Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects
Abstract
:1. Introduction
2. Environmental Factors Trigger STXs Production via Altering Growth, Physiology, and Genetic Modulation
2.1. Nutrients Modulate the Production of STXs
2.1.1. Carbon (C)
Species | Strain | Nutrient Source | Condition Range (µM/L) | Highest STXs Condition (µM/L) | Toxins | STXs eq (fmol/cell) | Reference |
---|---|---|---|---|---|---|---|
A. tamarense | Pr18b | NO3 | 0–880 | 880 | STX, neoSTX, GTX1–4, C1–3 | 25–49 | [44] |
CI01 | NO3 | 0–880 | 880 | C2 | 10–60 | [45] | |
CI01 | PO4 | 5–40 | 5 | C2 | 20–76 | ||
A. minutum | - | PO4 | 13–91 | 13 | STX, GTX1–4 | 10–27 | [32] |
- | NH4 | 40–150 | 150 | 29–31 | |||
- | NO3 | 5–496 | 496 | STX, GTX2, GTX1,4 | 6–80 | [46] | |
- | NH4 | 3–230 | 230 | 10–19 | |||
A. pacificum | HYM9704 | NO3 | 50–500 | - | neoSTX, GTX1/3, C1–2 | 15–74 | [47] |
PO4 | 1–50 | - | 68–121 | ||||
A. catenella | AC11 | Fe | 0–10 | 1 | GTX1–4 | 10–89 | [48] |
2.1.2. Nitrogen (N)
Total Dissolved Organic Nitrogen (DON)
Nitrate (NO3)
Ammonium (NH4)
Soil and Bacteria Extracts
2.1.3. Phosphorus (P)
2.1.4. Miscellaneous
2.2. Temperature: The Most Decisive Factor for STXs Production in Alexandrium
2.3. Salinity Modulates STXs Production in Alexandrium
Species | Strain | Origin | Salinity Range | Optimal Growth Salinity | Highest STXs Condition | Toxins | STXs eq (fmol/cell) | Reference |
---|---|---|---|---|---|---|---|---|
A. catenella | PFB38 | Chile | 15–35 | 35 | 35 | neoSTX, GTX1–5 | 95 | [102] |
ACT03 | Mediterranean Sea | 10–40 | 30 | 35 | C1–4, GTX3–5 | 50 | [87] | |
A. fundyense | MI | USA | 15–35 | 25 | 30 | STX, neoSTX, GTX1–4 | 62 | [91] |
BoF | USA | 15–35 | 25 | 30–35 | STX, neoSTX, GTX1–4 | 73–75 | ||
A. minutum | AM89BM | France | 12–37 | 20–37 | 15 | - | 50 | [103] |
AmKB06 | Malaysia | 2–30 | 15 | 5 | GTX1–6, C2, neoSTX, dcSTX | 12 | [99] | |
Alexsp17 | Vietnam | 5–35 | 10–15 | 30–35 | STX, neoSTX, dcSTX, C2, GTX2–4 | 30 | [98] | |
A. ostenfeldii | AOSH1 | Canada | 15–33 | 33 | 15 | C3 | − | [33] |
OKNL21 | Netherlands | 3–34 | 22 | 5 | STX, GTX2/3/5, C1–2 | 52 | [106] | |
A. peruvianum | ApKS01 | Malaysia | 2–30 | 25 | 25 | GTX1–6, C2, neoSTX, dcSTX | 0.8 | [99] |
A. pacificum | Alex05 | Republic of Korea | 20–40 | 30 | 30 | neoSTX, dcSTX, dcGTX2, STX, GTX1–6, C1–2 | 36 | [30] |
A. tamarense | Pr18b | Canada | 10–30 | 25 | 25 | STX, neoSTX, GTX1–4, C1–3 | 179 | [44] |
AtPA01 | Malaysia | 2–30 | 20–30 | 15 | GTX1–6, C2, neoSTX, dcSTX | 0.8 | [99] | |
A. tamiyavanichii | AcMS01 | Malaysia | 2–30 | 25 | 20 | GTX1–6, C2, neoSTX, dcSTX | 80 | [99] |
2.4. Light Intensity: The Crucial Factor for the Growth of Alexandrium and STXs Production
Species | Strain | Light Range (μmol Photons/m2/s) | Optimal Growth Condition | Highest STXs Condition | Toxins | STXs eq (fmol/cell) | Reference |
---|---|---|---|---|---|---|---|
A. tamarense | Pr18b | 40–470 | 230 | 150 | STX, neoSTX, GTX1–4, C1–3 | 0.9–6 | [44] |
A. catenella | ACT03 | 10–260 | − | 260 | GTX3–5, C2/4 | 14–25 | [87] |
KNU-YS-01 | 10–300 | 300 | 100 | neoSTX, GTX1–6, C1–2 | 150–350 | [119] | |
A. fundyense | MI | 6–425 | 425 | 175 | STX, neoSTX, GTX1–4 | 20–100 | [91] |
BoF | 6–425 | 425 | 425 | STX, neoSTX, GTX1–4 | 60–150 | ||
A. tamiyavanichii | AcMS01 | 10–100 | 100 | >50 | STX, GTX1–5, C2, dcSTX | 60–180 | [92] |
A. minutum | AmKB02 | 10–100 | 100 | >24 | GTX1/4 | 10–42 | [92] |
A. pacificum | LIMS-PS-2792 | 10–300 | 200 | 100 | GTX1–6, C1–2, dcGTX2–3 | 800–1400 | [119] |
3. Adaptation Mechanism of Alexandrium in Response to Environmental Conditions
4. Genetic Understanding of Environmental Factors and STXs Biosynthesis sxt Genes
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pradhan, B.; Maharana, S.; Bhakta, S.; Jena, M. Marine phytoplankton diversity of Odisha coast, India with special reference to new record of diatoms and dinoflagellates. Vegetos 2021, 35, 330–344. [Google Scholar] [CrossRef]
- Behera, C.; Pradhan, B.; Panda, R.; Nayak, R.; Nayak, S.; Jena, M. Algal Diversity of Saltpans, Huma (Ganjam), India. J. Indian Bot. Soc. 2021, 101, 107–120. [Google Scholar] [CrossRef]
