiong, Y. Nanospherical brush as catalase container for enhancing the detection sensitivity of competitive plasmonic ELISA. Anal. Chem. 2016, 88, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tian, F.; Zhou, J.; Zhao, Q.; Fu, R.; Jiao, B. Colorimetric aptasensor for ochratoxin A detection based on enzyme-induced gold nanoparticle aggregation. J. Hazard. Mater. 2020, 388, 121758. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; He, Q.-H.; He, Z.-Y.; Xiong, Z.-P. Application of mimotope peptides of fumonisin b1 in Peptide ELISA. J. Agric. Food Chem. 2013, 61, 4765–4770. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Feng, L.; Leng, Y.; Huang, M.; Fang, H.; Tong, W.; Chen, X.; Xiong, Y. Dramatically Enhancing the Sensitivity of Immunoassay for Ochratoxin A Detection by Cascade-Amplifying Enzyme Loading. Toxins 2021, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Lan, L.; Yao, Y.; Zhao, F.; Ping, J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends Anal. Chem. 2018, 102, 236–249. [Google Scholar] [CrossRef]
- Rai, M.; Jogee, P.S.; Ingle, A.P. Emerging nanotechnology for detection of mycotoxins in food and feed. Int. J. Food Sci. Nutr. 2015, 66, 363–370. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35. [Google Scholar] [CrossRef]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent advances of plasmonic nanoparticles and their applications. Materials 2018, 11, 1833. [Google Scholar] [CrossRef] [Green Version]
- Fong, K.E.; Yung, L.-Y.L. Localized surface plasmon resonance: A unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 2013, 5, 12043–12071. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef]
- Meng, D.; Ma, W.; Wu, X.; Xu, C.; Kuang, H. DNA-Driven Two-Layer Core-Satellite Gold Nanostructures for Ultrasensitive MicroRNA Detection in Living Cells. Small 2020, 16, e2000003. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hou, J.; Huo, D.; Wang, X.; Li, J.; Xu, G.; Bian, M.; He, Q.; Hou, C.; Yang, M. Green emitting carbon dots for sensitive fluorometric determination of cartap based on its aggregation effect on gold nanoparticles. Microchim. Acta 2019, 186, 259. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Hu, K.; Kwee, S.; Tang, L.; Wang, Z.; Xia, J.; Li, X. Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer: A simple and universal biosensing platform. Anal. Chem. 2020, 92, 2739–2747. [Google Scholar] [CrossRef]
- Tao, Y.; Luo, F.; Guo, L.; Qiu, B.; Lin, Z. Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Anal. Chim. Acta 2020, 1110, 151–157. [Google Scholar] [CrossRef]
- Ding, L.; Shao, X.; Wang, M.; Zhang, H.; Lu, L. Dual-mode immunoassay for diethylstilbestrol based on peroxidase activity and photothermal effect of black phosphorus-gold nanoparticle nanohybrids. Anal. Chim. Acta 2021, 1187, 339171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pan, M.; Wang, W.; Jiang, Q.; Wang, F.; Pang, D.-W.; Liu, X. Plasmonic and photothermal immunoassay via enzyme-triggered crystal growth on gold nanostars. Anal. Chem. 2018, 91, 2086–2092. [Google Scholar] [CrossRef]
- Wei, Z.; Yu, Y.; Hu, S.; Yi, X.; Wang, J. Bifunctional Diblock DNA-Mediated Synthesis of Nanoflower-Shaped Photothermal Nanozymes for a Highly Sensitive Colorimetric Assay of Cancer Cells. ACS Appl. Mater. Interfaces 2021, 13, 16801–16811. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Dong, W.; Zheng, C.; Shen, Y.; Zhou, R.; Wei, Z.; Chen, Z.; Lou, Y. Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout. Colloids Surf. B Biointerfaces 2022, 212, 112349. [Google Scholar] [CrossRef]
- Zhang, T.; Lei, L.; Tian, M.; Ren, J.; Lu, Z.; Liu, Y.; Liu, Y. Multifunctional Fe3O4@Au supraparticle as a promising thermal contrast for an ultrasensitive lateral flow immunoassay. Talanta 2021, 222, 121478. [Google Scholar] [CrossRef]
