History and Toxinology of Palytoxins
Abstract
:1. Introduction
2. History
3. Structural Analysis
3.1. Biosynthesis
3.2. Bioaccumulation
4. Mechanism of Action
5. In Vitro Studies
6. Ex Vivo Studies
7. In Vivo Studies
7.1. Acute Toxicity of Palytoxin
7.2. Sublethal Effects of Palytoxin
8. Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patocka, J.; Gupta, R.C.; Wu, Q.-H.; Kuca, K. Toxic potential of palytoxin. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2015, 35, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Usami, M.; Satake, M.; Ishida, S.; Inoue, A.; Kan, Y.; Yasumoto, T. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J. Am. Chem. Soc. 1995, 117, 5389–5390. [Google Scholar] [CrossRef]
- Deeds, J.R.; Handy, S.M.; White, K.D.; Reimer, J.D. Palytoxin found in Palythoa sp. zoanthids (Anthozoa, Hexacorallia) sold in the home aquarium trade. PLoS ONE 2011, 6, e18235. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, S.; Ten-Hage, L.; Turquet, J.; Quod, J.; Bernard, C.; Hennion, M. First Evidence of Palytoxin Analogues from an Ostreopsis Mascarenensis (Dinophyceae) Benthic Bloom in Southwestern Indian Ocean. J. Phycol. 2004, 40, 1042–1051. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Magno, G.S.; Tartaglione, L.; Grillo, C.; Melchiorre, N. The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal. Chem. 2006, 78, 6153–6159. [Google Scholar] [CrossRef]
- Ukena, T.; Satake, M.; Usami, M.; Oshima, Y.; Naoki, H.; Fujita, T.; Kan, Y.; Yasumoto, T. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis. Biosci. Biotechnol. Biochem. 2001, 65, 2585–2588. [Google Scholar] [CrossRef]
- Kerbrat, A.S.; Amzil, Z.; Pawlowiez, R.; Golubic, S.; Sibat, M.; Darius, H.T.; Chinain, M.; Laurent, D. First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar. Drugs 2011, 9, 543–560. [Google Scholar] [CrossRef]
- Pelin, M.; Sosa, S.; Tubaro, A. Palytoxins: Toxicological Profile. In Marine and Freshwater Toxins: Marine and Freshwater Toxins; Gopalakrishnakone, P., Haddad, V., Jr., Kem, W.R., Tubaro, A., Kim, E., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–14. [Google Scholar]
- Ramos, V.; Vasconcelos, V. Palytoxin and Analogs: Biological and Ecological Effects. Mar. Drugs 2010, 8, 2021–2037. [Google Scholar] [CrossRef]
- Aligizaki, K.; Katikou, P.; Milandri, A.; Diogène, J. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art. Toxicon 2011, 57, 390–399. [Google Scholar] [CrossRef]
- Yasumoto, T.; Yasumura, D.; Ohizumi, Y.; Takahashi, M.; Alcala, A.C.; Alcala, L.C. Palytoxin in Two Species of Xanthid Crab from the Philippines. Agric. Biol. Chem. 1986, 50, 163–167. [Google Scholar]
- Fukui, M.; Murata, M.; Inoue, A.; Gawel, M.; Yasumoto, T. Occurrence of palytoxin in the trigger fish Melichtys vidua. Toxicon 1987, 25, 1121–1124. [Google Scholar] [CrossRef]
- Gleibs, S.; Mebs, D. Distribution and sequestration of palytoxin in coral reef animals. Toxicon 1999, 37, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Gémin, M.-P.; Réveillon, D.; Hervé, F.; Pavaux, A.-S.; Tharaud, M.; Séchet, V.; Bertrand, S.; Lemée, R.; Amzil, Z. Toxin content of Ostreopsis cf. ovata depends on bloom phases, depth and macroalgal substrate in the NW Mediterranean Sea. Harmful Algae 2020, 92, 101727. [Google Scholar] [CrossRef] [PubMed]
- Accoroni, S.; Romagnoli, T.; Colombo, F.; Pennesi, C.; Di Camillo, C.G.; Marini, M.; Battocchi, C.; Ciminiello, P.; Dell’aVersano, C.; Iacovo, E.D.; et al. Ostreopsis cf. ovata bloom in the northern Adriatic Sea during summer 2009: Ecology, molecular characterization and toxin profile. Mar. Pollut. Bull. 2011, 62, 2512–2519. [Google Scholar] [CrossRef] [PubMed]
