Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice (Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Levels of MC-LR in Rice Leaves and Roots
2.2. Effects of MC-LR Exposure on O2•− Levels in Rice Leaves
2.3. Effects of MC-LR Exposure on GSH Levels in Rice Leaves
2.4. Effects of MC-LR Exposure on MDA Levels in Rice Leaves
2.5. Effects of MC-LR Exposure on the Activity of Sucrose Synthase (SS) in Rice Leaves
2.6. Effects of MC-LR on iNOS and TNOS in Rice Leaves
2.7. Correlation between Physiological and Biochemical Indexes in Rice
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Exposure Experiments
4.3. Microcystin Analysis
4.4. Determination of Superoxide Anion (O2•−) Content
4.5. Enzyme Extraction and Activity Assays
4.6. Glutathione and Malondialdehyde Determination
4.7. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, J.L.; Gu, X.Y.; Song, R.; Wang, X.R.; Yang, L.Y. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara. J. Hazard. Mater. 2011, 190, 188–196. [Google Scholar] [CrossRef]
- Jiang, J.L.; Gu, X.Y.; Song, R.; Zhang, Q.; Geng, J.J.; Wang, X.R.; Yang, L.Y. Time-dependent Oxidative Stress and Histopathological Alterations in Cyprinus carpio L. Exposed to Microcystin-LR. Ecotoxicology 2011, 20, 1000–1009. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Wiegand, C.; Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites: A short review. Toxicol. Appl. Pharm. 2005, 203, 201–218. [Google Scholar] [CrossRef]
- Huo, D.; Gan, N.Q.; Geng, R.Z.; Cao, Q.; Song, L.R.; Yu, G.L.; Li, R.H. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef]
- Shu, X.B.; Xie, L.Q.; Wan, X.; Yao, L.; Xue, Q.J.; Li, J.J. Vertical distribution characteristics of microcystin concentration in water and sediment of Meiliang Bay, Lake Taihu. J. Lake Sci. 2019, 31, 976–987. [Google Scholar]
- Juliana, S.M.P.; Giani, A. Estimating toxic cyanobacteria in a Brazilian reservoir by quantitative real-time PCR, based on the microcystin synthetase D gene. J. Appl. Phycol. 2013, 25, 1545–1554. [Google Scholar]
- Zhou, Q.R.; He, A.Y.; Yang, W.; Zhang, J.; Wang, Z.H.; Chen, J. Determination of microcystins in water by ultra-high-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry. J. Environ. Health 2018, 35, 524–527. [Google Scholar]
- Machado, J.; Campos, A.; Vasconcelos, V.; Freitas, M. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health. Environ. Res. 2017, 153, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Jiang, J.L.; Zhou, J.Y.; Shan, Z.J.; Bu, Y.Q.; Xu, W.L. Effects of microcystin-LR at environmental relevant concentrations on growth and antioxidant enzymes of Oryza sativa L. at vegetative stage. J. Agro. Environ. Sci. 2014, 15, 101–108. [Google Scholar]
- Chen, S.H.; Jiang, J.L.; Long, T.; Zhu, X.C.; Zhang, H.C.; Deng, S.P.; Liu, R.B. Oxidative stress induced in rice suspension cells exposed to microcystin-LR at environmentally relevant concentrations. Environ. Sci. Pollut. Res. 2021, 28, 38393–38405. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Z.; Song, L.R.; Dai, J.; Gan, N.Q.; Liu, Z.L. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 2004, 43, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Han, F.X.; Wang, F.; Zhang, H.; Shi, Z. Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol. Environ. Saf. 2012, 76, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gu, P.; Zhang, C.; Luo, X.; Zhang, H.; Zhang, J.; Zheng, Z. Combined toxic effects of anatoxin-a and microcystin-LR on submerged macrophytes and biofilms. J. Hazard. Mater. 2020, 389, 122053. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, H.; Bai, J.; Ren, F. The regulatory framework of developmentally programmed cell death in floral organs: A review. Plant Physiol. Bioch. 2021, 158, 103–112. [Google Scholar] [CrossRef]
