Specificity of DNA ADP-Ribosylation Reversal by NADARs
Abstract
:1. Introduction
2. Results
2.1. E. coli Hosts Multiple NADAR Domains with Different Substrate Specificities
2.2. Myxobacterial YbiA-like Proteins Function as Antitoxins for the ART Toxin YarT
3. Discussion
4. Materials and Methods
4.1. Materials, Reagents, and Chemicals
4.2. DNA Cloning
4.3. Recombinant Protein Expression and Purification
4.4. Toxicity Assays
4.5. Gel-Shift ADP-Ribosylation Activity Assays
4.6. Structural and Phylogenetic Analyses
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suskiewicz, M.J.; Prokhorova, E.; Rack, J.G.M.; Ahel, I. ADP-Ribosylation from Molecular Mechanisms to Therapeutic Implications. Cell 2023, 186, 4475–4495. [Google Scholar] [CrossRef]
- Mikolčević, P.; Hloušek-Kasun, A.; Ahel, I.; Mikoč, A. ADP-Ribosylation Systems in Bacteria and Viruses. Comput. Struct. Biotechnol. J. 2021, 19, 2366–2383. [Google Scholar] [CrossRef]
- Cohen, M.S.; Chang, P. Insights into the Biogenesis, Function, and Regulation of ADP-Ribosylation. Nat. Chem. Biol. 2018, 14, 236–243. [Google Scholar] [CrossRef]
- Fontana, P.; Buch-Larsen, S.C.; Suyari, O.; Smith, R.; Suskiewicz, M.J.; Schützenhofer, K.; Ariza, A.; Rack, J.G.M.; Nielsen, M.L.; Ahel, I. Serine ADP-Ribosylation in Drosophila Provides Insights into the Evolution of Reversible ADP-Ribosylation Signalling. Nat. Commun. 2023, 14, 3200. [Google Scholar] [CrossRef]
- Lüscher, B.; Ahel, I.; Altmeyer, M.; Ashworth, A.; Bai, P.; Chang, P.; Cohen, M.; Corda, D.; Dantzer, F.; Daugherty, M.D.; et al. ADP-ribosyltransferases, an Update on Function and Nomenclature. FEBS J. 2022, 289, 7399–7410. [Google Scholar] [CrossRef]
- Fehr, A.R.; Singh, S.A.; Kerr, C.M.; Mukai, S.; Higashi, H.; Aikawa, M. The Impact of PARPs and ADP-Ribosylation on Inflammation and Host–Pathogen Interactions. Genes Dev. 2020, 34, 341–359. [Google Scholar] [CrossRef]
- Groslambert, J.; Prokhorova, E.; Ahel, I. ADP-Ribosylation of DNA and RNA. DNA Repair 2021, 105, 103144. [Google Scholar] [CrossRef]
- Talhaoui, I.; Lebedeva, N.A.; Zarkovic, G.; Saint-Pierre, C.; Kutuzov, M.M.; Sukhanova, M.V.; Matkarimov, B.T.; Gasparutto, D.; Saparbaev, M.K.; Lavrik, O.I.; et al. Poly(ADP-Ribose) Polymerases Covalently Modify Strand Break Termini in DNA Fragments in Vitro. Nucleic Acids Res. 2016, 44, 9279–9295. [Google Scholar] [CrossRef]
- Munnur, D.; Ahel, I. Reversible Mono-ADP-ribosylation of DNA Breaks. FEBS J. 2017, 284, 4002–4016. [Google Scholar] [CrossRef]
- Munnur, D.; Bartlett, E.; Mikolčević, P.; Kirby, I.T.; Rack, J.G.M.; Mikoč, A.; Cohen, M.S.; Ahel, I. Reversible ADP-Ribosylation of RNA. Nucleic Acids Res. 2019, 47, 5658–5669. [Google Scholar] [CrossRef]
- Musheev, M.U.; Schomacher, L.; Basu, A.; Han, D.; Krebs, L.; Scholz, C.; Niehrs, C. Mammalian N1-Adenosine PARylation Is a Reversible DNA Modification. Nat. Commun. 2022, 13, 6138. [Google Scholar] [CrossRef]