- Ajani, P.; Harwood, D.T.; Murray, S.A. Recent Trends in Marine Phycotoxins from Australian Coastal Waters. Mar. Drugs 2017, 15, 33. [Google Scholar] [CrossRef]
- Gallitelli, M.; Ungaro, N.; Addante, L.M.; Procacci, V.; Silver, N.G.; Sabba, C. Respiratory Illness as a Reaction to Tropical Algal Blooms Occurring in a Temperate Climate. JAMA 2005, 293, 2595–2600. [Google Scholar]
- Pires, E.; Lana, P.D.C.; Mafra, L.L., Jr. Phycotoxins and marine annelids—A global review. Harmful Algae 2023, 122, 102373. [Google Scholar] [CrossRef]
- Visciano, P.; Schirone, M.; Berti, M.; Milandri, A.; Tofalo, R.; Suzzi, G. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods. Front. Microbiol. 2016, 7, 1051. [Google Scholar] [CrossRef]
- Murphy, L.T.; Charlton, N.P. Prevalence and characteristics of inhalational and dermal palytoxin exposures reported to the National Poison Data System in the U.S. Environ. Toxicol. Pharmacol. 2017, 55, 107–109. [Google Scholar] [CrossRef]
- Moore, R.E.; Scheuer, P.J. Palytoxin: A New Marine Toxin from a Coelenterate. Science 1971, 172, 495–498. [Google Scholar] [CrossRef]
- Tubaro, A.; Durando, P.; Del Favero, G.; Ansaldi, F.; Icardi, G.; Deeds, J.; Sosa, S. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 2011, 57, 478–495. [Google Scholar] [CrossRef] [PubMed]
- Durando, P.; Ansaldi, F.; Oreste, P.; Moscatelli, P.; Marensi, L.; Grillo, C.; Gasparini, R.; Icardi, G.; Collaborative Group for the Ligurian Syndromic Algal Surveillance. Ostreopsis ovata and human health: Epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005–2006, in north-west Italy. Wkly. Releases 2007, 12, 3212. [Google Scholar]
- Walsh, G.E.; Bowers, R.L. A review of Hawaiian zoanthids with descriptions of three new species. Zool. J. Linn. Soc. 2008, 50, 161–180. [Google Scholar] [CrossRef]
- Attaway, D.H. Isolation and Partial Characterization of Caribbean Palytoxin. Ph.D. Thesis, The University of Oklahoma, Norman, OK, USA, 1968. SHAREOK. [Google Scholar]
- Hashimoto, Y.; Fusetani, N.; Kimura, S. Aluterin: A Toxin of Filefish, Alutera scripta, Probably Originating from a Zoantharian, Palythoa tuberculosa. Nippon. Suisan Gakkaishi 1969, 35, 1086–1093. [Google Scholar] [CrossRef]
- Deguchi, T.; Aoshima, S.; Sakai, Y. Pharmacological actions of palythoatoxin isolated from the zoanthid, Palythoa tuberculosa. Jpn. J. Pharmacol. 1974, 24, s:116. [Google Scholar] [CrossRef]
- Moore, R.E.; Bartolini, G. Structure of palytoxin. J. Am. Chem. Soc. 1981, 103, 2491–2494. [Google Scholar] [CrossRef]
- Uemura, D.; Ueda, K.; Hirata, Y.; Naoki, H.; Iwashita, T. Further studies on palytoxin. II. structure of palytoxin. Tetrahedron Lett. 1981, 22, 2781–2784. [Google Scholar] [CrossRef]
- Wu, C.H. Palytoxin: Membrane mechanisms of action. Toxicon 2009, 54, 1183–1189. [Google Scholar] [CrossRef]
- Moore, R.E.; Bartolini, G.; Barchi, J.; Bothner-By, A.A.; Dadok, J.; Ford, J. Absolute stereochemistry of palytoxin. J. Am. Chem. Soc. 1982, 104, 3776–3779. [Google Scholar] [CrossRef]
- Cha, J.K.; Christ, W.J.; Finan, J.M.; Fujioka, H.; Kishi, Y.; Klein, L.L.; Ko, S.S.; Leder, J.; McWhorter, W.W.; Pfaff, K.-P.; et al. Stereochemistry of palytoxin. Part 4. Complete structure. J. Am. Chem. Soc. 1982, 104, 7369–7371. [Google Scholar] [CrossRef]
- Shimizu, Y. Complete structure of palytoxin elucidated. Nature 1983, 302, 212. [Google Scholar] [CrossRef] [PubMed]
- Mann, J. Scaling molecular Everests. Nature 1989, 342, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Crawford, M.H. Briefings: Harvard Synthesizes Palytoxin Molecule. Science 1989, 246, 34. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.M.; Kishi, Y. Synthesis of Palytoxin from Palytoxin Carboxylic Acid. J. Am. Chem. Soc. 1994, 116, 11205–11206. [Google Scholar] [CrossRef]