- Dash, S.; Pradhan, B.; Behera, C.; Nayak, R.; Jena, M. Algal flora of Tampara lake, Chhatrapur, Odisha, India. J. Indian Bot. Soc. 2021, 101, 1–15. [Google Scholar] [CrossRef]
- Dash, S.; Pradhan, B.; Behera, C.; Jena, M. Algal diversity of Kanjiahata lake, Nandankanan, Odisha, India. J. Indian Bot. Soc. 2020, 99, 11–24. [Google Scholar] [CrossRef]
- Behera, C.; Dash, S.R.; Pradhan, B.; Jena, M.; Adhikary, S.P. Algal diversity of Ansupa lake, Odisha, India. Nelumbo 2020, 62, 207–220. [Google Scholar] [CrossRef]
- Reich, A.; Lazensky, R.; Faris, J.; Fleming, L.E.; Kirkpatrick, B.; Watkins, S.; Ullmann, S.; Kohler, K.; Hoagland, P. Assessing the impact of shellfish harvesting area closures on neurotoxic shellfish poisoning (NSP) incidence during red tide (Karenia brevis) blooms. Harmful Algae 2015, 43, 13–19. [Google Scholar] [CrossRef]
- Pierella Karlusich, J.J.; Ibarbalz, F.M.; Bowler, C. Phytoplankton in the Tara ocean. Ann. Rev. Mar. Sci. 2020, 12, 233–265. [Google Scholar] [CrossRef] [PubMed]
- Taylor, F.; Hoppenrath, M.; Saldarriaga, J.F. Dinoflagellate diversity and distribution. Biodivers. Conserv. 2008, 17, 407–418. [Google Scholar] [CrossRef]
- Wang, H.; Guo, R.; Lim, W.-A.; Allen, A.E.; Ki, J.-S. Comparative transcriptomics of toxin synthesis genes between the non-toxin producing dinoflagellate Cochlodinium polykrikoides and toxigenic Alexandrium pacificum. Harmful Algae 2020, 93, 101777. [Google Scholar] [CrossRef]
- Pradhan, B.; Kim, H.; Abassi, S.; Ki, J.-S. Toxic effects and tumor promotion activity of marine phytoplankton toxins: A Review. Toxins 2022, 14, 397. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Ki, J.-S. Phytoplankton toxins and their potential therapeutic applications: A journey toward the quest for potent pharmaceuticals. Mar. Drugs 2022, 20, 271. [Google Scholar] [CrossRef] [PubMed]
- Stüken, A.; Orr, R.J.; Kellmann, R.; Murray, S.A.; Neilan, B.A.; Jakobsen, K.S. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS ONE 2011, 6, e20096. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.M.; Alpermann, T.J.; Cembella, A.D.; Collos, Y.; Masseret, E.; Montresor, M. The globally distributed genus Alexandrium: Multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 2012, 14, 10–35. [Google Scholar] [CrossRef]
- Cestèle, S.; Catterall, W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie 2000, 82, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Wiese, M.; D’agostino, P.M.; Mihali, T.K.; Moffitt, M.C.; Neilan, B.A. Neurotoxic alkaloids: Saxitoxin and its analogs. Mar. Drugs 2010, 8, 2185–2211. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Marine biotoxins in shellfish–Saxitoxin group, scientific opinion of the panel on contaminants in the food chain. EFSA J. 2009, 1019, 1–76. [Google Scholar]
- Deeds, J.R.; Landsberg, J.H.; Etheridge, S.M.; Pitcher, G.C.; Longan, S.W. Non-traditional vectors for paralytic shellfish poisoning. Mar. Drugs 2008, 6, 308–348. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Sugino, K.; Itakura, H.; Hirota, M.; Yasumoto, Y. Comparative studies on paralytic shellfish toxin profile of dinoflagellates and bivalves. In Toxic Marine Phytoplankton; Granelli, E., Sundstrom, B., Edler, L., Anderson, D.M., Eds.; Elsevier Science Publishing: New York, NY, USA, 1990; pp. 391–396. [Google Scholar]
- Anderson, D.M.; Sullivan, J.J.; Reguera, B. Paralytic shellfish poisoning in northwest Spain: The toxicity of the dinoflagellate Gymnodinium catenatum. Toxicon 1989, 27, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Vandersea, M.W.; Kibler, S.R.; Tester, P.A.; Holderied, K.; Hondolero, D.E.; Powell, K.; Baird, S.; Doroff, A.; Dugan, D.; Litaker, R.W. Environmental factors influencing the distribution and abundance of Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska. Harmful Algae 2018, 77, 81–92. [Google Scholar] [CrossRef]
- Condie, S.A.; Oliver, E.C.; Hallegraeff, G.M. Environmental drivers of unprecedented Alexandrium catenella dinoflagellate blooms off eastern Tasmania, 2012–2018. Harmful Algae 2019, 87, 101628. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M.; Guiry, G. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 20 December 2023).