- Suskiewicz, M.J.; Munnur, D.; Strømland, Ø.; Yang, J.-C.; Easton, L.E.; Chatrin, C.; Zhu, K.; Baretić, D.; Goffinont, S.; Schuller, M.; et al. Updated Protein Domain Annotation of the PARP Protein Family Sheds New Light on Biological Function. Nucleic Acids Res. 2023, 51, 8217–8236. [Google Scholar] [CrossRef]
- Đukić, N.; Strømland, Ø.; Elsborg, J.D.; Munnur, D.; Zhu, K.; Schuller, M.; Chatrin, C.; Kar, P.; Duma, L.; Suyari, O.; et al. PARP14 Is a PARP with Both ADP-Ribosyl Transferase and Hydrolase Activities. Sci. Adv. 2023, 9, eadi2687. [Google Scholar] [CrossRef]
- Tromans-Coia, C.; Sanchi, A.; Moeller, G.K.; Timinszky, G.; Lopes, M.; Ahel, I. TARG1 Protects against Toxic DNA ADP-Ribosylation. Nucleic Acids Res. 2021, 49, 10477–10492. [Google Scholar] [CrossRef]
- Lowery, R.G.; Saari, L.L.; Ludden, P.W. Reversible Regulation of the Nitrogenase Iron Protein from Rhodospirillum Rubrum by ADP-Ribosylation in Vitro. J. Bacteriol. 1986, 166, 513–518. [Google Scholar] [CrossRef]
- Watanabe, M.; Kono, T.; Matsushima-Hibiya, Y.; Kanazawa, T.; Nishisaka, N.; Kishimoto, T.; Koyama, K.; Sugimura, T.; Wakabayashi, K. Molecular Cloning of an Apoptosis-Inducing Protein, Pierisin, from Cabbage Butterfly: Possible Involvement of ADP-Ribosylation in Its Activity. Proc. Natl. Acad. Sci. USA 1999, 96, 10608–10613. [Google Scholar] [CrossRef]
- Deng, Q.; Barbieri, J.T. Molecular Mechanisms of the Cytotoxicity of ADP-Ribosylating Toxins. Annu. Rev. Microbiol. 2008, 62, 271–288. [Google Scholar] [CrossRef]
- Jankevicius, G.; Ariza, A.; Ahel, M.; Ahel, I. The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA. Mol. Cell 2016, 64, 1109–1116. [Google Scholar] [CrossRef]
- Lalić, J.; Posavec Marjanović, M.; Palazzo, L.; Perina, D.; Sabljić, I.; Žaja, R.; Colby, T.; Pleše, B.; Halasz, M.; Jankevicius, G.; et al. Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces Coelicolor. J. Biol. Chem. 2016, 291, 23175–23187. [Google Scholar] [CrossRef]
- Watanabe, M. Enzymatic Properties of Pierisin-1 and Its N-Terminal Domain, a Guanine-Specific ADP-Ribosyltransferase from the Cabbage Butterfly. J. Biochem. 2004, 135, 471–477. [Google Scholar] [CrossRef]
- Takamura-Enya, T.; Watanabe, M.; Totsuka, Y.; Kanazawa, T.; Matsushima-Hibiya, Y.; Koyama, K.; Sugimura, T.; Wakabayashi, K. Mono(ADP-Ribosyl)Ation of 2′-Deoxyguanosine Residue in DNA by an Apoptosis-Inducing Protein, Pierisin-1, from Cabbage Butterfly. Proc. Natl. Acad. Sci. USA 2001, 98, 12414–12419. [Google Scholar] [CrossRef]
- Yoshida, T.; Tsuge, H. Substrate N2 Atom Recognition Mechanism in Pierisin Family DNA-Targeting, Guanine-Specific ADP-Ribosyltransferase ScARP. J. Biol. Chem. 2018, 293, 13768–13774. [Google Scholar] [CrossRef]
- Lyons, B.; Lugo, M.R.; Carlin, S.; Lidster, T.; Merrill, A.R. Characterization of the Catalytic Signature of Scabin Toxin, a DNA-Targeting ADP-Ribosyltransferase. Biochem. J. 2018, 475, 225–245. [Google Scholar] [CrossRef]