- Máthé, C.; M-Hamvas, M.; Vasas, G. Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar. Drugs 2013, 11, 3689–3717. [Google Scholar] [CrossRef]
- Tsoumalakou, E.; Papadimitriou, T.; Berillis, P.; Kormas, K.A.; Levizou, E. Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.). Sci. Total Environ. 2021, 789, 147948. [Google Scholar] [CrossRef]
- Romero-Oliva, C.S.; Contardo-Jara, V.; Block, T.; Pflugmacher, S. Accumulation of microcystin congeners in different aquatic plants and crops–a case study from lake Amatitlán, Guatemala. Ecotoxicol. Environ. Saf. 2014, 102, 121–128. [Google Scholar] [CrossRef]
- Jiang, J.L.; Zhang, H.; Long, T.; Li, X.Z.; Yang, Y.; Chen, Q. Regulation of oxidative stress and programmed cell death related genes induced by microcystin-LR in rice suspension cells. J. Environ. Manag. 2022, 322, 115990. [Google Scholar] [CrossRef]
- Kurki-Helasmo, K.; Meriluoto, J. Microcystin uptake inhibits growth and protein phosphatase activity in Mustard (Sinapis alba L.) seedlings. Toxicon 1998, 36, 1921–1926. [Google Scholar] [CrossRef]
- Hastie, C.J.; Borthwick, E.B.; Morrison, L.F.; Codd, G.A.; Cohen, P.T.W. Inhibition of several protein phosphatases by a non-covalently interacting microcystin and a novel cyanobacterial peptide, nostocyclin. Biochim. Biophys. Acta 2005, 1726, 187–193. [Google Scholar] [CrossRef]
- Jiang, J.L. Rice plant response to long-term microcystin-LR exposure: Gene expression profiling. Toxicol. Lett. 2015, 238, S83. [Google Scholar] [CrossRef]
- Plugmacher, S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat. Toxicol. 2004, 70, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Thanh-Son, D.; Thai-Hang, L.; Thanh-Luu, P.; Lan-Chi, D.H.; Phuoc-Dan, N. Influences of cyanobacterial toxins microcystins on the seedling of plants. J. Environ. Prot. 2014, 5, 35–41. [Google Scholar]
- Beligni, M.V.; Lamattina, L. Is nitric oxide toxic or protective? Trends Plant Sci. 1999, 4, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; David, A.; Bhatla, S.C. Nitric oxide accumulation and actin distribution during auxin-induced adventitious root development in sunflower. Sci. Hortic. 2011, 129, 159–166. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.Q.; Hu, L.B.; Shi, Z.Q. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide. Chemosphere 2013, 93, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Lu, G.; Chen, G.Q.; Huang, B.; Zhang, X.; Shen, K.; Wu, S. Microcystin-LR induces apoptosis via NF-κB /iNOS pathway in INS-1 cells. Int. J. Mol. Sci. 2011, 12, 4722–4734. [Google Scholar] [CrossRef] [PubMed]
- Stein, O.; Granot, D. An overview of sucrose synthases in plants. Front. Plant Sci. 2019, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- Meier-Abt, F.; Hammann-Hänni, A.; Stieger, B.; Ballatoria, N.; Boyer, J.L. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver. Toxicol. Appl. Pharmacol. 2007, 218, 274–279. [Google Scholar] [CrossRef]
- Yin, G. Preliminary Study on Accumulation and Transport of Microcystin MC-LR in Rice. Ph.D. Thesis, Nanjing Normal University, Nanjing, China, 2015. [Google Scholar]
- Saqrane, S.; Ghazali, I.E.; Ouahid, Y.; Hassni, M.E.; Hadrami, I.E.; Bouarab, L.; Del Campo, F.F.; Oudra, B.; Vasconcelos, V. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxication and oxidative stress induction. Aquat. Toxicol. 2007, 83, 284–294. [Google Scholar] [CrossRef]
- Maejima, K.; Muraoka, T.; Park, H.D. Accumulation and inhibitory effects of microcystin on the growth of rice and broccoli. Korean J. Ecol. Environ. 2014, 47, 19–30. [Google Scholar] [CrossRef]