- Murray, S.; John, U.; Savela, H.; Kremp, A. Alexandrium spp.: Genetic and ecological factors influencing saxitoxin production and proliferation. In Climate Change and Marine and Freshwater Toxins, 2nd ed.; Botana, L.M., Louzao, M.C., Eds.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2015; pp. 125–155. [Google Scholar]
- Etheridge, S.M. Paralytic shellfish poisoning: Seafood safety and human health perspectives. Toxicon 2010, 56, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, L.; Negri, A.; Robertson, A. Paralytic shellfish toxins in tropical oceans. Toxin Rev. 2006, 25, 159–196. [Google Scholar] [CrossRef]
- Kim, H.; Park, H.; Wang, H.; Yoo, H.Y.; Park, J.; Ki, J.-S. Low temperature and cold stress significantly increase saxitoxins (STXs) and expression of STX biosynthesis genes sxtA4 and sxtG in the dinoflagellate Alexandrium catenella. Mar. Drugs 2021, 19, 291. [Google Scholar] [CrossRef] [PubMed]
- Eckford-Soper, L.K.; Bresnan, E.; Lacaze, J.-P.; Green, D.H.; Davidson, K. The competitive dynamics of toxic Alexandrium fundyense and non-toxic Alexandrium tamarense: The role of temperature. Harmful Algae 2016, 53, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Gettings, R.M.; Townsend, D.W.; Thomas, M.A.; Karp-Boss, L. Dynamics of late spring and summer phytoplankton communities on Georges Bank, with emphasis on diatoms, Alexandrium spp., and other dinoflagellates. Deep Sea Res. Part II Top. Stud. Oceanogr. 2014, 103, 120–138. [Google Scholar] [CrossRef]
- Cirés, S.; Delgado, A.; González-Pleiter, M.; Quesada, A. Temperature influences the production and transport of saxitoxin and the expression of sxt genes in the cyanobacterium Aphanizomenon gracile. Toxins 2017, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.T.N.; Kim, H.; Park, H.; Ki, J.-S. Salinity affects saxitoxins (STXs) toxicity in the dinoflagellate Alexandrium pacificum, with low transcription of SXT-biosynthesis genes sxtA4 and sxtG. Toxins 2021, 13, 733. [Google Scholar] [CrossRef]
- Wang, H.; Kim, H.; Park, H.; Ki, J.-S. Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum. Sci. Total Environ. 2022, 802, 149801. [Google Scholar] [CrossRef] [PubMed]
- Hii, K.S.; Lim, P.T.; Kon, N.F.; Takata, Y.; Usup, G.; Leaw, C.P. Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for the saxitoxin genes and toxin production. Harmful Algae 2016, 56, 9–21. [Google Scholar] [CrossRef]
- Maclean, C.; Cembella, A.D.; Quilliam, M.A. Effects of light, salinity and inorganic nitrogen on cell growth and spirolide production in the marine dinoflagellate Alexandrium ostenfeldii (Paulsen) Balech et Tangen. Bot. Mar. 2003, 46, 466–476. [Google Scholar] [CrossRef]
- Collos, Y.; Bec, B.; Jauzein, C.; Abadie, E.; Laugier, T.; Lautier, J.; Pastoureaud, A.; Souchu, P.; Vaquer, A. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 2009, 61, 68–75. [Google Scholar] [CrossRef]
- Langdon, C. On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. Part I. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis. J. Plankton Res. 1987, 9, 459–482. [Google Scholar]
- Flynn, K.J.; Clark, D.R.; Xue, Y. Modeling the release of dissolved organic matter by phytoplankton. J. Phycol. 2008, 44, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.C.Y.; Maekawa, M.; Taguchi, S. Carbon and nitrogen acquisition by the toxic dinoflagellate Alexandrium tamarense in response to different nitrogen sources and supply modes. Harmful Algae 2010, 9, 48–58. [Google Scholar] [CrossRef]
- Flynn, K.; Jones, K.; Flynn, K. Comparisons among species of Alexandrium (Dinophyceae) grown in nitrogen-or phosphorus-limiting batch culture. Mar. Biol. 1996, 126, 9–18. [Google Scholar] [CrossRef]
- Paladugu, S.R.; James, C.K.; Looper, R.E. A direct C11 alkylation strategy on the saxitoxin core: A synthesis of (+)-11-saxitoxinethanoic acid. Org. Lett. 2019, 21, 7999–8002. [Google Scholar] [CrossRef] [PubMed]
- Tortell, P.D.; Payne, C.D.; Li, Y.; Trimborn, S.; Rost, B.; Smith, W.O.; Riesselman, C.; Dunbar, R.B.; Sedwick, P.; DiTullio, G.R. CO2 sensitivity of Southern Ocean phytoplankton. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Duan, S.; Doody, T.R.; Haq, S.; Smith, R.M.; Johnson, T.A.N.; Newcomb, K.D.; Gorman, J.; Bowman, N.; Mayer, P.M. Human-accelerated weathering increases salinization, major ions, and alkalinization in fresh water across land use. Appl. Geochem. 2017, 83, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.A.; Gobler, C.J.; Hansen, P.J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae 2020, 91, 101594. [Google Scholar] [CrossRef] [PubMed]
- Van de Waal, D.B.; Eberlein, T.; John, U.; Wohlrab, S.; Rost, B. Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense. Toxicon 2014, 78, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Parkhill, J.-P.; Cembella, A.D. Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada. J. Plankton Res. 1999, 21, 939–955. [Google Scholar] [CrossRef]
- Wang, D.-Z.; Hsieh, D.P. Effects of nitrate and phosphate on growth and C2 toxin productivity of Alexandrium tamarense CI01 in culture. Mar. Pollut. Bull. 2002, 45, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Lim, P.-T.; Leaw, C.-P.; Kobiyama, A.; Ogata, T. Growth and toxin production of tropical Alexandrium minutum Halim (Dinophyceae) under various nitrogen to phosphorus ratios. J. Appl. Phycol. 2010, 22, 203–210. [Google Scholar] [CrossRef]