- Oda, T.; Hirabayashi, H.; Shikauchi, G.; Takamura, R.; Hiraga, K.; Minami, H.; Hashimoto, H.; Yamamoto, M.; Wakabayashi, K.; Shimizu, T.; et al. Structural Basis of Autoinhibition and Activation of the DNA-Targeting ADP-Ribosyltransferase Pierisin-1. J. Biol. Chem. 2017, 292, 15445–15455. [Google Scholar] [CrossRef]
- Jurėnas, D.; Rosa, L.T.; Rey, M.; Chamot-Rooke, J.; Fronzes, R.; Cascales, E. Mounting, Structure and Autocleavage of a Type VI Secretion-Associated Rhs Polymorphic Toxin. Nat. Commun. 2021, 12, 6998. [Google Scholar] [CrossRef]
- Jurėnas, D.; Payelleville, A.; Roghanian, M.; Turnbull, K.J.; Givaudan, A.; Brillard, J.; Hauryliuk, V.; Cascales, E. Photorhabdus Antibacterial Rhs Polymorphic Toxin Inhibits Translation through ADP-Ribosylation of 23S Ribosomal RNA. Nucleic Acids Res. 2021, 49, 8384–8395. [Google Scholar] [CrossRef]
- Bullen, N.P.; Sychantha, D.; Thang, S.S.; Culviner, P.H.; Rudzite, M.; Ahmad, S.; Shah, V.S.; Filloux, A.; Prehna, G.; Whitney, J.C. An ADP-Ribosyltransferase Toxin Kills Bacterial Cells by Modifying Structured Non-Coding RNAs. Mol. Cell 2022, 82, 3484–3498.e11. [Google Scholar] [CrossRef]
- Schuller, M.; Butler, R.E.; Ariza, A.; Tromans-Coia, C.; Jankevicius, G.; Claridge, T.D.W.; Kendall, S.L.; Goh, S.; Stewart, G.R.; Ahel, I. Molecular Basis for DarT ADP-Ribosylation of a DNA Base. Nature 2021, 596, 597–602. [Google Scholar] [CrossRef]
- Rack, J.G.M.; Perina, D.; Ahel, I. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annu. Rev. Biochem. 2016, 85, 431–454. [Google Scholar] [CrossRef]
- Schuller, M.; Ahel, I. Beyond Protein Modification: The Rise of Non-Canonical ADP-Ribosylation. Biochem. J. 2022, 479, 463–477. [Google Scholar] [CrossRef]
- Lawarée, E.; Jankevicius, G.; Cooper, C.; Ahel, I.; Uphoff, S.; Tang, C.M. DNA ADP-Ribosylation Stalls Replication and Is Reversed by RecF-Mediated Homologous Recombination and Nucleotide Excision Repair. Cell Rep. 2020, 30, 1373–1384.e4. [Google Scholar] [CrossRef]
- LeRoux, M.; Srikant, S.; Teodoro, G.I.C.; Zhang, T.; Littlehale, M.L.; Doron, S.; Badiee, M.; Leung, A.K.L.; Sorek, R.; Laub, M.T. The DarTG Toxin-Antitoxin System Provides Phage Defence by ADP-Ribosylating Viral DNA. Nat. Microbiol. 2022, 7, 1028–1040. [Google Scholar] [CrossRef]
- Schuller, M.; Raggiaschi, R.; Mikolcevic, P.; Rack, J.G.M.; Ariza, A.; Zhang, Y.; Ledermann, R.; Tang, C.; Mikoc, A.; Ahel, I. Molecular Basis for the Reversible ADP-Ribosylation of Guanosine Bases. Mol. Cell 2023, 83, 2303–2315.e6. [Google Scholar] [CrossRef]
- de Souza, R.F.; Aravind, L. Identification of Novel Components of NAD-Utilizing Metabolic Pathways and Prediction of Their Biochemical Functions. Mol. Biosyst. 2012, 8, 1661. [Google Scholar] [CrossRef]
