Monoclonal-Antibody-Based Immunoassays for the Mycotoxins NX-2 and NX-3 in Wheat
Abstract
:1. Introduction
2. Results
2.1. Production of NX Antibodies
2.2. Effects of Methanol
2.3. Cross-Reactivity with Structural Analogs
2.4. Application to Spiked Wheat
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Reagents
5.2. Preparation of Stock Solutions and Calibrants
5.3. Preparation and Production of Immunoreagents
5.4. Immunoassay Procedures
5.5. Recovery of NX-2 and NX-3 from Wheat
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Methanol Conc. | Average Absorbance ± S.D. 1 | ||
---|---|---|---|
mAb 1–4 | mAb 1–8 | mAb 1–13 | |
0 (PBS alone) | 0.896 ± 0.112 | 0.962 ±0.196 | 1.006 ±0.149 |
10% | 0.933 ± 0.087 | 0.953 ± 0.176 | 0.967 ± 0.209 |
20% | 1.043 ± 0.138 | 1.005 ± 0.200 | 1.043 ± 0.247 |
30% | 1.285 ± 0.168 | 1.157 ± 0.213 | 1.245 ± 0.220 |
References
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of wheat and barley: A re-emerging disease of devastating impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Path. 2004, 5, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E.; Proctor, R.H.; Bai, G.; McCormick, S.P.; Shaner, G.; Buechley, G.; Hohn, T.M. Reduced virulence of trichothecene-nonproducing mutants of Gibberella zea in wheat field tests. Mol. Plant-Microbe Int. 1996, 9, 775–781. [Google Scholar] [CrossRef]
- Godtfredsen, W.O.; Grove, J.F.; Tamm, C.H. Zur nomenklatur einer neueren klasse von sesquiterpenen. Helv. Chim. Acta 1967, 50, 1666–1668. [Google Scholar] [CrossRef]
- Betina, V. Mycotoxins: Chemical, Biological and Environmental Aspects; Elsevier Science Publishing Company, Inc.: New York, NY, USA, 1989; Volume 9, p. 438. [Google Scholar]
- Tu, Y.; Liu, S.; Cai, P.; Shan, T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Comp. Rev. Food Sci. Food Saf. 2023, 22, 3951–3983. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Dohnal, V.; Kuca, K.; Yuan, Z. Trichothecenes: Structure-toxic activity relationships. Curr. Drug Metab. 2013, 14, 641–660. [Google Scholar] [CrossRef] [PubMed]
- Hooft, J.M.; Bureau, D.P. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food Chem. Toxicol. 2021, 157, 112616. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Evaluation of Certain Contaminants in Food; WHO Press: Geneva, Switzerland, 2011; p. 106. [Google Scholar]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 toxin—The most toxic trichothecene mycotoxin: Metabolism, toxicity, and decontamination strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef]
- Yagen, B.; Joffe, A.Z. Screeing of toxic isolates of Fusarium poae and Fusarium sporotrichiodes involved in causing alimentary toxic aleukia. Appl. Environ. Micro. 1976, 32, 423–427. [Google Scholar] [CrossRef]
- Varga, E.; Wiesenberger, G.; Hametner, C.; Ward, T.J.; Dong, Y.; Schöfbeck, D.; McCormick, S.; Broz, K.; Stückler, R.; Schuhmacher, R.; et al. New tricks of an old enemy: Isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ. Micro. 2015, 17, 2588–2600. [Google Scholar] [CrossRef] [PubMed]
- Woelflingseder, L.; Gruber, N.; Adam, G.; Marko, D. Pro-inflammatory effects of NX-3 toxin are comparable to deoxynivalenol and not modulated by the co-occurring pro-oxidant aurofusarin. Microorganisms 2020, 8, 603. [Google Scholar] [CrossRef] [PubMed]