- Liang, Y.; Huang, X.; Chen, X.; Zhang, W.; Ping, G.; Xiong, Y. Plasmonic ELISA for naked-eye detection of ochratoxin A based on the tyramine-H2O2 amplification system. Sens. Actuators B Chem. 2018, 259, 162–169. [Google Scholar] [CrossRef]
- Molek, P.; Bratkovič, T. Bacteriophages as scaffolds for bipartite display: Designing Swiss army knives on a nanoscale. Bioconjug. Chem. 2015, 26, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Chen, P.H.C.; Hampton, J.T.; Tharp, J.M.; Reed, C.A.; Das, S.K.; Wang, D.S.; Hayatshahi, H.S.; Shen, Y.; Liu, J. A genetically encoded, phage-displayed cyclic-peptide library. Angew. Chem. 2019, 131, 16051–16056. [Google Scholar] [CrossRef]
- Blaik, R.A.; Lan, E.; Huang, Y.; Dunn, B. Gold-coated M13 bacteriophage as a template for glucose oxidase biofuel cells with direct electron transfer. ACS Nano 2016, 10, 324–332. [Google Scholar] [CrossRef]
- Tong, W.; Fang, H.; Xiong, H.; Wei, D.; Leng, Y.; Hu, X.; Huang, X.; Xiong, Y. Eco-Friendly Fluorescent ELISA Based on Bifunctional Phage for Ultrasensitive Detection of Ochratoxin A in Corn. Foods 2021, 10, 2429. [Google Scholar] [CrossRef]
Signal | OTA Added (μg kg−1) | Mean ± SD (μg kg−1) | Recovery (%) | CV (%) | Mean ± SD (μg kg−1) | Recovery (%) | CV (%) |
---|---|---|---|---|---|---|---|
Intra-Assay (n = 3) | Inter-Assay (n = 3) | ||||||
plasmonic | 2 | 2.3 ± 0.3 | 116.3 | 11.3 | 2.4 ± 0.4 | 119.4 | 15.7 |
40 | 35.9 ± 5.5 | 89.7 | 15.3 | 38.2 ± 4.8 | 95.4 | 12.5 | |
100 | 98.4 ± 13.2 | 98.5 | 13.5 | 103.2 ± 7.0 | 103.2 | 6.8 | |
photothermal | 2 | 2.3 ± 0.3 | 113.6 | 11.8 | 1.8 ± 0.2 | 91.6 | 8.2 |
40 | 38.2 ± 3.0 | 95.4 | 8.0 | 39.5 ± 2.4 | 98.7 | 6.0 | |
100 | 108.0 ± 5.8 | 108.0 | 5.3 | 104.7 ± 14.2 | 104.7 | 13.6 |
Incurred Samples | Plasmonic Signal (n = 3) | Photothermal Signal (n = 3) | HPLC (μg kg−1) | ||
---|---|---|---|---|---|
Mean ± SD (μg kg−1) | CV (%) | Mean ± SD (μg kg−1) | CV (%) | ||
1 | 43.6 ± 2.4 | 5.4 | 40.9 ± 2.2 | 5.3 | 50.0 |
2 | 98.5 ± 13.2 | 13.5 | 108.0 ± 5.8 | 5.3 | 103.5 |
3 | 35.9 ± 5.5 | 15.3 | 38.2 ± 3.1 | 8.0 | 36.4 |
4 | 165.4 ± 18.2 | 11.0 | 157.7 ± 21.4 | 13.6 | 160.5 |
5 | 66.8 ± 7.0 | 10.5 | 61.3 ± 5.0 | 8.2 | 60.7 |
6 | 4.2 ± 0.2 | 4.8 | 4.7 ± 0.5 | 10.8 | 5.2 |
7 | 26.4 ± 1.0 | 3.8 | 30.8 ± 1.9 | 6.3 | 24.1 |
8 | 8.8 ± 1.0 | 11.7 | 11.2 ± 1.2 | 10.8 | 18.9 |
9 | 23.3 ± 2.6 | 11.3 | 22.7 ± 2.7 | 11.8 | 26.3 |
10 | 85.2 ± 10.4 | 12.2 | 77.3 ± 8.8 | 11.3 | 87.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, W.; Xiong, H.; Fang, H.; Wu, Y.; Li, H.; Huang, X.; Leng, Y.; Xiong, Y. Bifunctional M13 Phage as Enzyme Container for the Reinforced Colorimetric–Photothermal Dual-Modal Sensing of Ochratoxin A. Toxins 2023, 15, 5. https://doi.org/10.3390/toxins15010005
Tong W, Xiong H, Fang H, Wu Y, Li H, Huang X, Leng Y, Xiong Y. Bifunctional M13 Phage as Enzyme Container for the Reinforced Colorimetric–Photothermal Dual-Modal Sensing of Ochratoxin A. Toxins. 2023; 15(1):5. https://doi.org/10.3390/toxins15010005
Chicago/Turabian StyleTong, Weipeng, Hanpeng Xiong, Hao Fang, Yuhao Wu, Haichuan Li, Xiaolin Huang, Yuankui Leng, and Yonghua Xiong. 2023. "Bifunctional M13 Phage as Enzyme Container for the Reinforced Colorimetric–Photothermal Dual-Modal Sensing of Ochratoxin A" Toxins 15, no. 1: 5. https://doi.org/10.3390/toxins15010005
APA StyleTong, W., Xiong, H., Fang, H., Wu, Y., Li, H., Huang, X., Leng, Y., & Xiong, Y. (2023). Bifunctional M13 Phage as Enzyme Container for the Reinforced Colorimetric–Photothermal Dual-Modal Sensing of Ochratoxin A. Toxins, 15(1), 5. https://doi.org/10.3390/toxins15010005