Previous Issue
Volume 16, April
 
 

Toxins, Volume 16, Issue 5 (May 2024) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 701 KiB  
Article
High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research
by Elba Beraza, Maria Serrano-Civantos, Maria Izco, Lydia Alvarez-Erviti, Elena Gonzalez-Peñas and Ariane Vettorazzi
Toxins 2024, 16(5), 213; https://doi.org/10.3390/toxins16050213 - 03 May 2024
Viewed by 89
Abstract
Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established [...] Read more.
Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research. Full article
Show Figures

Graphical abstract

14 pages, 1413 KiB  
Article
Exposure to Microcystin-LR Promotes Colorectal Cancer Progression by Altering Gut Microbiota and Associated Metabolites in APCmin/+ Mice
by Yuechi Song, Xiaochang Wang, Xiaohui Lu and Ting Wang
Toxins 2024, 16(5), 212; https://doi.org/10.3390/toxins16050212 - 30 Apr 2024
Viewed by 139
Abstract
Microcystins (MCs), toxins generated by cyanobacteria, feature microcystin-LR (MC-LR) as one of the most prevalent and toxic variants in aquatic environments. MC-LR not only causes environmental problems but also presents a substantial risk to human health. This study aimed to investigate the impact [...] Read more.
Microcystins (MCs), toxins generated by cyanobacteria, feature microcystin-LR (MC-LR) as one of the most prevalent and toxic variants in aquatic environments. MC-LR not only causes environmental problems but also presents a substantial risk to human health. This study aimed to investigate the impact of MC-LR on APCmin/+ mice, considered as an ideal animal model for intestinal tumors. We administered 40 µg/kg MC-LR to mice by gavage for 8 weeks, followed by histopathological examination, microbial diversity and metabolomics analysis. The mice exposed to MC-LR exhibited a significant promotion in colorectal cancer progression and impaired intestinal barrier function in the APCmin/+ mice compared with the control. Gut microbial dysbiosis was observed in the MC-LR-exposed mice, manifesting a notable alteration in the structure of the gut microbiota. This included the enrichment of Marvinbryantia, Gordonibacter and Family_XIII_AD3011_group and reductions in Faecalibaculum and Lachnoclostridium. Metabolomics analysis revealed increased bile acid (BA) metabolites in the intestinal contents of the mice exposed to MC-LR, particularly taurocholic acid (TCA), alpha-muricholic acid (α-MCA), 3-dehydrocholic acid (3-DHCA), 7-ketodeoxycholic acid (7-KDCA) and 12-ketodeoxycholic acid (12-KDCA). Moreover, we found that Marvinbryantia and Family_XIII_AD3011_group showed the strongest positive correlation with taurocholic acid (TCA) in the mice exposed to MC-LR. These findings provide new insights into the roles and mechanisms of MC-LR in susceptible populations, providing a basis for guiding values of MC-LR in drinking water. Full article
19 pages, 806 KiB  
Article
Digital Health Support: Current Status and Future Development for Enhancing Dialysis Patient Care and Empowering Patients
by Bernard Canaud, Andrew Davenport, Hélène Leray-Moragues, Marion Morena-Carrere, Jean Paul Cristol, Jeroen Kooman and Peter Kotanko
Toxins 2024, 16(5), 211; https://doi.org/10.3390/toxins16050211 - 30 Apr 2024
Viewed by 266
Abstract
Chronic kidney disease poses a growing global health concern, as an increasing number of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting various challenges including shortage of care givers and cost-related issues. In this narrative essay, we explore innovative strategies [...] Read more.
Chronic kidney disease poses a growing global health concern, as an increasing number of patients progress to end-stage kidney disease requiring kidney replacement therapy, presenting various challenges including shortage of care givers and cost-related issues. In this narrative essay, we explore innovative strategies based on in-depth literature analysis that may help healthcare systems face these challenges, with a focus on digital health technologies (DHTs), to enhance removal and ensure better control of broader spectrum of uremic toxins, to optimize resources, improve care and outcomes, and empower patients. Therefore, alternative strategies, such as self-care dialysis, home-based dialysis with the support of teledialysis, need to be developed. Managing ESKD requires an improvement in patient management, emphasizing patient education, caregiver knowledge, and robust digital support systems. The solution involves leveraging DHTs to automate HD, implement automated algorithm-driven controlled HD, remotely monitor patients, provide health education, and enable caregivers with data-driven decision-making. These technologies, including artificial intelligence, aim to enhance care quality, reduce practice variations, and improve treatment outcomes whilst supporting personalized kidney replacement therapy. This narrative essay offers an update on currently available digital health technologies used in the management of HD patients and envisions future technologies that, through digital solutions, potentially empower patients and will more effectively support their HD treatments. Full article
(This article belongs to the Special Issue Kidney Replacement Therapy by Hemodialysis: 21st Century Challenges)
Show Figures