- Inuzuka, T.; Fujisawa, T.; Arimoto, H.; Uemura, D. Molecular shape of palytoxin in aqueous solution. Org. Biomol. Chem. 2007, 5, 897–899. [Google Scholar] [CrossRef]
- Inuzuka, T.; Uemura, D.; Arimoto, H. The conformational features of palytoxin in aqueous solution. Tetrahedron 2008, 64, 7718–7723. [Google Scholar] [CrossRef]
- Uemura, D.; Ueda, K.; Hirata, Y.; Katayama, C.; Tanaka, J. Structures of two oxidation products obtained from palytoxin. Tetrahedron Lett. 1980, 21, 4861–4864. [Google Scholar] [CrossRef]
- Moore, R.E.; Dietrich, R.F.; Hatton, B.; Higa, T.; Scheuer, P.J. Nature of the .gamma.263 chromophore in the palytoxins. J. Org. Chem. 1975, 40, 540–542. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Forino, M.; Tartaglione, L.; Pelin, M.; Sosa, S.; Tubaro, A.; Chaloin, O.; Poli, M.; et al. Stereoisomers of 42-hydroxy palytoxin from Hawaiian Palythoa toxica and P. tuberculosa: Stereostructure elucidation, detection, and biological activities. J. Nat. Prod. 2014, 77, 351–357. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’aVersano, C.; Iacovo, E.D.; Fattorusso, E.; Forino, M.; Grauso, L.; Tartaglione, L.; Florio, C.; Lorenzon, P.; De Bortoli, M.; et al. Stereostructure and Biological Activity of 42-Hydroxy-palytoxin: A New Palytoxin Analogue from Hawaiian Palythoa Subspecies. Chem. Res. Toxicol. 2009, 22, 1851–1859. [Google Scholar] [CrossRef]
- Uemura, D.; Hirata, Y.; Iwashita, T.; Naoki, H. Studies on palytoxins. Tetrahedron 1985, 41, 1007–1017. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Grillo, C.; Melchiorre, N. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J. Am. Soc. Mass. Spectrom. 2008, 19, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Ciminiello, P.; Dell’aVersano, C.; Iacovo, E.D.; Fattorusso, E.; Forino, M.; Tartaglione, L.; Yasumoto, T.; Battocchi, C.; Giacobbe, M.; Amorim, A.; et al. Investigation of toxin profile of Mediterranean and Atlantic strains of Ostreopsis cf. siamensis (Dinophyceae) by liquid chromatography–high resolution mass spectrometry. Harmful Algae 2013, 23, 19–27. [Google Scholar] [CrossRef]
- Kimura, S.; Hashimoto, Y.; Yamazato, K. Toxicity of the zoanthid Palythoa tuberculosa. Toxicon 1972, 10, 611–617. [Google Scholar] [CrossRef]
- Kimura, S.; Hashimoto, Y. Purification of the toxin in a zoanthid Palythoa tuberculosa. Publ. Seto Mar. Biol. Lab. 1973, 20, 713–718. [Google Scholar] [CrossRef]
- Sawelew, L.; Nuccio, C.; Foord, C.; Lorquin, J.; Perez, Y. Symbiodiniaceae diversity and characterization of palytoxin in various zoantharians (Anthozoa, Hexacorallia). Org. Divers. Evol. 2022, 22, 555–576. [Google Scholar] [CrossRef]
- Poli, M.; Ruiz-Olvera, P.; Nalca, A.; Ruiz, S.; Livingston, V.; Frick, O.; Dyer, D.; Schellhase, C.; Raymond, J.; Kulis, D.; et al. Toxicity and pathophysiology of palytoxin congeners after intraperitoneal and aerosol administration in rats. Toxicon 2018, 150, 235–250. [Google Scholar] [CrossRef]
- Rossi, R.; Castellano, V.; Scalco, E.; Serpe, L.; Zingone, A.; Soprano, V. New palytoxin-like molecules in Mediterranean Ostreopsis cf. ovata (dinoflagellates) and in Palythoa tuberculosa detected by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Toxicon 2010, 56, 1381–1387. [Google Scholar] [CrossRef]
- Corporation, F.W.P.C. Palytoxin Safety Data Sheet. 2023. FUJIFILM Wako Pure Chemical Corporation. Palytoxin Safety Data Sheet. Available online: https://labchem-wako.fujifilm.com/sds/W01W0116-2614JGHEEN.pdf (accessed on 25 September 2024).