- Stüven, J.; Pflugmacher, S. Antioxidative stress response of Lepidium sativum due to exposure to cyanobacterial secondary metabolites. Toxicon 2007, 50, 85–93. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Wiegand, C.; Oberemm, A.; Beattie, K.A.; Krause, E.; Codd, G.A.; Steinberg, C.E.W. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochem. Biophys. Acta. 1999, 1425, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Shulaev, V.; Cortes, D.; Miller, G.; Mittler, R. Metabolomics for plant stress response. Physiol. Plant. 2008, 132, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.P.; Sun, G.; Yang, M.L.; Wu, H.H.; Zhang, J.Z.; Song, S.J.; Ma, E.B.; Guo, Y.P. Chronic accumulation of cadmium and its effects on antioxidant enzymes and malondialdehyde in Oxya chinensis (Orthoptera: Acridoidea). Ecotoxicol. Environ. Saf. 2011, 74, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Corpas, F.J.; González-Gordo, S.; Palma, J.M. NO source in higher plants: Present and future of an unresolved question. Trends Plant Sci. 2022, 27, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Caro, A.; Puntarulo, S. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes. Physiol. Plant. 1998, 104, 357–364. [Google Scholar] [CrossRef]
- Huang, A.X.; She, X.P.; Huang, C.; Song, T.S. The dynamic distribution of NO and NADPH-diaphorase activity during IBA-induced adventitious root formation. Physiol. Plant. 2007, 130, 240–249. [Google Scholar] [CrossRef]
- Wang, C.R.; Wang, X.R.; Tian, Y.; Yu, H.X.; Gu, X.Y.; Du, W.C.; Zhou, H. Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ. Toxicol. Chem. 2008, 27, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wang, X.; Sun, Y.; Guo, H.; Yin, D. Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene. Environ. Toxicol. 2008, 23, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef] [PubMed]
MC-LR Concentration, μg/L | Bioaccumulation of MC-LR in Rice Leaves and Roots | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves, μg/g FW | Roots, μg/g FW | |||||||||
Exposure Period *, Days | BCF ** | Exposure Period, Days | BCF | |||||||
7 | 15 | 20 | 34 | 7 | 15 | 20 | 34 | |||
0.1 | n.a. *** | 0.54 ± 0.09 bcde **** | 0.59 ± 0.08 abcde | 0.51 ± 0.09 cde | 5.90 ± 0.80 | 0.68 ± 0.05 de | 0.77 ± 0.04 bcd | 0.75 ± 0.14 bcd | 0.67 ± 0.05 de | 7.70 ± 0.40 |
1.0 | n.a. | 0.67 ± 0.06 abcd | 0.69 ± 0.04 abcd | 0.44 ± 0.10 de | 0.69 ± 0.042 | 0.68 ± 0.05 de | 0.72 ± 0.05 cd | 0.75 ± 0.03 cd | 0.71 ± 0.19 cde | 0.75 ± 0.03 |
10.0 | n.a. | 0.85 ± 0.17 ab | 0.88 ± 0.11 a | 0.78 ± 0.06 abc | 0.088 ± 0.011 | 1.12 ± 0.28 bc | 1.16 ± 0.16 ab | 0.98 ± 0.10 bcd | 0.83 ± 0.19 bcde | 0.12 ± 0.02 |
50.0 | n.a. | n.a. | 0.64 ± 0.46 abcde | 0.33 ± 0.07 e | 0.013 ± 0.01 | 1.55 ± 0.52 a | 0.58 ± 0.05 de | 0.46 ± 0.39 e | 0.74 ± 0.21 cde | 0.03 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Shi, Y.; Tian, F.; Long, T.; Li, X.; Ying, R. Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice (Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions. Toxins 2024, 16, 82. https://doi.org/10.3390/toxins16020082
Jiang J, Shi Y, Tian F, Long T, Li X, Ying R. Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice (Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions. Toxins. 2024; 16(2):82. https://doi.org/10.3390/toxins16020082
Chicago/Turabian StyleJiang, Jinlin, Yue Shi, Feng Tian, Tao Long, Xuzhi Li, and Rongrong Ying. 2024. "Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice (Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions" Toxins 16, no. 2: 82. https://doi.org/10.3390/toxins16020082
APA StyleJiang, J., Shi, Y., Tian, F., Long, T., Li, X., & Ying, R. (2024). Bioaccumulation of Microcystin-LR and Induced Physio-Biochemical Changes in Rice (Oryza sativa L.) at Vegetative Stage under Hydroponic Culture Conditions. Toxins, 16(2), 82. https://doi.org/10.3390/toxins16020082