Bothrops lanceolatus Envenoming in Martinique: A Historical Perspective of the Clinical Effectiveness of Bothrofav Antivenom Treatment
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
- Ethics and retrospective chart review:
- Participants:
- Data collection:
- Diagnosis and antivenom therapy for snakebite envenoming:
- Statistical analysis:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutierrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef]
- Cavalcante, J.S.; de Almeida, D.E.G.; Santos-Filho, N.A.; Sartim, M.A.; Baldo, A.d.A.; Brasileiro, L.; Albuquerque, P.L.; Oliveira, S.S.; Sachett, J.A.G.; Monteiro, W.M.; et al. Crosstalk of inflammation and coagulation in Bothrops snakebite envenoming: Endogenous signaling pathways and pathophysiology. Int. J. Mol. Sci. 2023, 24, 11508. [Google Scholar] [CrossRef]
- Moore, G.W. Snake venoms in diagnostic hemostasis and thrombosis. Semin. Thromb. Hemost. 2022, 48, 145–160. [Google Scholar] [CrossRef]
- Monteiro, W.M.; Contreras-Bernal, J.C.; Bisneto, P.F.; Sachett, J.; Da Silva, I.M.; Lacerda, M.; Da Costa, A.G.; Val, F.; Brasileiro, L.; Sartim, M.A.; et al. Bothrops atrox, the most important snake involved in human envenomings in the Amazon: How venomics contributes to the knowledge of snake biology and clinical toxinology. Toxicon X 2020, 6, 100037. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Sanz, L.; Escolano, J.; Fernández, J.; Lomonte, B.; Angulo, Y.; Rucavado, A.; Warrell, D.A.; Calvete, J.J. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: Correlation with toxicological activities and immunoreactivity of a het-erologous antivenom. J. Proteome Res. 2008, 7, 4396–4408. [Google Scholar] [CrossRef]
- Larréché, S.; Bousquet, A.; Chevillard, L.; Gahoual, R.; Jourdi, G.; Dupart, A.-L.; Bachelot-Loza, C.; Gaussem, P.; Siguret, V.; Chippaux, J.-P.; et al. Bothrops atrox and Bothrops lanceolatus venoms in vitro Investigation: Composition, procoagulant effects, co-factor dependency, and correction using antivenoms. Toxins 2023, 15, 614. [Google Scholar] [CrossRef]
- Campbell, J.A.; Lamar, W.W. The Venomous Reptiles of Latin America; Comstock, Cornell University: Ithaca, NY, USA, 1990; 425p. [Google Scholar]
- Resiere, D.; Megarbane, B.; Valentino, R.; Mehdaoui, H.; Thomas, L. Bothrops lanceolatus bites: Guidelines for severity assessment and emergent management. Toxins 2010, 2, 163–173. [Google Scholar] [CrossRef]
- Malbranque, S.; Piercecchi-Marti, M.D.; Thomas, L.; Barbey, C.; Courcier, D.; Bucher, B.; Richard, A.; Smadja, D.; Warrel, D.A. Fatal diffuse thrombotic microangiopathy after a bite by the “Fer-de-Lance” pit viper (Bothrops lanceolatus) of Martinique. Am. J. Trop. Med. Hyg. 2008, 78, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Chausson, N.; Uzan, J.; Kaidomar, S.; Vignes, R.; Plumelle, Y.; Bucher, B.; Smadja, D. Thrombotic stroke following snake bites by the “Fer-de-Lance” Bothrops lanceolatus in Martinique despite antivenom treatment: A report of three recent cases. Toxicon 2006, 48, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Tyburn, B.; Bucher, B.; Plumelle, Y.; Ketterle, J.; Pecout, F.; Rieux, D.; Smadja, D.; Garnier, D. Prevention of thromboses