- Patocka, J.; Nepovimova, E.; Wu, Q.; Kuca, K. Palytoxin congeners. Arch. Toxicol. 2018, 92, 143–156. [Google Scholar] [CrossRef]
- Tartaglione, L.; Pelin, M.; Morpurgo, M.; Dell’AVersano, C.; Montenegro, J.; Sacco, G.; Sosa, S.; Reimer, J.D.; Ciminiello, P.; Tubaro, A. An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon. Toxicon 2016, 121, 41–50. [Google Scholar] [CrossRef]
- Tubaro, A.; Sosa, S.; Hungerford, J. Chapter 69—Toxicology and diversity of marine toxins. In Veterinary Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2012; pp. 896–934. [Google Scholar]
- Arteaga-Sogamoso, E.; Riobó, P.; Rodríguez, F.; Mancera-Pineda, J.E.; Franco-Angulo, J. First record of the dinoflagellate Prorocentrum borbonicum in the continental coast of Colombian Caribbean: A new 42 hydroxi-palytoxin producer. Front. Mar. Sci. 2022, 9, 973250. [Google Scholar] [CrossRef]
- Ukena, T.; Satake, M.; Usami, M.; Oshima, Y.; Fujita, T.; Naoki, H.; Yasumoto, T. Structural confirmation of ostreocin-D by application of negative-ion fast-atom bombardment collision-induced dissociation tandem mass spectrometric methods. Rapid Commun. Mass. Spectrom. 2002, 16, 2387–2393. [Google Scholar] [CrossRef] [PubMed]
- Ciminiello, P.; Dell’Aversano, C.; Dello Iacovo, E.; Fattorusso, E.; Forino, M.; Grauso, L.; Tartaglione, L. Stereochemical studies on ovatoxin-a. Chemistry 2012, 18, 16836–16843. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, S.; Ten-Hage, L.; Turquet, J.; Quod, J.P.; Hennion, M.C. Characterisation of new analogues of palytoxin isolated from an Ostreopsis mascarenensis bloom in the south-western Indian Ocean. Afr. J. Mar. Sci. 2006, 28, 389–391. [Google Scholar] [CrossRef]
- Medina-Pérez, N.I.; Santos, F.J.; Berdalet, E.; Moyano, E. Multiply charged ion profiles in the UHPLC-HRMS analysis of palytoxin analogues from Ostreopsis cf. ovata blooms. Anal. Methods 2023, 15, 1355–1364. [Google Scholar] [CrossRef]
- Onuma, Y.; Satake, M.; Ukena, T.; Roux, J.; Chanteau, S.; Rasolofonirina, N.; Ratsimaloto, M.; Naoki, H.; Yasumoto, T. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 1999, 37, 55–65. [Google Scholar] [CrossRef]
- Gémin, M.-P.; Lanceleur, R.; Meslier, L.; Hervé, F.; Réveillon, D.; Amzil, Z.; Ternon, E.; Thomas, O.P.; Fessard, V. Toxicity of palytoxin, purified ovatoxin-a, ovatoxin-d and extracts of Ostreopsis cf. ovata on the Caco-2 intestinal barrier model. Environ. Toxicol. Pharmacol. 2022, 94, 103909. [Google Scholar] [CrossRef]
- Pelin, M.; Florio, C.; Ponti, C.; Lucafò, M.; Gibellini, D.; Tubaro, A.; Sosa, S. Pro-inflammatory effects of palytoxin: An in vitro study on human keratinocytes and inflammatory cells. Toxicol. Res. 2016, 5, 1172–1181. [Google Scholar] [CrossRef]
- Del Favero, G.; Beltramo, D.; Sciancalepore, M.; Lorenzon, P.; Coslovich, T.; Poli, M.; Testai, E.; Sosa, S.; Tubaro, A. Toxicity of palytoxin after repeated oral exposure in mice and in vitro effects on cardiomyocytes. Toxicon 2013, 75, 3–15. [Google Scholar] [CrossRef]
- Boente-Juncal, A.; Vale, C.; Camiña, M.; Cifuentes, J.M.; Vieytes, M.R.; Botana, L.M. Reevaluation of the acute toxicity of palytoxin in mice: Determination of lethal dose 50 (LD50) and No-observed-adverse-effect level (NOAEL). Toxicon 2020, 177, 16–24. [Google Scholar] [CrossRef]
- Tartaglione, L.; Dell’aVersano, C.; Mazzeo, A.; Forino, M.; Wieringa, A.; Ciminiello, P. Determination of Palytoxins in Soft Coral and Seawater from a Home Aquarium. Comparison between Palythoa- and Ostreopsis-Related Inhalatory Poisonings. Environ. Sci. Technol. 2016, 50, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Terajima, T.; Uchida, H.; Abe, N.; Yasumoto, T. Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Biosci. Biotechnol. Biochem. 2019, 83, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Terajima, T.; Uchida, H.; Abe, N.; Yasumoto, T. Simple structural elucidation of ostreocin-B, a new palytoxin congener isolated from the marine dinoflagellate Ostreopsis siamensis, using complementary positive and negative ion liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 2018, 32, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.; Vilariño, N.; Louzao, M.C.; Molina, L.; López, Y.; Poli, M.; Botana, L.M. First Identification of Palytoxin-Like Molecules in the Atlantic Coral Species Palythoa canariensis. Anal. Chem. 2017, 89, 7438–7446. [Google Scholar] [CrossRef]