- Frelin, O.; Huang, L.; Hasnain, G.; Jeffryes, J.G.; Ziemak, M.J.; Rocca, J.R.; Wang, B.; Rice, J.; Roje, S.; Yurgel, S.N.; et al. A Directed-Overflow and Damage-Control N-Glycosidase in Riboflavin Biosynthesis. Biochem. J. 2015, 466, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Shingaki, R.; Hirose, S.; Waki, K.; Mori, H.; Fukui, K. Genome-Wide Screening of Genes Required for Swarming Motility in Escherichia Coli K-12. J. Bacteriol. 2007, 189, 950–957. [Google Scholar] [CrossRef]
- Peters, D.L.; McCutcheon, J.G.; Stothard, P.; Dennis, J.J. Novel Stenotrophomonas Maltophilia Temperate Phage DLP4 Is Capable of Lysogenic Conversion. BMC Genom. 2019, 20, 300. [Google Scholar] [CrossRef] [PubMed]
- Fasimoye, R.Y.; Spencer, R.E.B.; Soto-Martin, E.; Eijlers, P.; Elmassoudi, H.; Brivio, S.; Mangana, C.; Sabele, V.; Rechtorikova, R.; Wenzel, M.; et al. A Novel, Essential Trans-Splicing Protein Connects the Nematode SL1 SnRNP to the CBC-ARS2 Complex. Nucleic Acids Res. 2022, 50, 7591–7607. [Google Scholar] [CrossRef] [PubMed]
- Burton, Z.F.; Gross, C.A.; Watanabe, K.K.; Burgess, R.R. The Operen That Encodes the Sigma Subunit of RNA Polymerase Also Encodes Ribosomal Protein S21 and DNA Primase in E. coli K12. Cell 1983, 32, 335–349. [Google Scholar] [CrossRef]
- Erickson, B.D.; Burton, Z.F.; Watanabe, K.K.; Burgess, R.R. Nucleotide Sequence of the RpsU-DnaG-RpoD Operon from Salmonella Typhimurium and a Comparison of This Sequence with the Homologous Operon of Escherichia coli. Gene 1985, 40, 67–78. [Google Scholar] [CrossRef]
- Schneider, D.; Kaiser, W.; Stutz, C.; Holinski, A.; Mayans, O.; Babinger, P. YbiB from Escherichia Coli, the Defining Member of the Novel TrpD2 Family of Prokaryotic DNA-Binding Proteins. J. Biol. Chem. 2015, 290, 19527–19539. [Google Scholar] [CrossRef] [PubMed]
- Deckers, B.; Vercauteren, S.; De Kock, V.; Martin, C.; Lazar, T.; Herpels, P.; Dewachter, L.; Verstraeten, N.; Peeters, E.; Ballet, S.; et al. YbiB: A Novel Interactor of the GTPase ObgE. Nucleic Acids Res. 2023, 51, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Zajančkauskaite, A.; Raudonikiene, A.; Nivinskas, R. Cloning and Expression of Genes from the Genomic Region between Genes Tcd and 30 of Bacteriophage T4. Gene 1994, 147, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Tainer, J.A. The ARTT Motif and a Unified Structural Understanding of Substrate Recognition in ADP-Ribosylating Bacterial Toxins and Eukaryotic ADP-Ribosyltransferases. Int. J. Med. Microbiol. 2001, 291, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Aravind, L.; Zhang, D.; de Souza, R.F.; Anand, S.; Iyer, L.M. The Natural History of ADP-Ribosyltransferases and the ADP-Ribosylation System. In Endogenous ADP-Ribosylation; Koch-Nolte, F., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–32. [Google Scholar]