- Han, M.; Lee, H.; Anderson, D.M.; Kim, B. Paralytic shellfish toxin production by the dinoflagellate Alexandrium pacificum (Chinhae Bay, Korea) in axenic, nutrient-limited chemostat cultures and nutrient-enriched batch cultures. Mar. Pollut. Bull. 2016, 104, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Yarimizu, K.; Mardones, J.I.; Paredes-Mella, J.; Norambuena-Subiabre, L.; Carrano, C.J.; Maruyama, F. The effect of iron on Chilean Alexandrium catenella growth and paralytic shellfish toxin production as related to algal blooms. BioMetals 2022, 35, 39–51. [Google Scholar] [CrossRef] [PubMed]
- John, E.; Flynn, K. Growth dynamics and toxicity of Alexandrium fundyense (Dinophyceae): The effect of changing N/P supply ratios on internal toxin and nutrient levels. Eur. J. Phycol. 2000, 35, 11–23. [Google Scholar] [CrossRef]
- Juhl, A.R.; Latz, M.I. Mechanisms of fluid shear—Induced inhibition of population growth in a red-tide dinoflagellate. J. Phycol. 2002, 38, 683–694. [Google Scholar] [CrossRef]
- Yeung, P.K.K.; Wong, J.T.Y. Inhibition of cell proliferation by mechanical agitation involves transient cell cycle arrest at G1 phase in dinoflagellates. Protoplasma 2003, 220, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Dyhrman, S.T.; Anderson, D.M. Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol. Oceanogr. 2003, 48, 647–655. [Google Scholar] [CrossRef]
- Huang, K.; Feng, Q.; Zhang, Y.; Ou, L.; Cen, J.; Lu, S.; Qi, Y. Comparative uptake and assimilation of nitrate, ammonium, and urea by dinoflagellate Karenia mikimotoi and diatom Skeletonema costatum s.l. in the coastal waters of the East China Sea. Mar. Pollut. Bull. 2020, 155, 111200. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.H.; McClean, M. Growth responses of Alexandrium minutum (Dinophyceae) as a function of three different nitrogen sources and irradiance. N. Z. J. Mar. Freshw. Res. 1997, 31, 1–7. [Google Scholar] [CrossRef]
- Shankar, S.; Townsend, D.W.; Thomas, M.A. Ammonium and maintenance of bloom populations of Alexandrium fundyense in the Gulf of Maine and on Georges Bank: Results of laboratory culture experiments. Mar. Ecol. Prog. Ser. 2014, 507, 57–67. [Google Scholar] [CrossRef]
- Jauzein, C.; Loureiro, S.; Garcés, E.; Collos, Y. Interactions between ammonium and urea uptake by five strains of Alexandrium catenella (Dinophyceae) in culture. Aquat. Microb. Ecol. 2008, 53, 271–280. [Google Scholar] [CrossRef]
- Collos, Y.; Vaquer, A.; Laabir, M.; Abadie, E.; Laugier, T.; Pastoureaud, A.; Souchu, P. Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, southern France. Harmful Algae 2007, 6, 781–789. [Google Scholar] [CrossRef]
- Matsuda, A.; Nishijima, T.; Fukami, K. Effects of nitrogenous and phosphorus nutrients on the growth of toxic dinoflagellate Alexandrium catenella. Bull. Jpn. Soc. Sci. Fish. 1999, 65, 847–855. [Google Scholar] [CrossRef]
- Stolte, W.; Panosso, R.; Gisselson, L.-Å.; Granéli, E. Utilization efficiency of nitrogen associated with riverine dissolved organic carbon (> 1 kDa) by two toxin-producing phytoplankton species. Aquat. Microb. Ecol. 2002, 29, 97–105. [Google Scholar] [CrossRef]
- Fagerberg, T.; Carlsson, P.; Lundgren, M. A large molecular size fraction of riverine high molecular weight dissolved organic matter (HMW DOM) stimulates growth of the harmful dinoflagellate Alexandrium minutum. Harmful Algae 2009, 8, 823–831. [Google Scholar] [CrossRef]
- Loureiro, S.; Garcés, E.; Collos, Y.; Vaqué, D.; Camp, J. Effect of marine autotrophic dissolved organic matter (DOM) on Alexandrium catenella in semi-continuous cultures. J. Plankton Res. 2009, 31, 1363–1372. [Google Scholar] [CrossRef]
- Jauzein, C.; Collos, Y.; Garcés, E.; Vila, M.; Maso, M. Short-term temporal variability of ammonium and urea uptake by Alexandrium catenella (Dinophyta) in cultures. J. Phycol. 2008, 44, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Abassi, S.; Kim, H.S.; Bui, Q.T.N.; Ki, J.S. Effects of nitrate on the saxitoxins biosynthesis revealed by sxt genes in the toxic dinoflagellate Alexandrium pacificum (group IV). Harmful Algae 2023, 127, 102473. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, W.; Shi, Y.; Cong, W. Nitrate and phosphate supplementation to increase toxin production by the marine dinoflagellate Alexandrium tamarense. Mar. Pollut. Bull. 2006, 52, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Maguer, J.F.; l’Helguen, S.; Madec, C.; Labry, C.; Le Corre, P. Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dinophyceae): Effecr of N–limited growth rate on nitrate and ammonium interaction. J. Phycol. 2007, 43, 295–303. [Google Scholar] [CrossRef]
- Anderson, D.; Kulis, D.; Sullivan, J.; Hall, S.; Lee, C. Dynamics and physiology of saxitoxin production by the dinoflagellates Alexandrium spp. Mar. Biol. 1990, 104, 511–524. [Google Scholar] [CrossRef]
- Abassi, S.; Ki, J.-S. Increased nitrate concentration differentially affects cell growth and expression of nitrate transporter and other nitrogen-related genes in the harmful dinoflagellate Prorocentrum minimum. Chemosphere 2022, 288, 132526. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.A.; Rashid, M. Influence of humic substances on the growth of marine phytoplankton: Dinoflagellates. Limnol. Oceanogr. 1968, 13, 598–606. [Google Scholar] [CrossRef]