- Carballeira, N.M.; Emiliano, A.; Sostre, A.; Restituyo, J.A.; González, I.M.; Colon, G.M.; Tosteson, C.G.; Tosteson, T.R. Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species. Lipids 1998, 33, 627–632. [Google Scholar] [CrossRef]
- Seemann, P.; Gernert, C.; Schmitt, S.; Mebs, D.; Hentschel, U. Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie Van Leeuwenhoek 2009, 96, 405–411. [Google Scholar] [CrossRef]
- Frolova, G.; Kuznetsova, T.; Mikhailov, V.; Elyakov, G. An enzyme linked immunosorbent assay for detecting palytoxin-producing bacteria. Russ. J. Bioorganic Chem. 2000, 26, 285–289. [Google Scholar] [CrossRef]
- Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 2004, 21, 519–538. [Google Scholar] [CrossRef]
- Gleibs, S.; Mebs, D.; Werding, B. Studies on the origin and distribution of palytoxin in a Caribbean coral reef. Toxicon 1995, 33, 1531–1537. [Google Scholar] [CrossRef]
- Mebs, D. Occurrence and sequestration of toxins in food chains. Toxicon 1998, 36, 1519–1522. [Google Scholar] [CrossRef]
- Mahnir, V.M.; Kozlovskaya, E.P.; Kalinovsky, A.I. Sea anemone Radianthus macrodactylus—A new source of palytoxin. Toxicon 1992, 30, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Kodama, A.M.; Hokama, Y.; Yasumoto, T.; Fukui, M.; Manea, S.J.; Sutherland, N. Clinical and laboratory findings implicating palytoxin as cause of ciguatera poisoning due to Decapterus macrosoma (mackerel). Toxicon 1989, 27, 1051–1053. [Google Scholar] [CrossRef] [PubMed]
- Taniyama, S.; Mahmud, Y.; Terada, M.; Takatani, T.; Arakawa, O.; Noguchi, T. Occurrence of a food poisoning incident by palytoxin from a serranid Epinephelus sp. in Japan. J. Nat. Toxins 2003, 11, 277–282. [Google Scholar]
- Okano, H.; Masuoka, H.; Kamei, S.; Seko, T.; Koyabu, S.; Tsuneoka, K.; Tamai, T.; Ueda, K.; Nakazawa, S.; Sugawa, M.; et al. Rhabdomyolysis and Myocardial Damage Induced by Palytoxin, a Toxin of Blue Humphead Parrotfish. Intern. Med. 1998, 37, 330–333. [Google Scholar] [CrossRef]
- Alcala, A.C.; Alcala, L.C.; Garth, J.S.; Yasumura, D.; Yasumoto, T. Human fatality due to ingestion of the crab Demania reynaudii that contained a palytoxin-like toxin. Toxicon 1988, 26, 105–107. [Google Scholar] [CrossRef]
- Taniyama, S.; Arakawa, O.; Terada, M.; Nishio, S.; Takatani, T.; Mahmud, Y.; Noguchi, T. Ostreopsis sp., a possible origin of palytoxin (PTX) in parrotfish Scarus ovifrons. Toxicon 2003, 42, 29–33. [Google Scholar] [CrossRef]
- Deeds, J.R.; Schwartz, M.D. Human risk associated with palytoxin exposure. Toxicon 2010, 56, 150–162. [Google Scholar] [CrossRef]
- Deeds, J.R. Toxicity of Palytoxins: From Cellular to Organism Level Responses. In Toxins and Biologically Active Compounds from Microalgae; Rossini, G.P., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014; Volume 2, pp. 351–378. [Google Scholar]
- Fernández-Sánchez, M.-T.; Cabrera-García, D.; Pérez-Gómez, A.; Novelli, A. Chapter Six—Potential neurotoxins: Palytoxins. In Advances in Neurotoxicology; Novelli, A., Fernández-Sánchez, M.-T., Aschner, M., Costa, L.G., Eds.; Academic Press: New York, NY, USA, 2021; Volume 6, pp. 223–273. [Google Scholar]
- Cardoso, C.W.; e Silva, M.M.O.; Bandeira, A.C.; Silva, R.B.; Prates, A.P.P.B.; Soares, E.S.; Silva, J.J.M.; de Souza, L.J.R.; da Silva Souza, M.M.; Muhana, M.A.; et al. Haff Disease in Salvador, Brazil, 2016–2021: Attack rate and detection of toxin in fish samples collected during outbreaks and disease surveillance. Lancet Reg. Health Am. 2022, 5, 100092. [Google Scholar] [CrossRef]