Figure 1

20 pages, 3006 KiB  
Review
Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects
by Quynh Thi Nhu Bui, Biswajita Pradhan, Han-Sol Kim and Jang-Seu Ki
Toxins 2024, 16(5), 210; https://doi.org/10.3390/toxins16050210 - 30 Apr 2024
Viewed by 331
Abstract
The marine dinoflagellate Alexandrium is known to form harmful algal blooms (HABs) and produces saxitoxin (STX) and its derivatives (STXs) that cause paralytic shellfish poisoning (PSP) in humans. Cell growth and cellular metabolism are affected by environmental conditions, including nutrients, temperature, light, and [...] Read more.
The marine dinoflagellate Alexandrium is known to form harmful algal blooms (HABs) and produces saxitoxin (STX) and its derivatives (STXs) that cause paralytic shellfish poisoning (PSP) in humans. Cell growth and cellular metabolism are affected by environmental conditions, including nutrients, temperature, light, and the salinity of aquatic systems. Abiotic factors not only engage in photosynthesis, but also modulate the production of toxic secondary metabolites, such as STXs, in dinoflagellates. STXs production is influenced by a variety of abiotic factors; however, the relationship between the regulation of these abiotic variables and STXs accumulation seems not to be consistent, and sometimes it is controversial. Few studies have suggested that abiotic factors may influence toxicity and STXs-biosynthesis gene (sxt) regulation in toxic Alexandrium, particularly in A. catenella, A. minutum, and A. pacificum. Hence, in this review, we focused on STXs production in toxic Alexandrium with respect to the major abiotic factors, such as temperature, salinity, nutrients, and light intensity. This review informs future research on more sxt genes involved in STXs production in relation to the abiotic factors in toxic dinoflagellates. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

16 pages, 3430 KiB  
Article
Peptide Toxins from Antarctica: The Nemertean Predator and Scavenger Parborlasia corrugatus (McIntosh, 1876)
by Erik Jacobsson, Adam A. Strömstedt, Håkan S. Andersson, Conxita Avila and Ulf Göransson
Toxins 2024, 16(5), 209; https://doi.org/10.3390/toxins16050209 - 30 Apr 2024
Viewed by 247
Abstract
Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: [...] Read more.
Peptide toxins from marine invertebrates have found use as drugs and in biotechnological applications. Many marine habitats, however, remain underexplored for natural products, and the Southern Ocean is among them. Here, we report toxins from one of the top predators in Antarctic waters: the nemertean worm Parborlasia corrugatus (McIntosh, 1876). Transcriptome mining revealed a total of ten putative toxins with a cysteine pattern similar to that of alpha nemertides, four nemertide-beta-type sequences, and two novel full-length parborlysins. Nemertean worms express toxins in the epidermal mucus. Here, the expression was determined by liquid chromatography combined with mass spectrometry. The findings include a new type of nemertide, 8750 Da, containing eight cysteines. In addition, we report the presence of six cysteine-containing peptides. The toxicity of tissue extracts and mucus fractions was tested in an Artemia assay. Notably, significant activity was observed both in tissue and the high-molecular-weight mucus fraction, as well as in a parborlysin fraction. Membrane permeabilization experiments display the membranolytic activity of some peptides, most prominently the parborlysin fraction, with an estimated EC50 of 70 nM. Full article
(This article belongs to the Topic Marine Biotoxins and Bioactive Marine Natural Products)
Show Figures