- Zhang, D.; de Souza, R.F.; Anantharaman, V.; Iyer, L.M.; Aravind, L. Polymorphic Toxin Systems: Comprehensive Characterization of Trafficking Modes, Processing, Mechanisms of Action, Immunity and Ecology Using Comparative Genomics. Biol. Direct 2012, 7, 18. [Google Scholar] [CrossRef]
- Hloušek-Kasun, A.; Mikolčević, P.; Rack, J.G.M.; Tromans-Coia, C.; Schuller, M.; Jankevicius, G.; Matković, M.; Bertoša, B.; Ahel, I.; Mikoč, A. Streptomyces Coelicolor Macrodomain Hydrolase SCO6735 Cleaves Thymidine-Linked ADP-Ribosylation of DNA. Comput. Struct. Biotechnol. J. 2022, 20, 4337–4350. [Google Scholar] [CrossRef]
- Deep, A.; Singh, L.; Kaur, J.; Velusamy, M.; Bhardwaj, P.; Singh, R.; Thakur, K.G. Structural Insights into DarT Toxin Neutralization by Cognate DarG Antitoxin: SsDNA Mimicry by DarG C-Terminal Domain Keeps the DarT Toxin Inhibited. Structure 2023, 31, 780–789.e4. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.T.; Niemela, S.L.; Miller, R.H. One-Step Preparation of Competent Escherichia coli: Transformation and Storage of Bacterial Cells in the Same Solution. Proc. Natl. Acad. Sci. USA 1989, 86, 2172–2175. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- van Kempen, M.; Kim, S.S.; Tumescheit, C.; Mirdita, M.; Lee, J.; Gilchrist, C.L.M.; Söding, J.; Steinegger, M. Fast and Accurate Protein Structure Search with Foldseek. Nat. Biotechnol. 2023, 42, 243–246. [Google Scholar] [CrossRef]
- Graham, C.; Stansfeld, P.; Rodrigues, C. Conservation-Colab: Conservation to 3D Structure Colab v1.0.2. Zenodo 2023. [CrossRef]
- Saitou, N.; Nei, M. The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 1985, 39, 783. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Hamming, R.W. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J. 1950, 29, 147–160. [Google Scholar] [CrossRef]
- Bryant, D.; Huson, D.H. NeighborNet: Improved Algorithms and Implementation. Front. Bioinform. 2023, 3, 1178600. [Google Scholar] [CrossRef]
- Whelan, S.; Goldman, N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Guzman, L.M.; Belin, D.; Carson, M.J.; Beckwith, J. Tight Regulation, Modulation, and HighLevel Expression by Vectors Containing the Arabinose PBAD Promoter. J. Bacteriol. 1995, 177, 4121–4130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cihlova, B.; Lu, Y.; Mikoč, A.; Schuller, M.; Ahel, I. Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins 2024, 16, 208. https://doi.org/10.3390/toxins16050208
Cihlova B, Lu Y, Mikoč A, Schuller M, Ahel I. Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins. 2024; 16(5):208. https://doi.org/10.3390/toxins16050208
Chicago/Turabian StyleCihlova, Bara, Yang Lu, Andreja Mikoč, Marion Schuller, and Ivan Ahel. 2024. "Specificity of DNA ADP-Ribosylation Reversal by NADARs" Toxins 16, no. 5: 208. https://doi.org/10.3390/toxins16050208
APA StyleCihlova, B., Lu, Y., Mikoč, A., Schuller, M., & Ahel, I. (2024). Specificity of DNA ADP-Ribosylation Reversal by NADARs. Toxins, 16(5), 208. https://doi.org/10.3390/toxins16050208