- Mustakim, G.R.; Shaleh, S.R.M.; Ayub, M.N.A. Effect of different concentration of soil extracts on the growth of Pyrodinium bahamense var. Compressum. Int. J. Fish. Aquat. Sci. 2019, 7, 353–355. [Google Scholar]
- Gagnon, R.; Levasseur, M.; Weise, A.M.; Fauchot, J.; Campbell, P.G.; Weissenboeck, B.J.; Merzouk, A.; Gosselin, M.; Vigneault, B. Growth stimulation of Alexandrium tamarense (Dinophyceae) by humic substances from the Manicouagan river (Eastern Canada). J. Phycol. 2005, 41, 489–497. [Google Scholar] [CrossRef]
- Carlsson, P.; Edling, H.; Béchemin, C. Interactions between a marine dinoflagellate (Alexandrium catenella) and a bacterial community utilizing riverine humic substances. Aquat. Microb. Ecol. 1998, 16, 65–80. [Google Scholar] [CrossRef]
- Doblin, M.; Legrand, C.; Carlsson, P.; Hummert, C.; Graneli, E.; Hallegraeff, G. Uptake of humic substances by the toxic dinoflagellate Alexandrium catenella. In Harmful Algal Blooms 2000; Hallegraeff, G.M., Blackburn, S.I., Bolch, C.J., Lewis, R.J., Eds.; UNESCO: Paris, France, 2001; pp. 336–339. [Google Scholar]
- Murata, A.; Leong, S.C.; Nagashima, Y.; Taguchi, S. Nitrogen:Phosphorus supply ratio may control the protein and total toxin of dinoflagellate Alexandrium tamarense. Toxicon 2006, 48, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Wang, D.; Huang, B.; Hong, H.; Qi, Y.; Lu, S. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. J. Plankton Res. 2008, 30, 1007–1017. [Google Scholar] [CrossRef]
- Jauzein, C.; Labry, C.; Youenou, A.; Quéré, J.; Delmas, D.; Collos, Y. Growth and phosphorus uptake by the toxic dinoflagellate Alexandrium catenella (Dinophyceae) in response to phosphate limitation. J. Phycol. 2010, 46, 926–936. [Google Scholar] [CrossRef]
- Labry, C.; Erard–Le Denn, E.; Chapelle, A.; Fauchot, J.; Youenou, A.; Crassous, M.-P.; Le Grand, J.; Lorgeoux, B. Competition for phosphorus between two dinoflagellates: A toxic Alexandrium minutum and a non-toxic Heterocapsa triquetra. J. Exp. Mar. Bio. Ecol. 2008, 358, 124–135. [Google Scholar] [CrossRef]
- Flynn, K.; Franco, J.M.; Fernández, P.; Reguera, B.; Zapata, M.; Wood, G.; Flynn, K.J. Changes in toxin content, biomass and pigments of the dinoflagellate Alexandrium minutum during nitrogen refeeding and growth into nitrogen or phosphorus stress. Mar. Ecol. Prog. Ser. 1994, 111, 99–109. [Google Scholar] [CrossRef]
- Jean, N.; Perié, L.; Dumont, E.; Bertheau, L.; Balliau, T.; Caruana, A.M.; Amzil, Z.; Laabir, M.; Masseret, E. Metal stresses modify soluble proteomes and toxin profiles in two Mediterranean strains of the distributed dinoflagellate Alexandrium pacificum. Sci. Total Environ. 2022, 818, 151680. [Google Scholar] [CrossRef] [PubMed]
- Rueler, J.G.; Ades, D.R. The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). J. Phycol. 1987, 23, 452–457. [Google Scholar] [CrossRef]
- He, H.; Chen, F.; Li, H.; Xiang, W.; Li, Y.; Jiang, Y. Effect of iron on growth, biochemical composition and paralytic shellfish poisoning toxins production of Alexandrium tamarense. Harmful Algae 2010, 9, 98–104. [Google Scholar] [CrossRef]
- Yang, I.; Beszteri, S.; Tillmann, U.; Cembella, A.; John, U. Growth-and nutrient-dependent gene expression in the toxigenic marine dinoflagellate Alexandrium minutum. Harmful Algae 2011, 12, 55–69. [Google Scholar] [CrossRef]
- Long, M.; Holland, A.; Planquette, H.; Santana, D.G.; Whitby, H.; Soudant, P.; Sarthou, G.; Hegaret, H.; Jolley, D.F. Effects of copper on the dinoflagellate Alexandrium minutum and its allelochemical potency. Aquat. Toxicol. 2019, 210, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Taroncher-Oldenburg, G.; Kulis, D.M.; Anderson, D.M. Coupling of saxitoxin biosynthesis to the G1 phase of the cell cycle in the dinoflagellate Alexandrin fundyense: Temperature and nutrient effects. Nat. Toxins 1999, 7, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Ishimaru, T.; Kodama, M. Effect of water temperature and light intensity on growth rate and toxicity change in Protogonyaulax tamarensis. Mar. Biol. 1987, 95, 217–220. [Google Scholar] [CrossRef]
- Hamasaki, K.; Horie, M.; Tokimitsu, S.; Toda, T.; Taguchi, S. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J. Plankton Res. 2001, 23, 271–278. [Google Scholar] [CrossRef]
- Tillmann, U.; John, U. Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: An allelochemical defence mechanism independent of PSP-toxin content. Mar. Ecol. Prog. Ser. 2002, 230, 47–58. [Google Scholar] [CrossRef]
- Laabir, M.; Collos, Y.; Masseret, E.; Grzebyk, D.; Abadie, E.; Savar, V.; Sibat, M.; Amzil, Z. Influence of environmental factors on the paralytic shellfish toxin content and profile of Alexandrium catenella (Dinophyceae) isolated from the Mediterranean Sea. Mar. Drugs 2013, 11, 1583–1601. [Google Scholar] [CrossRef]
- Navarro, J.; Munoz, M.; Contreras, A. Temperature as a factor regulating growth and toxin content in the dinoflagellate Alexandrium catenella. Harmful Algae 2006, 5, 762–769. [Google Scholar] [CrossRef]
- Lilly, E.; Kulis, D.; Gentien, P.; Anderson, D. Paralytic shellfish poisoning toxins in France linked to a human-introduced strain of Alexandrium catenella from the western Pacific: Evidence from DNA and toxin analysis. J. Plankton Res. 2002, 24, 443–452. [Google Scholar] [CrossRef]