in human patients with Bothrops lanceolatus envenoming in Martinique: Failure of anticoagulants and efficacy of a monospecific antivenom. Research Group on Snake Bites in Martinique. Am. J. Trop. Med. Hyg. 1995, 52, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Merle, H.; Donnio, A.; Ayeboua, L.; Plumelle, Y.; Smadja, D.; Thomas, L. Occipital infarction revealed by quadranopsia following snakebite by Bothrops lanceolatus. Am. J. Trop. Med. Hyg. 2005, 73, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Silva de França, F.; Gabrili, J.J.M.; Mathieu, L.; Burgher, F.; Blomet, J.; Tambourgi, D.V. Bothrops lanceolatus snake (Fer-de-lance) venom triggers inflammatory mediators’ storm in human blood. Arch. Toxicol. 2021, 95, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Delafontaine, M.; Villas-Boas, I.M.; Pidde, G.; van den Berg, C.W.; Mathieu, L.; Blomet, J.; Tambourgi, D.V. Venom from Bothrops lanceolatus, a Snake Species Native to Martinique, Potently Activates the Complement System. J. Immunol. Res. 2018, 2018, 3462136. [Google Scholar] [CrossRef]
- Pla, D.; Rodriguez, Y.; Resiere, D.; Mehdaoui, H.; Gutierrez, J.M.; Calvete, J.J. Third-generation antivenomics analysis of the preclinical efficacy of Bothrofav antivenom towards Bothrops lanceolatus venom. Toxicon X 2019, 1, 100004. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Tyburn, B.; Lang, J.; Ketterle, J. Early infusion of a purified monospecific F(ab’)2 antivenom serum for Bothrops lanceolatus bites in Martinique. Lancet 1996, 347, 406. [Google Scholar] [CrossRef]
- Thomas, L.; Tyburn, B.; Ketterlé, J.; Biao, T.; Mehdaoui, H.; Moravie, V.; Rouvel, C.; Plumelle, Y.; Bucher, B.; Canonge, D.; et al. Prognostic significance of clinical grading of patients envenomed by Bothrops lanceolatus in Martinique. Members of the research group on snake bite in Martinique. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Bucher, B.; Canonge, D.; Thomas, L.; Tyburn, B.; Robbe-Vincent, A.; Choumet, V.; Bon, C.; Ketterlé, J.; Lang, J. Clinical indicators of envenoming and serum levels of venom antigens in patients bitten by Bothrops lanceolatus in Martinique. Research group on snake bites in Martinique. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 186–190. [Google Scholar] [CrossRef]
- Bogarín, G.; Romero, M.; Rojas, G.; Lutsch, C.; Casadamont, M.; Lang, J.; Otero, R.; Gutiérrez, J.M. Neutralization, by a monospecific Bothrops lanceolatus antivenom, of toxic activities induced by homologous and heterologous Bothrops snake venoms. Toxicon 1999, 37, 551–557. [Google Scholar] [CrossRef]
- Resiere, D.; Arias, A.S.; Villalta, M.; Rucavado, A.; Brouste, Y.; Cabié, A.; Névière, R.; Césaire, R.; Kallel, H.; Mégarbane, B.; et al. Preclinical evaluation of the neutralizing ability of a monospecific antivenom for the treatment of envenoming by Bothrops lanceolatus in Martinique. Toxicon 2018, 148, 50–55. [Google Scholar] [CrossRef]
- WHO. Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins (Annex 5); WHO: Geneva, Switzerland, 2017; pp. 197–388. [Google Scholar]