Figure 1

15 pages, 4425 KiB  
Article
Specificity of DNA ADP-Ribosylation Reversal by NADARs
by Bara Cihlova, Yang Lu, Andreja Mikoč, Marion Schuller and Ivan Ahel
Toxins 2024, 16(5), 208; https://doi.org/10.3390/toxins16050208 - 28 Apr 2024
Viewed by 408
Abstract
Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR (“NAD- and ADP-ribose”-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles [...] Read more.
Recent discoveries establish DNA and RNA as bona fide substrates for ADP-ribosylation. NADAR (“NAD- and ADP-ribose”-associated) enzymes reverse guanine ADP-ribosylation and serve as antitoxins in the DarT-NADAR operon. Although NADARs are widespread across prokaryotes, eukaryotes, and viruses, their specificity and broader physiological roles remain poorly understood. Using phylogenetic and biochemical analyses, we further explore de-ADP-ribosylation activity and antitoxin functions of NADAR domains. We demonstrate that different subfamilies of NADAR proteins from representative E. coli strains and an E. coli-infecting phage retain biochemical activity while displaying specificity in providing protection from toxic guanine ADP-ribosylation in cells. Furthermore, we identify a myxobacterial enzyme within the YbiA subfamily that functions as an antitoxin for its associated DarT-unrelated ART toxin, which we termed YarT, thus presenting a hitherto uncharacterised ART-YbiA toxin–antitoxin pair. Our studies contribute to the burgeoning field of DNA ADP-ribosylation, supporting its physiological relevance within and beyond bacterial toxin–antitoxin systems. Notably, the specificity and confinement of NADARs to non-mammals infer their potential as highly specific targets for antimicrobial drugs with minimal off-target effects. Full article
Show Figures

Figure 1

20 pages, 1736 KiB  
Article
An Algoclay-Based Decontaminant Decreases Exposure to Aflatoxin B1, Ochratoxin A, and Deoxynivalenol in a Toxicokinetic Model, as well as Supports Intestinal Morphology, and Decreases Liver Oxidative Stress in Broiler Chickens Fed a Diet Naturally Contaminated with Deoxynivalenol
by Marie Gallissot, Maria A. Rodriguez, Mathias Devreese, Isis Van herteryck, Francesc Molist and Regiane R. Santos
Toxins 2024, 16(5), 207; https://doi.org/10.3390/toxins16050207 - 26 Apr 2024
Viewed by 444
Abstract
The aims of this study were (i) to determine the effect of an algoclay-based decontaminant on the oral availability of three mycotoxins (deoxynivalenol; DON, ochratoxin A; OTA, and aflatoxin B1; AFB1) using an oral bolus model and (ii) to [...] Read more.
The aims of this study were (i) to determine the effect of an algoclay-based decontaminant on the oral availability of three mycotoxins (deoxynivalenol; DON, ochratoxin A; OTA, and aflatoxin B1; AFB1) using an oral bolus model and (ii) to determine the effect of this decontaminant on the performance, intestinal morphology, liver oxidative stress, and metabolism, in broiler chickens fed a diet naturally contaminated with DON. In experiment 1, sixteen 27-day-old male chickens (approximately 1.6 kg body weight; BW) were fasted for 12 h and then given a bolus containing either the mycotoxins (0.5 mg DON/kg BW, 0.25 mg OTA/kg BW, and 2.0 mg AFB1/kg BW) alone (n = 8) or combined with the decontaminant (2.5 g decontaminant/kg feed; circa 240 mg/kg BW) (n = 8). Blood samples were taken between 0 h (before bolus administration) and 24 h post-administration for DON-3-sulphate, OTA, and AFB1 quantification in plasma. The algoclay decontaminant decreased the relative oral bioavailability of DON (39.9%), OTA (44.3%), and AFB1 (64.1%). In experiment 2, one-day-old male Ross broilers (n = 600) were divided into three treatments with ten replicates. Each replicate was a pen with 20 birds. The broiler chickens were fed a control diet with negligible levels of DON (0.19–0.25 mg/kg) or diets naturally contaminated with moderate levels of DON (2.60–2.91 mg/kg), either supplemented or not with an algoclay-based decontaminant (2 g/kg diet). Jejunum villus damage was observed on day 28, followed by villus shortening on d37 in broiler chickens fed the DON-contaminated diet. This negative effect was not observed when the DON-contaminated diet was supplemented with the algoclay-based decontaminant. On d37, the mRNA expression of glutathione synthetase was significantly increased in the liver of broiler chickens fed the DON-contaminated diet. However, its expression was similar to the control when the birds were fed the DON-contaminated diet supplemented with the algoclay-based decontaminant. In conclusion, the algoclay-based decontaminant reduced the systemic exposure of broiler chickens to DON, OTA, and AFB1 in a single oral bolus model. This can be attributed to the binding of the mycotoxins in the gastrointestinal tract. Moreover, dietary contamination with DON at levels between 2.69 and 2.91 mg/kg did not impair production performance but had a negative impact on broiler chicken intestinal morphology and the liver redox system. When the algoclay-based decontaminant was added to the diet, the harm caused by DON was no longer observed. This correlates with the results obtained in the toxicokinetic assay and can be attributed to a decreased absorption of DON. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 5581 KiB  
Article
Microbial Community Response to Granular Peroxide-Based Algaecide Treatment of a Cyanobacterial Harmful Algal Bloom in Lake Okeechobee, Florida (USA)
by Forrest W. Lefler, Maximiliano Barbosa, David E. Berthold, Rory Roten, West M. Bishop and H. Dail Laughinghouse IV
Toxins 2024, 16(5), 206; https://doi.org/10.3390/toxins16050206 - 26 Apr 2024
Viewed by 430
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) occur in fresh water globally. These can degrade water quality and produce toxins, resulting in ecological and economic damages. Thus, short-term management methods (i.e., algaecides) are necessary to rapidly mitigate the negative impacts of cyanoHABs. In this study, [...] Read more.
Cyanobacterial harmful algal blooms (cyanoHABs) occur in fresh water globally. These can degrade water quality and produce toxins, resulting in ecological and economic damages. Thus, short-term management methods (i.e., algaecides) are necessary to rapidly mitigate the negative impacts of cyanoHABs. In this study, we assess the efficacy of a hydrogen peroxide-based algaecide (PAK® 27) on a Microcystis dominated bloom which occurred within the Pahokee Marina on Lake Okeechobee, Florida, USA. We observed a significant reduction in chlorophyll a (96.81%), phycocyanin (93.17%), and Microcystis cell counts (99.92%), and a substantial reduction in microcystins (86.7%) 48 h after treatment (HAT). Additionally, there was a significant shift in bacterial community structure 48 HAT, which coincided with an increase in the relative abundance of photosynthetic protists. These results indicate that hydrogen peroxide-based algaecides are an effective treatment method for cyanoHAB control and highlight their effects on non-target microorganisms (i.e., bacteria and protists). Full article
Show Figures