- Abdulhussain, A.H.; Cook, K.B.; Turner, A.D.; Lewis, A.M.; Elsafi, M.A.; Mayor, D.J. The influence of the toxin producing dinoflagellate, Alexandrium catenella (1119/27), on the feeding and survival of the marine Copepod, Acartia tonsa. Harmful Algae 2020, 98, 101890. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, S.M.; Roesler, C.S. Effects of temperature, irradiance, and salinity on photosynthesis, growth rates, total toxicity, and toxin composition for Alexandrium fundyense isolates from the Gulf of Maine and Bay of Fundy. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 2491–2500. [Google Scholar] [CrossRef]
- Lim, P.T.; Leaw, C.P.; Usup, G.; Kobiyama, A.; Koike, K.; Ogata, T. Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichii and Alexandrium minuyum (Dinophyceae). J. Phycol. 2006, 42, 786–799. [Google Scholar] [CrossRef]
- Hadjadji, I.; Laabir, M.; Frihi, H.; Collos, Y.; Shao, Z.J.; Berrebi, P.; Abadie, E.; Amzil, Z.; Chomérat, N.; Rolland, J.L. Unsuspected intraspecific variability in the toxin production, growth and morphology of the dinoflagellate Alexandrium pacificum RW Litaker (Group IV) blooming in a South Western Mediterranean marine ecosystem, Annaba Bay (Algeria). Toxicon 2020, 180, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Caruana, A.M.; Le Gac, M.; Hervé, F.; Rovillon, G.-A.; Geffroy, S.; Malo, F.; Abadie, E.; Amzil, Z. Alexandrium pacificum and Alexandrium minutum: Harmful or environmentally friendly? Mar. Environ. Res. 2020, 160, 105014. [Google Scholar] [CrossRef] [PubMed]
- Alkawri, A.; Ramaiah, N. Spatio-temporal variability of dinoflagellate assemblages in different salinity regimes in the west coast of India. Harmful Algae 2010, 9, 153–162. [Google Scholar] [CrossRef]
- Errera, R.M.; Campbell, L. Osmotic stress triggers toxin production by the dinoflagellate Karenia brevis. Proc. Natl. Acad. Sci. USA 2011, 108, 10597–10601. [Google Scholar] [CrossRef] [PubMed]
- Kirst, G. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Biol. 1990, 41, 21–53. [Google Scholar] [CrossRef]
- Lim, P.T.; Leaw, C.P.; Sato, S.; Thuoc, C.V.; Kobiyama, A.; Ogata, T. Effect of salinity on growth and toxin production of Alexandrium minutum isolated from a shrimp culture pond in northern Vietnam. J. Appl. Phycol. 2011, 23, 857–864. [Google Scholar] [CrossRef]
- Lim, P.-T.; Ogata, T. Salinity effect on growth and toxin production of four tropical Alexandrium species (Dinophyceae). Toxicon 2005, 45, 699–710. [Google Scholar] [CrossRef]
- Shin, H.H.; Baek, S.H.; Zhun, L.; Han, M.-S.; Oh, S.J.; Youn, S.-H.; Kim, Y.S.; Kim, D.; Lim, W.-A. Resting cysts, and effects of temperature and salinity on the growth of vegetative cells of the potentially harmful species Alexandrium insuetum Balech (Dinophyceae). Harmful Algae 2014, 39, 175–184. [Google Scholar] [CrossRef]
- Glaser, K.; Karsten, U. Salinity tolerance in biogeographically different strains of the marine benthic diatom Cylindrotheca closterium (Bacillariophyceae). J. Appl. Phycol. 2020, 32, 3809–3816. [Google Scholar] [CrossRef]
- Aguilera-Belmonte, A.; Inostroza, I.; Carrillo, K.S.; Franco, J.M.; Riobó, P.; Gómez, P.I. The combined effect of salinity and temperature on the growth and toxin content of four Chilean strains of Alexandrium catenella (Whedon and Kofoid) Balech 1985 (Dinophyceae) isolated from an outbreak occurring in southern Chile in 2009. Harmful Algae 2013, 23, 55–59. [Google Scholar] [CrossRef]
- Grzebyk, D.; Béchemin, C.; Ward, C.J.; Vérité, C.; Codd, G.A.; Maestrini, S.Y. Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minutum. J. Plankton Res. 2003, 25, 1185–1199. [Google Scholar] [CrossRef]
- Hwang, D.F.; Lu, Y.H. Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 2000, 38, 1491–1503. [Google Scholar] [CrossRef]
- Lazcano-Ferrat, I.; Lovatt, C.J. Effect of salinity on Arginine biosynthesis in leaves of Phaseolus vulgaris LP acutifolius A. Gray. Crop Sci. 1997, 37, 469–475. [Google Scholar] [CrossRef]
- Martens, H.; Van de Waal, D.B.; Brandenburg, K.M.; Krock, B.; Tillmann, U. Salinity effects on growth and toxin production in an Alexandrium ostenfeldii (Dinophyceae) isolate from The Netherlands. J. Plankton Res. 2016, 38, 1302–1316. [Google Scholar] [CrossRef]
- Murray, S.A.; Diwan, R.; Orr, R.J.; Kohli, G.S.; John, U. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates. Mol. Phylogenet. Evol. 2015, 92, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Wiese, M. Investigations into Abiotic and Biotic Factors Regulating Saxitoxin Synthesis in the Dinoflagellate Genus Alexandrium. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2012. [Google Scholar]
- Glover, H.; Beardall, J.; Morris, I. Effects of environmental factors on photosynthesis patterns in Phaeodactylum tricornutum (bacillariophyceae). I. Effect of nitrogen deficiency and light intensity. J. Phycol. 1975, 11, 424–429. [Google Scholar]
- Vingiani, G.M.; Štālberga, D.; De Luca, P.; Ianora, A.; De Luca, D.; Lauritano, C. De novo transcriptome of the non-saxitoxin producing Alexandrium tamutum reveals new insights on harmful dinoflagellates. Mar. Drugs 2020, 18, 386. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.A.; Yusof, N.Y.M.; Sahrani, F.K.; Usup, G.; Ahmad, A.; Baharum, S.N.; Muhammad, N.A.N.; Bunawan, H. Insights into Alexandrium minutum nutrient acquisition, metabolism and saxitoxin biosynthesis through comprehensive transcriptome survey. Biology 2021, 10, 826. [Google Scholar] [CrossRef]