- Dutra Pierezan, M.; Rafael Kleeman, C.; Luiz Manique Barreto, P.; Barcellos Hoff, R.; Verruck, S. Investigating the etiology of Haff disease: Optimization and validation of a sensitive LC-MS/MS method for palytoxins analysis in directly associated freshwater and marine food samples from Brazil. Food Res. Int. 2024, 190, 114585. [Google Scholar] [CrossRef]
- Randall, J.E. Review of Clupeotoxism, an Often Fatal Illness from the Consumption of Clupeoid Fishes. Pac. Sci. 2005, 59, 73–77. [Google Scholar] [CrossRef]
- Yasumoto, T.; Murata, M. Polyether Toxins Involved in Seafood Poisoning. In Marine Toxins; American Chemical Society: Washington, DC, USA, 1990; Volume 418, pp. 120–132. [Google Scholar]
- Yasumoto, T.; Murata, M. Marine toxins. Chem. Rev. 1993, 93, 1897–1909. [Google Scholar] [CrossRef]
- Friedman, M.A.; Fernandez, M.; Backer, L.C.; Dickey, R.W.; Bernstein, J.; Schrank, K.; Kibler, S.; Stephan, W.; Gribble, M.O.; Bienfang, P.; et al. An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management. Mar. Drugs 2017, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Amzil, Z.; Sibat, M.; Chomerat, N.; Grossel, H.; Marco-Miralles, F.; Lemee, R.; Nezan, E.; Sechet, V. Ovatoxin-a and Palytoxin Accumulation in Seafood in Relation to Ostreopsis cf. ovata Blooms on the French Mediterranean Coast. Mar. Drugs 2012, 10, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Ciminiello, P.; Dell’aVersano, C.; Iacovo, E.D.; Fattorusso, E.; Forino, M.; Grauso, L.; Tartaglione, L.; Guerrini, F.; Pezzolesi, L.; Pistocchi, R.; et al. Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. J. Am. Chem. Soc. 2012, 134, 1869–1875. [Google Scholar] [CrossRef]
- Dao, H.V.; Le, H.H.K.; Le, T.T.T.; Pham, K.X.; Bui, M.Q.; Chan, L.L. Ciguatoxin in moray eels raising the risk for seafood safety in Viet Nam. Fish. Sci. 2022, 88, 821–830. [Google Scholar] [CrossRef]
- Wu, C.H. Pharmacological Actions of Palytoxin. In Toxins and Biologically Active Compounds from Microalgae; Rossini, G.P., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014; Volume 2, pp. 35–60. [Google Scholar]
- Habermann, E.; Ahnert-Hilger, G.; Chhatwal, G.S.; Beress, L. Delayed haemolytic action of palytoxin. General characteristics. Biochim. Biophys. Acta 1981, 649, 481–486. [Google Scholar] [CrossRef]
- Habermann, E.; Chhatwal, G.S. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes. Naunyn Schmiedebergs Arch. Pharmacol. 1982, 319, 101–107. [Google Scholar] [CrossRef]
- Chhatwal, G.S.; Hessler, H.J.; Habermann, E. The action of palytoxin on erythrocytes and resealed ghosts. Formation of small, nonselective pores linked with Na+, K+-ATPase. Naunyn Schmiedebergs Arch. Pharmacol. 1983, 323, 261–268. [Google Scholar] [CrossRef]
- Habermann, E. Palytoxin acts through Na+,K+-ATPase. Toxicon 1989, 27, 1171–1187. [Google Scholar] [CrossRef]
- Kim, S.Y.; Marx, K.A.; Wu, C.H. Involvement of the Na,K-ATPase in the induction of ion channels by palytoxin. Naunyn Schmiedebergs Arch. Pharmacol. 1995, 351, 542–554. [Google Scholar] [CrossRef]
- Hirsh, J.K.; Wu, C.H. Palytoxin-induced single-channel currents from the sodium pump synthesized by in vitro expression. Toxicon 1997, 35, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Y.; Yan, R.; Huang, B.; Ye, F.; Wu, L.; Chi, X.; Shi, Y.; Zhou, Q. Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states. Nat. Commun. 2022, 13, 3957. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.J. Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. Eur. Biophys. J. 2009, 39, 3–17. [Google Scholar] [CrossRef]
- Pirahanchi, Y.J.R.; Aeddula, N.R. Physiology, Sodium Potassium Pump; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Clausen, M.V.; Hilbers, F.; Poulsen, H. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front. Physiol. 2017, 8, 371. [Google Scholar] [CrossRef] [PubMed]