- Pierron, A.; Neves, M.; Puel, S.; Lippi, Y.; Soler, L.; Miller, J.D.; Oswald, I.P. Intestinal toxicity of the new type A trichothecenes, NX and 3ANX. Chemosphere 2022, 288, 132415. [Google Scholar] [CrossRef] [PubMed]
- Boutigny, A.-L.; Ward, T.J.; Van Coller, G.J.; Flett, B.; Lamprecht, S.C.; O’Donnell, K.; Viljoen, A. Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Gen. Biol. 2011, 48, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.B.; Ward, T.J.; Badiale-Furlong, E.; Del Ponte, E.M. Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern brazilian rice. Plant Path. 2015, 64, 980–987. [Google Scholar] [CrossRef]
- Wang, J.-H.; Ndoye, M.; Zhang, J.-B.; Li, H.-P.; Liao, Y.-C. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins 2011, 3, 1020–1037. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; McCormick, S.P.; Gutiérrez, S. Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Appl. Micro. Biotechnol. 2020, 104, 5185–5199. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.O.; Thrane, U. Fusarium taxonomy with relation to trichothecene formation. Toxicol. Lett. 2004, 153, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Munkvold, G.P.; Proctor, R.H.; Moretti, A. Mycotoxin production in Fusarium according to contemporary species concepts. Ann. Rev. Phytopath. 2021, 59, 373–402. [Google Scholar] [CrossRef]
- Schiwek, S.; Alhussein, M.; Rodemann, C.; Budragchaa, T.; Beule, L.; von Tiedemann, A.; Karlovsky, P. Fusarium culmorum produces NX-2 toxin simultaneously with deoxynivalenol and 3-acetyl-deoxynivalenol or nivalenol. Toxins 2022, 14, 456. [Google Scholar] [CrossRef]
- Kelly, A.; Proctor, R.H.; Belzile, F.; Chulze, S.N.; Clear, R.M.; Cowger, C.; Elmer, W.; Lee, T.; Obanor, F.; Waalwijk, C.; et al. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Gen. Biol. 2016, 95, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Laraba, I.; Ward, T.J.; Cuperlovic-Culf, M.; Azimi, H.; Xi, P.; McCormick, S.P.; Hay, W.T.; Hao, G.; Vaughan, M.M. Insights into the aggressiveness of the emerging North American population 3 (NA3) of Fusarium graminearum. Plant Dis. 2023, 107, 2687–2700. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Wang, H.; Yang, X.; Zhang, C.; Zhao, Z.; Wang, J. NX toxins: New threat posed by Fusarium graminearum species complex. Tr. Food Sci. Technol. 2022, 119, 179–191. [Google Scholar] [CrossRef]
- Lofgren, L.; Riddle, J.; Dong, Y.; Kuhnem, P.R.; Cummings, J.A.; Del Ponte, E.M.; Bergstrom, G.C.; Kistler, H.C. A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York state. Eur. J. Plant Path. 2018, 150, 791–796. [Google Scholar] [CrossRef]
- Aitken, A.; Miller, J.D.; McMullin, D.R. Isolation, chemical characterization and hydrolysis of the trichothecene 7α-hydroxy, 15-deacetylcalonectrin (3ANX) from Fusarium graminearum daomc 242077. Tetra. Lett. 2019, 60, 852–856. [Google Scholar] [CrossRef]
- Vishwanath, V.; Sulyok, M.; Labuda, R.; Bicker, W.; Krska, R. Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2009, 395, 1355–1372. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.; Wiesenberger, G.; Woelflingseder, L.; Twaruschek, K.; Hametner, C.; Vaclaviková, M.; Malachová, A.; Marko, D.; Berthiller, F.; Adam, G. Less-toxic rearrangement products of NX-toxins are formed during storage and food processing. Toxicol. Lett. 2018, 284, 205–212. [Google Scholar] [CrossRef]