- Oh, S.J.; Kim, D.-I.; Sajima, T.; Shimasaki, Y.; Matsuyama, Y.; Oshima, Y.; Honjo, T.; Yang, H.-S. Effects of irradiance of various wavelengths from light-emitting diodes on the growth of the harmful dinoflagellate Heterocapsa circularisquama and the diatom Skeletonema costatum. Fish. Sci. 2008, 74, 137–145. [Google Scholar] [CrossRef]
- McGillicuddy, D.J., Jr.; Anderson, D.M.; Lynch, D.R.; Townsend, D.W. Mechanisms regulating large-scale seasonal fluctuations in Alexandrium fundyense populations in the Gulf of Maine: Results from a physical–biological model. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 2698–2714. [Google Scholar] [CrossRef]
- Prézelin, B.B.; Alberte, R.S. Photosynthetic characteristics and organization of chlorophyll in marine dinoflagellates. Proc. Natl. Acad. Sci. USA 1978, 75, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Prézelin, B.B. The role of peridinin-chlorophyll a-proteins in the photosynthetic light adaption of the marine dinoflagellate, Glenodinium sp. Planta 1976, 130, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Rivkin, R.B. Influence of irradiance and spectral quality on the carbon metabolism of phytoplankton. I. Photosynthesis, chemical composition and growth. Mar. Ecol. Prog. Ser. Oldendorf 1989, 55, 291–304. [Google Scholar] [CrossRef]
- Burja, A.M.; Banaigs, B.; Abou-Mansour, E.; Burgess, J.G.; Wright, P.C. Marine cyanobacteria—A prolific source of natural products. Tetrahedron 2001, 57, 9347–9377. [Google Scholar] [CrossRef]
- Salgado, P.; Vázquez, J.A.; Riobó, P.; Franco, J.M.; Figueroa, R.I.; Kremp, A.; Bravo, I. A kinetic and factorial approach to study the effects of temperature and salinity on growth and toxin production by the dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. PLoS ONE 2015, 10, e0143021. [Google Scholar] [CrossRef]
- Nam, K.T.; Kim, S.-Y.; Moon, C.-H.; Kim, C.-H.; Oh, S.J. Effects of light wavelengths on the growth and paralytic shellfish toxin production of Alexandrium catenella and A. pacificum. J. Korean Soc. Mar. Environ. 2020, 26, 84–92. [Google Scholar] [CrossRef]
- Pistocchi, R. Factors affecting algal toxicity. In Toxins and Biologically Active Compound from Microalgae; Rossini, G.P., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2014; pp. 75–96. [Google Scholar]
- Alpermann, T.J.; Tillmann, U.; Beszteri, B.; Cembella, A.D.; John, U. Phenotypic variation and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae). J. Phycol. 2010, 46, 18–32. [Google Scholar] [CrossRef]
- Gao, Y.; Sassenhagen, I.; Richlen, M.L.; Anderson, D.M.; Martin, J.L.; Erdner, D.L. Spatiotemporal genetic structure of regional-scale Alexandrium catenella dinoflagellate blooms explained by extensive dispersal and environmental selection. Harmful Algae 2019, 86, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Kremp, A.; Oja, J.; LeTortorec, A.H.; Hakanen, P.; Tahvanainen, P.; Tuimala, J.; Suikkanen, S. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environ. Microbiol. 2016, 18, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Prieto, R.; Trench, R. Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll–protein complexes to different photon-flux densities. Mar. Biol. 1997, 130, 23–33. [Google Scholar] [CrossRef]
- Kellmann, R.; Mihali, T.K.; Jeon, Y.J.; Pickford, R.; Pomati, F.; Neilan, B.A. Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl. Environ. Microbiol. 2008, 74, 4044–4053. [Google Scholar] [CrossRef] [PubMed]
- Kellmann, R.; Michali, T.K.; Neilan, B.A. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J. Mol. Evol. 2008, 67, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Schantz, E.J.; Mold, J.D.; Stanger, D.W.; Shavel, J.; Riel, F.J.; Bowden, J.P.; Lynch, J.M.; Wyler, R.S.; Riegel, B.; Sommer, H. Paralytic shellfish poison. VI. A procedure for the isolation and purification of the poison from toxic clam and mussel tissues. J. Am. Chem. Soc. 1957, 79, 5230–5235. [Google Scholar] [CrossRef]
- Moustafa, A.; Loram, J.E.; Hackett, J.D.; Anderson, D.M.; Plumley, F.G.; Bhattacharya, D. Origin of saxitoxin biosynthetic genes in cyanobacteria. PLoS ONE 2009, 4, e5758. [Google Scholar] [CrossRef] [PubMed]
- Hackett, J.D.; Wisecaver, J.H.; Brosnahan, M.L.; Kulis, D.M.; Anderson, D.M.; Bhattacharya, D.; Plumley, F.G.; Erdner, D.L. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol. Biol. Evol. 2013, 30, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.-F.; Lin, L.; Wang, D.-Z. Comparative transcriptome analysis of a toxin-producing dinoflagellate Alexandrium catenella and its non-toxic mutant. Mar. Drugs 2014, 12, 5698–5718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.-F.; Lin, L.; Wang, D.-Z. Whole transcriptomic analysis provides insights into molecular mechanisms for toxin biosynthesis in a toxic dinoflagellate Alexandrium catenella (ACHK-T). Toxins 2017, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-Z.; Zhang, S.-F.; Zhang, Y.; Lin, L. Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview. J. Proteom. 2016, 135, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Barua, A.; Ruvindy, R.; Savela, H.; Ajani, P.A.; Murray, S.A. The genetic basis of toxin biosynthesis in dinoflagellates. Microorganisms 2019, 7, 222. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, H.; Wang, H.; Kim, T.; Ki, J.S. Saxitoxins-producing potential of the marine dinoflagellate Alexandrium affine and its environmental implications revealed by toxins and transcriptome profiling. Mar. Environ. Res. 2023, 185, 105874. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.T.N.; Kim, H.; Wang, H.; Ki, J.S. Unveiling the genomic structures and evolutionary events of the saxitoxin biosynthetic gene sxtA in the marine toxic dinoflagellate Alexandrium. Mol. Phylogenet. Evol. 2022, 168, 107417. [Google Scholar]