- Vilallonga, G.D.; de Almeida, A.G.; Ribeiro, K.T.; Campos, S.V.A.; Rodrigues, A.M. Hypothesized diprotomeric enzyme complex supported by stochastic modelling of palytoxin-induced Na/K pump channels. R Soc. Open Sci. 2018, 5, 172155. [Google Scholar] [CrossRef]
- Vilallonga, G.; Riesco, D.; de Almeida, A.G.; Rodrigues, A.M.; Campos, S.V.A. In Silico Laboratory Experiments Using Statistical Model Checking: A New Model of the Palytoxin-Induced Pump Channel as Case Study. IEEE/ACM Trans Comput. Biol. Bioinform. 2021, 18, 2816–2822. [Google Scholar] [CrossRef]
- Hilgemann, D.W. From a pump to a pore: How palytoxin opens the gates. Proc. Natl. Acad. Sci. USA 2003, 100, 386–388. [Google Scholar] [CrossRef]
- Rossini, G.P.; Bigiani, A. Palytoxin action on the Na+,K+-ATPase and the disruption of ion equilibria in biological systems. Toxicon 2011, 57, 429–439. [Google Scholar] [CrossRef]
- Rossini, G.P. Toxins and Biologically Active Compounds from Microalgae, Volume 2: Biological Effects and Risk Management; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Grell, E.; Lewitzki, E.; Uemura, D. Interaction between palytoxin and purified Na, K-ATPase. Prog. Clin. Biol. Res. 1988, 268b, 393–400. [Google Scholar]
- Gillman, C.; Patel, K.; Unge, J.; Gonen, T. The structure of the neurotoxin palytoxin determined by MicroED. bioRxiv 2023, 2023.2003.2031.535166. [Google Scholar]
- Artigas, P.; Gadsby, D.C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl. Acad. Sci. USA 2003, 100, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Almeida, A.-C.G.; Infantosi, A.F.C. Effect of palytoxin on the sodium–potassium pump: Model and simulation. Phys. Biol. 2008, 5, 036005. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Infantosi, A.F.C.; de Almeida, A.-C.G. Palytoxin and the sodium/potassium pump—Phosphorylation and potassium interaction. Phys. Biol. 2009, 6, 036010. [Google Scholar] [CrossRef] [PubMed]
- Boente-Juncal, A.; Raposo-García, S.; Vale, C.; Louzao, M.C.; Otero, P.; Botana, L.M. In Vivo Evaluation of the Chronic Oral Toxicity of the Marine Toxin Palytoxin. Toxins 2020, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Pelin, M.; Brovedani, V.; Sosa, S.; Tubaro, A. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Mar. Drugs 2016, 14, 33. [Google Scholar] [CrossRef]
- Sud, P.; Su, M.K.; Greller, H.A.; Majlesi, N.; Gupta, A. Case series: Inhaled coral vapor--toxicity in a tank. J. Med. Toxicol. 2013, 9, 282–286. [Google Scholar] [CrossRef]
- Lanceleur, R.; Marin-Pierre, G.; Anne-Louise, B.; Meslier, L.; Reveillon, D.; Amzil, Z.; Ternon, E.; Thomas, O.P.; Fessard, V. Toxic responses of metabolites produced by Ostreopsis cf. ovata on a panel of cell types. Toxicon 2024, 240, 107631. [Google Scholar]
- Cheng, D.; Deng, B.; Tong, Q.; Gao, S.; Xiao, B.; Zhu, M.; Ren, Z.; Wang, L.; Sun, M. Proteomic Studies of the Mechanism of Cytotoxicity, Induced by Palytoxin on HaCaT Cells. Toxins 2022, 14, 269. [Google Scholar] [CrossRef]
- Pelin, M.; Sosa, S.; Della Loggia, R.; Poli, M.; Tubaro, A.; Decorti, G.; Florio, C. The cytotoxic effect of palytoxin on Caco-2 cells hinders their use for in vitro absorption studies. Food Chem. Toxicol. 2012, 50, 206–211. [Google Scholar] [CrossRef]
- Valverde, I.; Lago, J.; Vieites, J.M.; Cabado, A.G. In vitro approaches to evaluate palytoxin-induced toxicity and cell death in intestinal cells. J. Appl. Toxicol. 2008, 28, 294–302. [Google Scholar] [CrossRef]