- Schmeitzl, C.; Varga, E.; Warth, B.; Kugler, K.G.; Malachová, A.; Michlmayr, H.; Wiesenberger, G.; Mayer, K.F.X.; Mewes, H.-W.; Krska, R.; et al. Identification and characterization of carboxylesterases from Brachypodium distachyon deacetylating trichothecene mycotoxins. Toxins 2016, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Crippin, T.; Renaud, J.B.; Sumarah, M.W.; Miller, J.D. Comparing genotype and chemotype of Fusarium graminearum from cereals in Ontario, Canada. PLoS ONE 2019, 14, e0216735. [Google Scholar] [CrossRef]
- Liang, J.M.; Xayamongkhon, H.; Broz, K.; Dong, Y.; McCormick, S.P.; Abramova, S.; Ward, T.J.; Ma, Z.H.; Kistler, H.C. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper midwestern United States. Fungal Gen. Biol. 2014, 73, 83–92. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Varga, E.; Maragos, C.; Baumgartner, S.; Adam, G.; Berthiller, F. Cross-reactivity of commercial and non-commercial deoxynivalenol-antibodies to emerging trichothecenes and common deoxynivalenol-derivatives. World Mycotoxin J. 2019, 12, 45–53. [Google Scholar] [CrossRef]
- Maragos, C.M.; McCormick, S.P. Monoclonal antibodies for the mycotoxins deoxynivalenol and 3-acetyl-deoxynivalenol. Food Agric. Immunol. 2000, 12, 181–192. [Google Scholar] [CrossRef]
- Maragos, C.; Busman, M.; Sugita-Konishi, Y. Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. Food Addit. Contamin. 2006, 23, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Noda, K.; Hirakawa, Y.; Nishino, T.; Sekizuka, R.; Kishimoto, M.; Furukawa, T.; Sawane, S.; Matsunaga, A.; Kobayashi, N.; Sugita, K.; et al. Preparation of monoclonal antibodies specifically reacting with the trichothecene mycotoxins nivalenol and 15-acetylnivalenol via the introduction of a linker molecule into its C-15 position. Toxins 2022, 14, 747. [Google Scholar] [CrossRef] [PubMed]
- Chain, E.; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar]
- Hao, G.; McCormick, S.; Tiley, H.; Gutiérrez, S.; Yulfo-Soto, G.; Vaughan, M.M.; Ward, T.J. NX trichothecenes are required for Fusarium graminearum infection of wheat. Mol. Plant-Micro. Int. 2023, 36, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Del Ponte, E.M.; Moreira, G.M.; Ward, T.J.; O’Donnell, K.; Nicolli, C.P.; Machado, F.J.; Duffeck, M.R.; Alves, K.S.; Tessmann, D.J.; Waalwijk, C.; et al. Fusarium graminearum species complex: A bibliographic analysis and web-accessible database for global mapping of species and trichothecene toxin chemotypes. Phytopathology 2021, 112, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Foroud, N.A.; Baines, D.; Gagkaeva, T.Y.; Thakor, N.; Badea, A.; Steiner, B.; Bürstmayr, M.; Bürstmayr, H. Trichothecenes in cereal grains—An update. Toxins 2019, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration. Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain by-Products Used for Animal Feed. Nutrition. 2010. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-fda-advisory-levels-deoxynivalenol-don-finished-wheat-products-human (accessed on 17 May 2024).
- McCormick, S.P.; Alexander, N.J.; Proctor, R.H. Heterologous expression of two trichothecene p450 genes in Fusarium verticillioides. Can. J. Microbiol. 2006, 52, 220–226. [Google Scholar] [CrossRef]
- Beremand, M.N. Isolation and characterization of mutants blocked in T-2 toxin biosynthesis. Appl. Environ. Microbiol. 1987, 53, 1855–1859. [Google Scholar] [CrossRef]