Figure 1

18 pages, 1960 KiB  
Article
In Vitro Digestion and Intestinal Absorption of Mycotoxins Due to Exposure from Breakfast Cereals: Implications for Children’s Health
by Soraia V. M. de Sá, Miguel A. Faria, José O. Fernandes and Sara C. Cunha
Toxins 2024, 16(5), 205; https://doi.org/10.3390/toxins16050205 - 25 Apr 2024
Viewed by 263
Abstract
Breakfast cereals play a crucial role in children’s diets, providing essential nutrients that are vital for their growth and development. Children are known to be more susceptible than adults to the harmful effects of food contaminants, with mycotoxins being a common concern in [...] Read more.
Breakfast cereals play a crucial role in children’s diets, providing essential nutrients that are vital for their growth and development. Children are known to be more susceptible than adults to the harmful effects of food contaminants, with mycotoxins being a common concern in cereals. This study specifically investigated aflatoxin B1 (AFB1), enniatin B (ENNB), and sterigmatocystin (STG), three well-characterized mycotoxins found in cereals. The research aimed to address existing knowledge gaps by comprehensively evaluating the bioaccessibility and intestinal absorption of these three mycotoxins, both individually and in combination, when consumed with breakfast cereals and milk. The in vitro gastrointestinal method revealed patterns in the bioaccessibility of AFB1, ENNB, and STG. Overall, bioaccessibility increased as the food progressed from the stomach to the intestinal compartment, with the exception of ENNB, whose behavior differed depending on the type of milk. The ranking of overall bioaccessibility in different matrices was as follows: digested cereal > cereal with semi-skimmed milk > cereal with lactose-free milk > cereal with soy beverage. Bioaccessibility percentages varied considerably, ranging from 3.1% to 86.2% for AFB1, 1.5% to 59.3% for STG, and 0.6% to 98.2% for ENNB. Overall, the inclusion of milk in the ingested mixture had a greater impact on bioaccessibility compared to consuming the mycotoxins as a single compound or in combination. During intestinal transport, ENNB and STG exhibited the highest absorption rates when ingested together. This study highlights the importance of investigating the combined ingestion and transport of these mycotoxins to comprehensively assess their absorption and potential toxicity in humans, considering their frequent co-occurrence and the possibility of simultaneous exposure. Full article
Show Figures