- Blessmann, J.; Hanlodsomphou, S.; Santisouk, B.; Krumkamp, R.; Kreuels, B.; Ismail, A.K.; Yong, M.Y.; Tan, K.Y.; Tan, C.H. Experience of using expired lyophilized snake antivenom during a medical emergency situation in Lao People’s Democratic Republic A possible untapped resource to tackle antivenom shortage in Southeast Asia. Trop. Med. Int. Health 2023, 28, 64–70. [Google Scholar] [CrossRef]
- O’Leary, M.A.; Kornhauser, R.S.; Hodgson, W.C.; Isbister, G.K. An examination of the activity of expired and mistreated commercial Australian antivenoms. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 937–942. [Google Scholar] [CrossRef]
- Sanchez, E.E.; Migl, C.; Suntravat, M.; Rodriguez-Acosta, A.; Galan, J.A.; Salazar, E. The neutralization efficacy of expired polyvalent antivenoms: An alternative option. Toxicon 2019, 168, 32–39. [Google Scholar] [CrossRef]
- Chippaux, J.P.; Williams, V.; White, J. Snake venom variability: Methods of study, results and interpretation. Toxicon 1991, 29, 1279–1303. [Google Scholar] [CrossRef]
- Casewell, N.R.; Wagstaff, S.C.; Wüster, W.; Cook, D.A.N.; Bolton, F.M.S.; King, S.I.; Pla, D.; Sanz, L.; Calvete, J.J.; Harrison, R.A. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 9205–9210. [Google Scholar] [CrossRef]
- Freitas-De-Sousa, L.A.; Nachtigall, P.G.; Portes-Junior, J.A.; Holding, M.L.; Nystrom, G.S.; Ellsworth, S.A.; Guimarães, N.C.; Tioyama, E.; Ortiz, F.; Silva, B.R.; et al. Size matters: An evaluation of the molecular basis of ontogenetic modifications in the composition of Bothrops jararacussu snake venom. Toxins 2020, 12, 791. [Google Scholar] [CrossRef]
- Sousa, L.F.; Holding, M.L.; Del-Rei, T.H.M.; Rocha, M.M.T.; Mourão, R.H.V.; Chalkidis, H.M.; Prezoto, B.; Gibbs, H.L.; Moura-Da-Silva, A.M. Individual variability in Bothrops atrox snakes collected from different habitats in the Brazilian Amazon: New findings on venom composition and functionality. Toxins 2021, 13, 814. [Google Scholar] [CrossRef]
- Bourke, L.A.; Zdenek, C.N.; Neri-Castro, E.; Bénard-Valle, M.; Alagón, A.; Gutiérrez, J.M.; Sanchez, E.F.; Aldridge, M.; Fry, B.G. Pan-American lancehead pit-vipers: Coagulotoxic venom effects and antivenom neutralisation of Bothrops asper and B. atrox geographical variants. Toxins 2021, 13, 78. [Google Scholar] [CrossRef]
- Alsolaiss, J.; Alomran, N.; Hawkins, L.; Casewell, N.R. Commercial antivenoms exert broad paraspecific immunological binding and in vitro inhibition of medically important Bothrops pit viper venoms. Toxins 2022, 15, 1. [Google Scholar] [CrossRef]
- León, G.; Herrera, M.; Segura, Á.; Villalta, M.; Vargas, M.; Gutiérrez, J.M. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013, 76, 63–76. [Google Scholar] [CrossRef]
Bothrofav#1 Period 2000–2010 (107 Patients) | Bothrofav#2 Period 2011–2023 (282 Patients) | p | |
---|---|---|---|
Age (years) | 47 ± 17 | 46 ± 17 | 0.798 |
Gender (Male) | 84 (78.5%) | 205 (72.7%) | 0.299 |
Medical history | |||
Cardiovascular risk | 17 (15.9%) | 49 (17.4%) | 0.765 |
Coagulopathy/anticoagulant | 0 (0%) | 4 (1.4%) | 0.579 |
Envenoming presentation | |||
Time of bite (hh:mm) | 2:00 p.m. (9:30 a.m.–7:00 p.m.) | 2:00 p.m. (9:00 a.m.–7:00 p.m.) | 0.710 |
Time of hospital admission (hh:mm) | 7:30 p.m. (1:00 p.m.–12:00 p.m.) | 5:00 p.m. (11:05 a.m.–10:00 p.m.) | 0.708 |