- Krska, R.; Schubert-Ullrich, P.; Josephs, R.D.; Emteborg, H.; Buttinger, G.; Pettersson, H.; van Egmond, H.P.; Schothorst, R.C.; MacDonald, S.; Chan, D. Determination of molar absorptivity coefficients for major type-B trichothecenes and certification of calibrators for deoxynivalenol and nivalenol. Anal. Bioanal. Chem. 2007, 388, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Maragos, C.M. Development and evaluation of monoclonal antibodies for paxilline. Toxins 2015, 7, 3903–3915. [Google Scholar] [CrossRef] [PubMed]
Methanol Conc. | Average IC50 ± S.D. (ng/mL) 1 | Relative Increase in IC50 2 | ||||
---|---|---|---|---|---|---|
mAb 1-4 | mAb 1-8 | mAb 1-13 | mAb 1-4 | mAb 1-8 | mAb 1-13 | |
0 (PBS alone) | 0.40 ± 0.05 | 0.60 ± 0.14 | 0.55 ± 0.15 | NA 3 | NA | NA |
10% | 0.89 ± 0.04 | 1.10 ± 0.26 | 1.06 ± 0.16 | 225% | 182% | 193% |
20% | 1.93 ± 0.23 | 2.37 ± 0.61 | 2.39 ± 0.15 | 487% | 392% | 436% |
30% | 6.18 ±1.20 | 4.99 ± 0.91 | 6.76 ± 0.57 | 1560% | 826% | 1230% |
Toxin | Average IC50 ± S.D. (ng/mL) | Cross-Reaction 3 | ||||
---|---|---|---|---|---|---|
mAb 1-4 | mAb 1-8 | mAb 1-13 | mAb 1-4 | mAb 1-8 | mAb 1-13 | |
NX-2 | 0.835 ± 0.111 | 0.890 ± 0.067 | 1.06 ± 0.05 | 100% (100%) | 100% (100%) | 100% (100%) |
NX-3 | 11.8 ± 1.5 | 7.4 ± 0.8 | 8.5 ± 1.0 | 7.1% (6.2%) | 12.0% (10.5%) | 12.5% (10.9%) |
DON | >500 | >500 | >500 | <0.2% (<0.15%) | <0.2% (<0.16%) | <0.2% (<0.19%) |
3-ADON | 185 ± 44 | 155 ± 18 | 223 ± 8 | 0.45% <0.47%) | 0.58% (<0.60%) | 0.48% (<0.50%) |
15-ADON | >500 | >500 | >500 | <0.2% (<0.17%) | <0.2% (<0.19%) | <0.2% (<0.22%) |
3,7 di-OH trichothecene 1 | >500 | >500 | >500 | <0.2% (<0.14%) | <0.2% (<0.15%) | <0.2% (<0.17%) |
3-Ac, 7-OH trichothecene 2 | >500 | >500 | >500 | <0.2% (<0.16%) | <0.2% (<0.17%) | <0.2% (<0.20%) |
7-OH diacetoxyscirpenol | >500 | >500 | >500 | <0.2% (<0.19%) | <0.2% (<0.20%) | <0.2% (<0.24%) |
T-2 toxin | >500 | >500 | >500 | <0.2% (<0.24%) | <0.2% (<0.26%) | <0.2% (<0.31%) |
Toxin | Test Mileu | LOD (ng/mL) | LOQ (ng/mL) | Dynamic Range (ng/mL) |
---|---|---|---|---|
NX-2 | 10% MeOH/PBS | 0.11 | 0.23 | 0.23–3.61 |
Diluted wheat matrix | 0.08 | 0.24 | 0.24–3.97 | |
NX-3 | 10% MeOH/PBS | 0.32 | 1.48 | 1.48–44.9 |
Diluted wheat matrix | 0.66 | 1.85 | 1.85–48.1 |
NX-3 Added (μg/kg) | Average Recovery (%) | RSD 1 (%) |
---|---|---|
50 2 | 100.5 | 15.7 |
100 | 95.0 | 5.9 |
300 | 99.1 | 10.7 |
600 | 102.2 | 10.7 |
1600 | 105.0 | 10.1 |
4000 3 | 93.9 | 16.1 |
NX-2 Added (μg/kg) | Average Recovery (%) | RSD 1 (%) |
---|---|---|
7.5 2 | 81.1 | 8.0 |
15 | 77.2 | 12.0 |
20 | 79.2 | 9.5 |
40 | 86.5 | 7.5 |
80 | 92.5 | 5.7 |
150 | 90.2 | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragos, C.M.; Vaughan, M.M.; McCormick, S.P. Monoclonal-Antibody-Based Immunoassays for the Mycotoxins NX-2 and NX-3 in Wheat. Toxins 2024, 16, 231. https://doi.org/10.3390/toxins16050231
Maragos CM, Vaughan MM, McCormick SP. Monoclonal-Antibody-Based Immunoassays for the Mycotoxins NX-2 and NX-3 in Wheat. Toxins. 2024; 16(5):231. https://doi.org/10.3390/toxins16050231
Chicago/Turabian StyleMaragos, Chris M., Martha M. Vaughan, and Susan P. McCormick. 2024. "Monoclonal-Antibody-Based Immunoassays for the Mycotoxins NX-2 and NX-3 in Wheat" Toxins 16, no. 5: 231. https://doi.org/10.3390/toxins16050231
APA StyleMaragos, C. M., Vaughan, M. M., & McCormick, S. P. (2024). Monoclonal-Antibody-Based Immunoassays for the Mycotoxins NX-2 and NX-3 in Wheat. Toxins, 16(5), 231. https://doi.org/10.3390/toxins16050231