- Kim, H.S.; Bui, Q.T.N.; Wang, H.; Ki, J.S. Molecular cloning, origin, and expression of saxitoxin biosynthesis gene sxtB from the toxic dinoflagellate Alexandrium catenella. J. Appl. Phycol. 2023, 35, 673–685. [Google Scholar] [CrossRef]
- Mihali, T.K.; Kellmann, R.; Neilan, B.A. Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem. 2009, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mihali, T.K.; Carmichael, W.W.; Neilan, B.A. A putative gene cluster from a Lyngbya wollei bloom that encodes paralytic shellfish toxin biosynthesis. PLoS ONE 2011, 6, e14657. [Google Scholar] [CrossRef] [PubMed]
- Cullen, A.; D’Agostino, P.M.; Mazmouz, R.; Pickford, R.; Wood, S.; Neilan, B.A. Insertions within the saxitoxin biosynthetic gene cluster result in differential toxin profiles. ACS Chem. Biol. 2018, 13, 3107–3114. [Google Scholar] [CrossRef] [PubMed]
- Chekan, J.R.; Fallon, T.R.; Moore, B.S. Biosynthesis of marine toxins. Curr. Opin. Chem. Biol. 2020, 59, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Orr, R.J.; Stüken, A.; Murray, S.A.; Jakobsen, K.S. Evolutionary acquisition and loss of saxitoxin biosynthesis in dinoflagellates: The second “core” gene, sxtG. Appl. Environ. Microbiol. 2013, 79, 2128–2136. [Google Scholar] [CrossRef]
- Akbar, M.A.; Mohd Yusof, N.Y.; Tahir, N.I.; Ahmad, A.; Usup, G.; Sahrani, F.K.; Bunawan, H. Biosynthesis of saxitoxin in marine dinoflagellates: An omics perspective. Mar. Drugs 2020, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Bui, Q.T.N.; Shin, J.; Wang, H.; Ki, J.S. Promoter regions of sxtA and sxtG reveal relationship between saxitoxin biosynthesis and photosynthesis in toxic Alexandrium catenella. J. Appl. Phycol. 2024, 1–15. [Google Scholar] [CrossRef]
- Wang, H.; Kim, H.; Ki, J.-S. Preliminary result of de novo transcriptome sequencing of the marine toxic dinoflagellate Alexandrium catenella incubated under several different stresses. Mar. Biol. 2021, 168, 104. [Google Scholar] [CrossRef]
- Naves, J.L.; Prado, M.P.; Rangel, M.; De Sanctis, B.; Machado-Santelli, G.; Freitas, J.C. Cytotoxicity in the marine dinoflagellate Prorocentrum mexicanum from Brazil. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 143, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Bui, Q.T.N.; Ki, J.S. Molecular characterization and expression analysis of saxitoxin biosynthesis gene sxtU from toxigenic dinoflagellate Alexandrium pacificum. J. Appl. Phycol. 2023, 35, 687–700. [Google Scholar] [CrossRef]
Species | Strain | Origin | Temperature | Toxins | STXs eq (fmol/cell) | Reference |
---|---|---|---|---|---|---|
A. catenella | ACC02 | Chile | 10–16 °C | − | 3–75 | [88] |
ATTL01 | France | 15 °C | − | 0.2 | [89] | |
Alex03 | Republic of Korea | 12–20 °C | neoSTX, dcSTX, dcGTX2, STX, GTX1–6, C1–2 | 15–97 | [26] | |
CCAP1119/27 | Scotland | 15 °C | − | 9 | [90] | |
A. fundyense | BOF | USA | 5–20 °C | STX, neoSTX, GTX1–4 | 211–544 | [91] |
MI | USA | 5–20 °C | STX, neoSTX, GTX1–4 | 100–532 | ||
A. lusitanicum | BAH91 | Portugal | 15 °C | GTX1–4 | 16 | [86] |
AL3T | Gulf of Trieste | 15 °C | GTX1–4 | 3 | ||
A. minutum | AmSp01 | Vietnam | 25 ℃ | neoSTX, GTX1/3/4 | 11–13 | [92] |
AmSp03 | Vietnam | 25 ℃ | neoSTX, GTX1/4 | 9–12 | ||
AmSp04 | Vietnam | 25 ℃ | neoSTX, GTX1/3/4 | 5–11 | ||
AmSp05 | Vietnam | 25 ℃ | dcSTX, neoSTX, GTX1–4 | 3–10 | ||
AmSp17 | Vietnam | 25 ℃ | dcSTX, neoSTX, GTX1/3/4 | 5 | ||
A. tamarense | ATHS–95 | Japan | 17 °C | C1–2, GTX1–4 | 1–3 | [85] |
BAH181 | Orkney Island | 15 °C | neoSTX, STX, B1–2, C1–2, GTX1–4 | 42 | [86] | |
GTPP01 | USA | 15 °C | neoSTX, STX, B1–2, C1–2, GTX1–4 | 33 | ||
A. pacificum | ANG4–4 | Algerian | 20 °C | neoSTX, STX, C2, GTX4/6 | 4 | [93] |
Alex05 | Republic of Korea | 12–20 °C | neoSTX, dcSTX, dcGTX2, STX, GTX1–6, C1–2 | 0.3–132 | [31] | |
IFR-ACA-15 | Mediterranean Sea | 17 °C | C1–2, GTX4–5, dcGTX2 | 10–22 | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, Q.T.N.; Pradhan, B.; Kim, H.-S.; Ki, J.-S. Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects. Toxins 2024, 16, 210. https://doi.org/10.3390/toxins16050210
Bui QTN, Pradhan B, Kim H-S, Ki J-S. Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects. Toxins. 2024; 16(5):210. https://doi.org/10.3390/toxins16050210
Chicago/Turabian StyleBui, Quynh Thi Nhu, Biswajita Pradhan, Han-Sol Kim, and Jang-Seu Ki. 2024. "Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects" Toxins 16, no. 5: 210. https://doi.org/10.3390/toxins16050210
APA StyleBui, Q. T. N., Pradhan, B., Kim, H. -S., & Ki, J. -S. (2024). Environmental Factors Modulate Saxitoxins (STXs) Production in Toxic Dinoflagellate Alexandrium: An Updated Review of STXs and Synthesis Gene Aspects. Toxins, 16(5), 210. https://doi.org/10.3390/toxins16050210