Time from bite to hospitalization (hours) | 2:30 (1:30–6:00) | 3:50 (2:47–6:33) | 0.161 |
Snake identified | 39 (36.4%) | 85 (30.1%) | 0.273 |
Anatomic site of bite | |||
| 46 (43.0%) | 116 (41.1%) | 0.818 |
| 60 (56.1%) | 165 (58.5%) | 0.730 |
Grade of envenoming | |||
Grade 1 | 0 (0%) | 0 (0%) | |
Grade 2 | 73 (68.2%) | 168 (59.6%) | 0.129 |
Grade 3 | 14 (13.1%) | 44 (15.6%) | 0.633 |
Grade 4 | 20 (18.7%) | 21 (7.4%) | 0.003 |
Clinical presentation at admission | |||
Heart rate > 100 bpm | 17 (15.9%) | 37 (13.1%) | 0.512 |
Circulatory shock | 1 (0.9%) | 2 (0.7%) | >0.999 |
Confusion/headache/dizziness | 9 (8.4%) | 24 (8.5%) | >0.999 |
Stroke before Bothrofav treatment | 5 (4.7%) | 0 (0%) | 0.002 |
Individual NIHSS score | 1, 8, 12, 13, 20 | NA | - |
Biological analysis at admission | |||
Normal platelet count and prothrombin time | 87 (81.3%°) | 232 (82.2%) | 0.883 |
Thrombocytopenia | 15 (14.0%) | 27 (9.7%) | 0.206 |
Disseminated intravascular coagulation | 3 (2.8%) | 6 (2.1%) | >0.999 |
Clinical evolution | |||
Anaphylaxis reactions (Bothrofav) | 3 (2.8%) | 6 (2.1%) | >0.999 |
Thrombocytopenia | 7 (6.5%) | 26 (9.2%) | 0.541 |
Stroke after Bothrofav treatment | 5 (4.7%) | 2 (0.7%) | 0.019 |
Individual NIHSS score | (1, 1, 4, 8, 15) | (1, 4) | - |
Neuroimaging procedures | |||
Number of brain MRI exams | 15 (14.0%) | 27 (9.6%) | 0.206 |
Abnormal brain MRI exams | 10 (9.3%) | 2 (0.7%) | <0.001 |
Bothrofav#1 Period 2000–2010 (107 Patients) | Bothrofav#2 Period 2011–2023 (282 Patients) | p | |
---|---|---|---|
Time from the bite to antivenom (hh:mm) | 3:30 (2:30–7:00) | 4:53 (3:53–7:33) | 0.133 |
Antivenom in less than 6 h | 79 (73.8%) | 194 (68.8%) | 0.385 |
Documented soft tissue infection | 6 (5.6%) | 24 (8.5%) | 0.401 |
Antibiotics | 34 (31.8%) | 65 (23.0%) | 0.090 |
Length of hospital stay (days) | 2.5 (1–3.5) | 1 (1–2.0) | 0.001 |
Death | 1 (0.9%) | 0 (0%) | 0.275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resiere, D.; Florentin, J.; Mehdaoui, H.; Kallel, H.; Legris-Allusson, V.; Gueye, P.; Neviere, R. Bothrops lanceolatus Envenoming in Martinique: A Historical Perspective of the Clinical Effectiveness of Bothrofav Antivenom Treatment. Toxins 2024, 16, 146. https://doi.org/10.3390/toxins16030146
Resiere D, Florentin J, Mehdaoui H, Kallel H, Legris-Allusson V, Gueye P, Neviere R. Bothrops lanceolatus Envenoming in Martinique: A Historical Perspective of the Clinical Effectiveness of Bothrofav Antivenom Treatment. Toxins. 2024; 16(3):146. https://doi.org/10.3390/toxins16030146
Chicago/Turabian StyleResiere, Dabor, Jonathan Florentin, Hossein Mehdaoui, Hatem Kallel, Veronique Legris-Allusson, Papa Gueye, and Remi Neviere. 2024. "Bothrops lanceolatus Envenoming in Martinique: A Historical Perspective of the Clinical Effectiveness of Bothrofav Antivenom Treatment" Toxins 16, no. 3: 146. https://doi.org/10.3390/toxins16030146
APA StyleResiere, D., Florentin, J., Mehdaoui, H., Kallel, H., Legris-Allusson, V., Gueye, P., & Neviere, R. (2024). Bothrops lanceolatus Envenoming in Martinique: A Historical Perspective of the Clinical Effectiveness of Bothrofav Antivenom Treatment. Toxins, 16(3), 146. https://doi.org/10.3390/toxins16030146