- Fernández, D.A.; Louzao, M.C.; Vilarino, N.; Espiña, B.; Fraga, M.; Vieytes, M.R.; Román, A.; Poli, M.; Botana, L.M. The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity. FEBS J. 2013, 280, 3906–3919. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Bovee, T.F.; Kamelia, L.; Rietjens, I.M.; Hendriksen, P.J. Exploration of new functional endpoints in neuro-2a cells for the detection of the marine biotoxins saxitoxin, palytoxin and tetrodotoxin. Toxicol. In Vitr. 2015, 30, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Ledreux, A.; Krys, S.; Bernard, C. Suitability of the Neuro-2a cell line for the detection of palytoxin and analogues (neurotoxic phycotoxins). Toxicon 2009, 53, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, C.; Lechner, J.F.; Gerwin, B.I.; Fujiki, H.; Harris, C.C. Effects of palytoxin or ouabain on growth and squamous differentiation of human bronchial epithelial cells in vitro. Carcinogenesis 1988, 9, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Kaul, P.N.; Farmer, M.R.; Ciereszko, L.S. Pharmacology of palytoxin: The most potent marine toxin known. Proc. West. Pharmacol. Soc. 1974, 17, 294–301. [Google Scholar]
- Kaul, P.N.; Daftari, P. Marine pharmacology: Bioactive molecules from the sea. Annu Rev. Pharmacol. Toxicol. 1986, 26, 117–142. [Google Scholar] [CrossRef]
- Ito, E.; Ohkusu, M.; Yasumoto, T. Intestinal injuries caused by experimental palytoxicosis in mice. Toxicon 1996, 34, 643–652. [Google Scholar] [CrossRef]
- Wiles, J.S.; Vick, J.A.; Christensen, M.K. Toxicological evaluation of palytoxin in several animal species. Toxicon 1974, 12, 427–433. [Google Scholar] [CrossRef]
- Levine, L.; Fujiki, H.; Gjika, H.B.; Van Vunakis, H. Production of antibodies to palytoxin: Neutralization of several biological properties of palytoxin. Toxicon 1987, 25, 1273–1282. [Google Scholar] [CrossRef]
- Munday, R. Toxicological requirements for risk assessment of shellfish contaminants: A review. Afr. J. Mar. Sci. 2006, 28, 447–449. [Google Scholar] [CrossRef]
- Riobó, P.; Paz, B.; Franco, J.M.; Vázquez, J.A.; Murado, M.A.; Cacho, E. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships. Food Chem. Toxicol. 2008, 46, 2639–2647. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, L.; Towers, N.; Briggs, L.; Munday, R.; Adamson, J. Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae). N. Z. J. Mar. Freshw. Res. 2002, 36, 631–636. [Google Scholar] [CrossRef]
- Ito, E.; Yasumoto, T. Toxicological studies on palytoxin and ostreocin-D administered to mice by three different routes. Toxicon 2009, 54, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Sosa, S.; Del Favero, G.; De Bortoli, M.; Vita, F.; Soranzo, M.; Beltramo, D.; Ardizzone, M.; Tubaro, A. Palytoxin toxicity after acute oral administration in mice. Toxicol. Lett. 2009, 191, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Reeve, J. Risk assessment of shellfish toxins. Toxins 2013, 5, 2109–2137. [Google Scholar] [CrossRef]
- Vick, J.A.; Wiles, J.S. The mechanism of action and treatment of palytoxin poisoning. Toxicol. Appl. Pharmacol. 1975, 34, 214–223. [Google Scholar] [CrossRef]
- Ito, K.; Urakawa, N.; Koike, H. Cardiovascular toxicity of palytoxin in anesthetized dogs. Arch. Int. Pharmacodyn. Ther. 1982, 258, 146–154. [Google Scholar]
- Carlin, M.; Pelin, M.; Ponti, C.; Sosa, S.; Tubaro, A. Functional and Structural Biological Methods for Palytoxin Detection. J. Mar. Sci. Eng. 2022, 10, 916. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, Y.; Wu, L.; Gao, X.; Huang, H.; Han, Y.; Zhu, T. Advances in Biosensors for the Rapid Detection of Marine Biotoxins: Current Status and Future Perspectives. Biosensors 2024, 14, 203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammond, H.L.; Roy, C.J. History and Toxinology of Palytoxins. Toxins 2024, 16, 417. https://doi.org/10.3390/toxins16100417
Hammond HL, Roy CJ. History and Toxinology of Palytoxins. Toxins. 2024; 16(10):417. https://doi.org/10.3390/toxins16100417
Chicago/Turabian StyleHammond, Harriet L., and Chad J. Roy. 2024. "History and Toxinology of Palytoxins" Toxins 16, no. 10: 417. https://doi.org/10.3390/toxins16100417
APA StyleHammond, H. L., & Roy, C. J. (2024). History and Toxinology of Palytoxins. Toxins, 16(10), 417. https://doi.org/10.3390/toxins16100417