Graphical abstract

17 pages, 2306 KiB  
Article
Advances in the Early Warning of Shellfish Toxification by Dinophysis acuminata
by Alexandra Duarte Silva, Susana Margarida Rodrigues and Lia Godinho
Toxins 2024, 16(5), 204; https://doi.org/10.3390/toxins16050204 - 24 Apr 2024
Viewed by 314
Abstract
In Western Europe, the incidence of DST is likely the highest globally, posing a significant threat with prolonged bans on shellfish harvesting, mainly caused by species of the dinoflagellate genus Dinophysis. Using a time series from 2014 to 2020, our study aimed [...] Read more.
In Western Europe, the incidence of DST is likely the highest globally, posing a significant threat with prolonged bans on shellfish harvesting, mainly caused by species of the dinoflagellate genus Dinophysis. Using a time series from 2014 to 2020, our study aimed (i) to determine the concentration of D. acuminata in water at which shellfish toxin levels could surpass the regulatory limit (160 µg OA equiv kg−1) and (ii) to assess the predictability of toxic events for timely mitigation actions, especially concerning potential harvesting bans. The analysis considered factors such as (i) overdispersion in the data, (ii) distinct periods of presence and absence, (iii) the persistence of cells, and (iv) the temporal lag between cells in the water and toxins in shellfish. Four generalized additive models were tested, with the Tweedie (TW-GAM) model showing superior performance (>85%) and lower complexity. The results suggest existing thresholds currently employed (200 and 500 cells L−1) are well-suited for the Portuguese coast, supported by empirical evidence (54–79% accuracy). The developed algorithm allows for thresholds to be tailored on a case-by-case basis, offering flexibility for regional variations. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

12 pages, 926 KiB  
Review
Beyond Pain: The Effects of OnabotulinumtoxinA Therapy on Sensitization and Interictal Symptoms in Chronic Migraine
by Paolo Alonge, Filippo Brighina, Simona Maccora, Laura Pilati, Salvatore Di Marco, Davide Ventimiglia, Bruna Maggio, Ivana Cutrò, Cecilia Camarda and Angelo Torrente
Toxins 2024, 16(5), 203; https://doi.org/10.3390/toxins16050203 - 23 Apr 2024
Viewed by 400
Abstract
Chronic migraine is a disease with a high burden on patients from both a working and quality of life point of view. The pathophysiology of this subtype of migraine is due to several factors, such as medication overuse. Nevertheless, the detrimental recurring of [...] Read more.
Chronic migraine is a disease with a high burden on patients from both a working and quality of life point of view. The pathophysiology of this subtype of migraine is due to several factors, such as medication overuse. Nevertheless, the detrimental recurring of headache attacks with central and peripheral sensitization plays a central role and explains some additional symptoms complained about by these patients even in the interictal phase. OnabotulinumtoxinA is a therapy indicated for chronic migraine since it has proven to reduce peripheral sensitization, showing even efficacy on central symptoms. The aim of this narrative review is to present the current evidence regarding the effect of OnabotulinumtoxinA on sensitization and interictal symptoms. Full article
(This article belongs to the Special Issue Botulinum Toxin and Migraine: Goals and Perspectives (Volume II))
Show Figures

Figure 1

13 pages, 960 KiB  
Review
Some Examples of Bacterial Toxins as Tools
by Gudula Schmidt
Toxins 2024, 16(5), 202; https://doi.org/10.3390/toxins16050202 - 23 Apr 2024
Viewed by 596
Abstract
Pathogenic bacteria produce diverse protein toxins to disturb the host’s defenses. This includes the opening of epithelial barriers to establish bacterial growth in deeper tissues of the host and to modulate immune cell functions. To achieve this, many toxins share the ability to [...] Read more.
Pathogenic bacteria produce diverse protein toxins to disturb the host’s defenses. This includes the opening of epithelial barriers to establish bacterial growth in deeper tissues of the host and to modulate immune cell functions. To achieve this, many toxins share the ability to enter mammalian cells, where they catalyze the modification of cellular proteins. The enzymatic activity is diverse and ranges from ribosyl- or glycosyl-transferase activity, the deamidation of proteins, and adenylate-cyclase activity to proteolytic cleavage. Protein toxins are highly active enzymes often with tight specificity for an intracellular protein or a protein family coupled with the intrinsic capability of entering mammalian cells. A broad understanding of their molecular mechanisms established bacterial toxins as powerful tools for cell biology. Both the enzymatic part and the pore-forming/protein transport capacity are currently used as tools engineered to study signaling pathways or to transport cargo like labeled compounds, nucleic acids, peptides, or proteins directly into the cytosol. Using several representative examples, this review is intended to provide a short overview of the state of the art in the use of bacterial toxins or parts thereof as tools. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop