Challenges of Diphtheria Toxin Detection
Abstract
:1. Introduction
2. Animal Models
3. In Vitro Tissue Culture Cytotoxicity Assays
4. Immunological Assays
4.1. Elek and Modified Elek Tests
4.2. Counterimmunoelectrophoresis
4.3. Agglutination Methods
4.4. Enzyme-Linked Immunosorbent Assay
4.5. Enzyme Immunoassay
4.6. Immunoblotting
4.7. Immunochromatographic Strip Tests
5. Nucleic Acid Amplification Tests
5.1. Polymerase Chain Reaction
5.2. Loop-Mediated Isothermal Amplification
6. Biosensors
7. Variations in the Nucleotide and Amino Acid Sequences of DT
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Riegel, P.; Ruimy, R.; Briel, D.; Prevost, G.; Jehl, F.; Christen, R.; Monteil, H. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol. Lett. 1995, 126, 271–276. [Google Scholar] [CrossRef]
- Hadfield, T.L.; McEvoy, P.; Polotsky, Y.; Tzinserling, V.A.; Yakovlev, A.A. The Pathology of Diphtheria. J. Infect. Dis. 2000, 181, S116–S120. [Google Scholar] [CrossRef]
- Chenal, A.; Nizard, P.; Gillet, D. Structure and Function of Diphtheria Toxin: From Pathology to Engineering. J. Toxicol. Toxin Rev. 2002, 21, 321–359. [Google Scholar] [CrossRef]
- Ryan Kenneth, J.; Ray George, C. Sherris Medical Microbiology: An Introduction to Infectious Diseases, 4th ed.; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Crestani, C.; Arcari, G.; Landier, A.; Passet, V.; Garnier, D.; Brémont, S.; Armatys, N.; Carmi-Leroy, A.; Toubiana, J.; Badell, E.; et al. Corynebacterium ramonii sp. nov., a Novel Toxigenic Member of the Corynebacterium diphtheriae Species Complex. Res. Microbiol. 2023, 174, 104113. [Google Scholar] [CrossRef] [PubMed]
- Prygiel, M.; Polak, M.; Mosiej, E.; Wdowiak, K.; Formińska, K.; Zasada, A. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022, 11, 1264. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.; Oza, M.N.; Murphy, J.R. Molecular Cloning and DNA Sequence Analysis of a Diphtheria Tox Iron-Dependent Regulatory Element (dtxR) from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 1990, 87, 5968–5972. [Google Scholar] [CrossRef]
- Tao, X.; Schiering, N.; Zeng, H.; Ringe, D.; Murphy, J.R. Iron, DtxR, and the Regulation of Diphtheria Toxin Expression. Mol. Microbiol. 1994, 14, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.M.; Pappenheimer, A.M. Structure-Activity Relationships in Diphtheria Toxin. J. Biol. Chem. 1971, 246, 1492–1495. [Google Scholar] [CrossRef]
- Yamaizumi, M.; Mekada, E.; Uchida, T.; Okada, Y. One Molecule of Diphtheria Toxin Fragment a Introduced into a Cell Can Kill the Cell. Cell 1978, 15, 245–250. [Google Scholar] [CrossRef]
- Aboul-Enein, B.H.; Puddy, W.C.; Bowser, J.E. The 1925 Diphtheria Antitoxin Run to Nome-Alaska: A Public Health Illustration of Human-Animal Collaboration. J. Med. Humanit. 2019, 40, 287–296. [Google Scholar] [CrossRef]
- Burkovski, A. Diphtheria and Its Etiological Agents. In Corynebacterium Diphtheriae and Related Toxigenic Species; Burkovski, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–9. ISBN 978-94-007-7623-4. [Google Scholar]
- Plotkin Stanley, A.; Orenstein Walter, A.; Offit Paul, A. Plotkin’s Vaccines, 7th ed.; Elsevier: Philadelphia, PA, USA, 2017. [Google Scholar]
- Murphy John, R. Medical Microbiology, 4th ed.; Elsevier: Galveston, TX, USA, 1996; Volume 32. [Google Scholar]
- Barksdale, L.; Garmise, L.; Horibata, K. Virulence, Toxionogeny, and Lysogeny in Corynebacterium diphtheriae. Ann. N. Y. Acad. Sci. 1960, 88, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Pappenheimer, A.M. Diphtheria Toxin. Annu. Rev. Biochem. 1977, 46, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Bonventre, P.F.; Saelinger, C.B.; Imhoff, J.G. Studies on the Effect of Diphtheria Toxin on Protein Synthesis in Mice. J. Med. Microbiol. 1973, 6, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R. Guidelines for the Laboratory Diagnosis of Diphtheria; World Health Organization: Geneva, Switzerland, 1981. [Google Scholar]
- Efstratiou, A.; Engler, K.H.; Dawes, C.S.; Sesardic, D. Comparison of Phenotypic and Genotypic Methods for Detection of Diphtheria Toxin among Isolates of Pathogenic Corynebacteria. J. Clin. Microbiol. 1998, 36, 3173–3177. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D.T.; Wigham, H.E. The Use of Rabbits for Intracutaneous Virulence Tests: Of B.Diphtheriae or Titration of Diphtheria Antitoxin: Preliminary Note. JAMA 1924, 82, 1114–1115. [Google Scholar] [CrossRef]
- Efstratiou, A.; Engler, K.H.; Mazurova, I.K.; Glushkevich, T.; Vuopio-Varkila, J.; Popovic, T. Current Approaches to the Laboratory Diagnosis of Diphtheria. J. Infect. Dis. 2000, 181, S138–S145. [Google Scholar] [CrossRef]
- WHO Laboratory Manual for the Diagnosis of Diphtheria and Other Related Infections; World Health Organization: Geneva, Switzerland, 2021.
- Bonventre, P.F.; Imhoff, J.G. Studies on the Mode of Action of Diptheria Toxin. J. Exp. Med. 1966, 124, 1107–1122. [Google Scholar] [CrossRef] [PubMed]
- Bowman, C.G.; Bonventre, P.F. Studies on the Mode of Action of Diptheria Toxin. J. Exp. Med. 1970, 131, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Gabliks, J.; Falconer, M. Interaction of Diphtheria Toxin with Cell Cultures from Susceptible and Resistant Animals. J. Exp. Med. 1966, 123, 723–732. [Google Scholar] [CrossRef]
- Miyamura, K.; Nishio, S.; Ito, A.; Murata, R.; Kono, R. Micro Cell Culture Method for Determination of Diphtheria Toxin and Antitoxin Titres Using VERO Cells. J. Biol. Stand. 1974, 2, 189–201. [Google Scholar] [CrossRef]
- Hoy, C.S.; Sesardic, D. In Vitro Assays for Detection of Diphtheria Toxin. Toxicology In Vitro 1994, 8, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.H.; Bickham, S.T.; Wiggins, G.L. Tissue Culture Method for Toxigenicity Testing of Corynebacterium diphtheriae. Appl. Microbiol. 1968, 16, 1748–1752. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.R.; Bacha, P.; Teng, M. Determination of Corynebacterium diphtheriae Toxigenicity by a Colorimetric Tissue Culture Assay. J. Clin. Microbiol. 1978, 7, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Laird, W.; Groman, N. Rapid, Direct Tissue Culture Test for Toxigenicity of Corynebacterium diphtheriae. Appl. Microbiol. 1973, 25, 709–712. [Google Scholar] [CrossRef] [PubMed]
- Moehring, T.J.; Moehring, J.M.; Kuchler, R.J.; Solotorovsky, M. The Repsonse of Cultured Mammalian Cells to Diptheria Toxin. J. Exp. Med. 1967, 126, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Andre, J.; Audebaud, G.; Chambon, L. [Diagnosis of diphtheria on tissue culture]. Ann. Inst. Pasteur (Paris) 1960, 99, 179–187. [Google Scholar]
- Lennox, E.S.; Kaplan, A.S. Action of Diphtheria Toxin on Cells Cultivated in Vitro. Exp. Biol. Med. 1957, 95, 700–702. [Google Scholar] [CrossRef]
- Simonova, M.A.; Melnikov, V.G.; Lakhtina, O.E.; Komaleva, R.L.; Berger, A.; Sing, A.; Zavriev, S.K. Determination of Diphtheria Toxin in Bacterial Cultures by Enzyme Immunoassay. Diagnostics 2022, 12, 2204. [Google Scholar] [CrossRef] [PubMed]
- Ouchterlony, O. In Vitro Method for Testing the Toxin Producing Capacity of Diptheria Bacteria. Acta Pathol. Microbiol. Scand. 1948, 25, 186–191. [Google Scholar] [CrossRef]
- Elek, S.D. Recognition of Toxicogenic Bacterial Strains in Vitro. BMJ 1948, 1, 493–496. [Google Scholar] [CrossRef]
- Elek, S.D. The Plate Virulence Test for Diphtheria. J. Clin. Pathol. 1949, 2, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Fel’dman, I.M.; Makhaneva, L.G.; Glushkevich, T.G. [Determination of the toxigenicity of Corynebacterium diphtheriae by using paper indicator disks]. Zhurnal Mikrobiologii Epidemiologii Immunobiologii 1987, 4, 32–34. [Google Scholar]
- Melnikov, V.G.; Berger, A.; Sing, A. Detection of Diphtheria Toxin Production by Toxigenic Corynebacteria Using an Optimized Elek Test. Infection 2022, 50, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Engler, K.H.; Glushkevich, T.; Mazurova, I.K.; George, R.C.; Efstratiou, A. A Modified Elek Test for Detection of Toxigenic Corynebacteria in the Diagnostic Laboratory. J. Clin. Microbiol. 1997, 35, 495–498. [Google Scholar] [CrossRef]
- Fitriana, F.; Nugroho, F.S.; Herawati, M.H. Columbia Blood Agar Base as an Alternative Medium for the Elek Test. Jundishapur J. Microbiol. 2022, 15, e121537. [Google Scholar] [CrossRef]
- Fitriana, F.; Sunarno, S.; Syarif, A.K.; Karyana, M.; Rosana, Y.; Moehario, L.H. A New Modified Medium for Simultaneous Cystinase and Elek Tests of Bacteria Causing Diphtheria. Bali Med. J. 2019, 8, 334–340. [Google Scholar] [CrossRef]
- Tilton, R.C. Counterimmunoelectrophoresis in Biology and Medicine. CRC Crit. Rev. Clin. Lab. Sci. 1978, 9, 347–365. [Google Scholar] [CrossRef]
- Thompson, N.L.; Ellner, P.D. Rapid Determination of Corynebacterium diphtheriae Toxigenicity by Counterimmunoelectrophoresis. J. Clin. Microbiol. 1978, 7, 493–494. [Google Scholar] [CrossRef] [PubMed]
- Holmes, R.K.; Perlow, R.B. Quantitative Assay of Diphtherial Toxin and of Immunologically Cross-Reacting Proteins by Reversed Passive Hemagglutination. Infect. Immun. 1975, 12, 1392–1400. [Google Scholar] [CrossRef]
- Jalgaonkar, S.V.; Saoji, A.M. Coagglutination for Rapid Testing of Toxin Producing Corynebacterium diphtheriae. Indian J. Med. Res. 1993, 97, 35–36. [Google Scholar]
- Toma, C.; Sisavath, L.; Iwanaga, M. Reversed Passive Latex Agglutination Assay for Detection of Toxigenic Corynebacterium diphtheriae. J. Clin. Microbiol. 1997, 35, 3147–3149. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.B.; Koch, C.; Friis, H.; Heron, I.; Prag, J.; Schmidt, J. Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay for Rapid Detection of Toxin-Producing Corynebacterium diphtheriae. J. Clin. Microbiol. 1987, 25, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Titov, L.; Kolodkina, V.; Dronina, A.; Grimont, F.; Grimont, P.A.D.; Lejay-Collin, M.; De Zoysa, A.; Andronescu, C.; Diaconescu, A.; Marin, B.; et al. Genotypic and Phenotypic Characteristics of Corynebacterium diphtheriae Strains Isolated from Patients in Belarus during an Epidemic Period. J. Clin. Microbiol. 2003, 41, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Kombarova, S.I.; Mazurova, I.K.; Mel’nikov, V.G.; Kostiukova, N.N.; Volkovoĭ, K.I.; Borisova, O.I.; Platonova, T.V.; Efstratiou, A. [Genetic structure of Corynebacterium diphtheriae strains isolated in Russia during epidemics of various intensity]. Zhurnal Mikrobiologii Epidemiologii Immunobiologii 2001, 3, 3–8. [Google Scholar]
- Engler, K.H.; Efstratiou, A. Rapid Enzyme Immunoassay for Determination of Toxigenicity among Clinical Isolates of Corynebacteria. J. Clin. Microbiol. 2000, 38, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, J.; Muehlestein, S.; Gasser, M. Sandwich-Dot Immunobinding Assay (Sandwich-DIA), a New Immunological Method for the Detection of Diphtheria Toxin. Zentralblatt Bakteriol. 1990, 274, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Hallas, G.; Harrison, T.G.; Samuel, D.; Colman, G. Detection of Diphtheria Toxin in Culture Supernates of Corynebacterium diphtheriae and C. ulcerans by Immunoassay with Monoclonal Antibody. J. Med. Microbiol. 1990, 32, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Engler, K.H.; Efstratiou, A.; Norn, D.; Kozlov, R.S.; Selga, I.; Glushkevich, T.G.; Tam, M.; Melnikov, V.G.; Mazurova, I.K.; Kim, V.E.; et al. Immunochromatographic Strip Test for Rapid Detection of Diphtheria Toxin: Description and Multicenter Evaluation in Areas of Low and High Prevalence of Diphtheria. J. Clin. Microbiol. 2002, 40, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Neal, S.E.; Efstratiou, A. International External Quality Assurance for Laboratory Diagnosis of Diphtheria. J. Clin. Microbiol. 2009, 47, 4037–4042. [Google Scholar] [CrossRef]
- Melnikov, V.G.; Berger, A.; Dangel, A.; Sing, A. Lateral Flow Immunoassay-Based Laboratory Algorithm for Rapid Diagnosis of Diphtheria. Open Res. Eur. 2023, 3, 62. [Google Scholar] [CrossRef]
- Berger, A.; Hogardt, M.; Konrad, R.; Sing, A. Detection Methods for Laboratory Diagnosis of Diphtheria. In Corynebacterium diphtheriae and Related Toxigenic Species; Burkovski, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 171–205. ISBN 978-94-007-7623-4. [Google Scholar]
- Bonmarin, I.; Guiso, N.; Le Flèche-Matéos, A.; Patey, O.; Grimont Patrick, A.D.; Levy-Bruhl, D. Diphtheria: A Zoonotic Disease in France? Vaccine 2009, 27, 4196–4200. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.S.; White, J.M.; Neal, S.; Crowcroft, N.S.; Kuprevičiene, N.; Paberza, R.; Lucenko, I.; Jõks, U.; Akbaş, E.; Alexandrou-Athanassoulis, H.; et al. Screening for Corynebacterium diphtheriae and Corynebacterium ulcerans in Patients with Upper Respiratory Tract Infections 2007–2008: A Multicentre European Study. Clin. Microbiol. Infect. 2011, 17, 519–525. [Google Scholar] [CrossRef]
- Zakikhany, K.; Neal, S.; Efstratiou, A. Emergence and Molecular Characterisation of Non-Toxigenic Tox Gene-Bearing Corynebacterium diphtheriae Biovar Mitis in the United Kingdom, 2003–2012. Eurosurveillance 2014, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Waller, J.L.; Aneke, J.S.; Weigand, M.R.; Diaz, M.H.; Bowden, K.E.; Simon, A.K.; Peng, Y.; Xiaoli, L.; Cassiday, P.K.; et al. Detection and Characterization of Diphtheria Toxin Gene-Bearing Corynebacterium Species through a New Real-Time PCR Assay. J. Clin. Microbiol. 2020, 58, e00639-20. [Google Scholar] [CrossRef]
- Sharma, N.C.; Efstratiou, A.; Mokrousov, I.; Mutreja, A. das B, Ramamurthy T. Diphtheria. Nat. Rev. Dis. Primers 2019, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Pallen, M.J. Rapid Screening for Toxigenic Corynebacterium diphtheriae by the Polymerase Chain Reaction. J. Clin. Pathol. 1991, 44, 1025–1026. [Google Scholar] [CrossRef]
- Pallen, M.J.; Hay, A.J.; Puckey, L.H.; Efstratiou, A. Polymerase Chain Reaction for Screening Clinical Isolates of Corynebacteria for the Production of Diphtheria Toxin. J. Clin. Pathol. 1994, 47, 353–356. [Google Scholar] [CrossRef]
- Hauser, D.; Popoff, M.R.; Kiredjian, M.; Boquet, P.; Bimet, F. Polymerase Chain Reaction Assay for Diagnosis of Potentially Toxinogenic Corynebacterium diphtheriae Strains: Correlation with ADP-Ribosylation Activity Assay. J. Clin. Microbiol. 1993, 31, 2720–2723. [Google Scholar] [CrossRef] [PubMed]
- Nakao, H.; Mazurova, I.K.; Glushkevich, T.; Popovic, T. Analysis of Heterogeneity of Corynebacterium diphtheriae Toxin Gene, Tox, and Its Regulatory Element, dtxR, by Direct Sequencing. Res. Microbiol. 1997, 148, 45–54. [Google Scholar] [CrossRef]
- Mothershed, E.A.; Cassiday, P.K.; Pierson, K.; Mayer, L.W.; Popovic, T. Development of a Real-Time Fluorescence PCR Assay for Rapid Detection of the Diphtheria Toxin Gene. J. Clin. Microbiol. 2002, 40, 4713–4719. [Google Scholar] [CrossRef]
- Kobaidze, K.; Popovic, T.; Nakao, H.; Quick, L. Direct Polymerase Chain Reaction for Detection of Toxigenic Corynebacterium diphtheriae Strains from the Republic of Georgia after Prolonged Storage. J. Infect. Dis. 2000, 181, S152–S155. [Google Scholar] [CrossRef] [PubMed]
- Aravena-Román, M.; Bowman, R.; O’Neill, G. Polymerase Chain Reaction for the Detection of Toxigenic Corynebacterium diphtheriae. Pathology 1995, 27, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Mikhailovich, V.M.; Melnikov, V.G.; Mazurova, I.K.; Wachsmuth, I.K.; Wenger, J.D.; Wharton, M.; Nakao, H.; Popovic, T. Application of PCR for Detection of Toxigenic Corynebacterium diphtheriae Strains Isolated during the Russian Diphtheria Epidemic, 1990 through 1994. J. Clin. Microbiol. 1995, 33, 3061–3063. [Google Scholar] [CrossRef] [PubMed]
- Sing, A.; Berger, A.; Schneider-Brachert, W.; Holzmann, T.; Reischl, U. Rapid Detection and Molecular Differentiation of Toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans Strains by LightCycler PCR. J. Clin. Microbiol. 2011, 49, 2485–2489. [Google Scholar] [CrossRef]
- Sulakvelidze, A.; Kekelidze, M.; Gomelauri, T.; Deng, Y.; Khetsuriani, N.; Kobaidze, K.; De Zoysa, A.; Efstratiou, A.; Morris, J.G.; Imnadze, P. Diphtheria in the Republic of Georgia: Use of Molecular Typing Techniques for Characterization of Corynebacterium diphtheriae Strains. J. Clin. Microbiol. 1999, 37, 3265–3270. [Google Scholar] [CrossRef]
- Sing, A.; Hogardt, M.; Bierschenk, S.; Heesemann, J. Detection of Differences in the Nucleotide and Amino Acid Sequences of Diphtheria Toxin from Corynebacterium diphtheriae and Corynebacterium ulcerans Causing Extrapharyngeal Infections. J. Clin. Microbiol. 2003, 41, 4848–4851. [Google Scholar] [CrossRef]
- Schuhegger, R.; Lindermayer, M.; Kugler, R.; Heesemann, J.; Busch, U.; Sing, A. Detection of Toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans Strains by a Novel Real-Time PCR. J. Clin. Microbiol. 2008, 46, 2822–2823. [Google Scholar] [CrossRef]
- Tiwari, T.S.P.; Golaz, A.; Yu, D.T.; Ehresmann, K.R.; Jones, T.F.; Hill, H.E.; Cassiday, P.K.; Pawloski, L.C.; Moran, J.S.; Popovic, T.; et al. Investigations of 2 Cases of Diphtheria-Like Illness Due to Toxigenic Corynebacterium ulcerans. Clin. Infect. Dis. 2008, 46, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Cassiday, P.K.; Pawloski, L.C.; Tiwari, T.; Sanden, G.N.; Wilkins, P.P. Analysis of Toxigenic Corynebacterium ulcerans Strains Revealing Potential for False-Negative Real-Time PCR Results. J. Clin. Microbiol. 2008, 46, 331–333. [Google Scholar] [CrossRef]
- Hall, A.J.; Cassiday, P.K.; Bernard, K.A.; Bolt, F.; Steigerwalt, A.G.; Bixler, D.; Pawloski, L.C.; Whitney, A.M.; Iwaki, M.; Baldwin, A.; et al. Novel Corynebacterium diphtheriae in Domestic Cats. Emerg. Infect. Dis. 2010, 16, 688–691. [Google Scholar] [CrossRef]
- Badell, E.; Hennart, M.; Rodrigues, C.; Passet, V.; Dazas, M.; Panunzi, L.; Bouchez, V.; Carmi–Leroy, A.; Toubiana, J.; Brisse, S. Corynebacterium rouxii sp. nov., a Novel Member of the Diphtheriae Species Complex. Res. Microbiol. 2020, 171, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Mancini, F.; Monaco, M.; Pataracchia, M.; Von Hunolstein, C.; Pantosti, A.; Ciervo, A. Identification and Molecular Discrimination of Toxigenic and Nontoxigenic Diphtheria Corynebacterium Strains by Combined Real-Time Polymerase Chain Reaction Assays. Diagn. Microbiol. Infect. Dis. 2012, 73, 111–120. [Google Scholar] [CrossRef]
- Pimenta, F.P.; Hirata, R.; Rosa, A.C.P.; Milagres, L.G.; Mattos-Guaraldi, A.L. A Multiplex PCR Assay for Simultaneous Detection of Corynebacterium diphtheriae and Differentiation between Non-Toxigenic and Toxigenic Isolates. J. Med. Microbiol. 2008, 57, 1438–1439. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.D.F.C.; Ribeiro, D.; Hirata, R., Jr.; Pacheco, L.G.C.; Souza, M.C.; Santos, L.S.D.; Santos, C.S.D.; Salah, M.; Costa, M.M.D.; Ribeiro, M.G.; et al. Multiplex Polymerase Chain Reaction to Identify and Determine the Toxigenicity of Corynebacterium spp. with Zoonotic Potential and an Overview of Human and Animal Infections. Memórias Inst. Oswaldo Cruz 2013, 108, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Badell, E.; Guillot, S.; Tulliez, M.; Pascal, M.; Panunzi, L.G.; Rose, S.; Litt, D.; Fry, N.K.; Brisse, S. Improved Quadruplex Real-Time PCR Assay for the Diagnosis of Diphtheria. J. Med. Microbiol. 2019, 68, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- De Zoysa, A.; Efstratiou, A.; Mann, G.; Harrison, T.G.; Fry, N.K. Development, Validation and Implementation of a Quadruplex Real-Time PCR Assay for Identification of Potentially Toxigenic Corynebacteria. J. Med. Microbiol. 2016, 65, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Sunarno; Khariri; Muna, F.; Sariadji, K.; Rukminiati, Y.; Febriyana, D.; Febrianti, T.; Saraswati, R.D.; Susanti, I.; Puspandari, N.; et al. New Approach for the Identification of Potentially Toxigenic Corynebacterium sp. Using a Multiplex PCR Assay. J. Microbiol. Methods 2021, 184, 106198. [Google Scholar] [CrossRef] [PubMed]
- Rosana, Y.; Inta Prilandari, L.; Ajisman, R.; Sarry Hartono, T.; Yasmon, A. Detection of Toxin-Producing Corynebacterium diphtheriae from Throat Swabs of Diphtheria Patients Using Duplex Real-Time PCR. Iran. J. Microbiol. 2020, 12, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Sunarno, S.; Hartoyo, Y.; Amalia, N.; Sofiah, S.N.; Rizki, A.; Puspandari, N.; Febriyana, D.; Febrianti, T.; Saraswati, R.D.; Muna, F.; et al. Development and Application of Dtxr and Tox Genes Targeting Real-Time PCR to Identify Corynebacterium diphtheriae, C. ulcerans, and C. pseudotuberculosis Simultaneously. Jundishapur J. Microbiol. 2022, 15, e121256. [Google Scholar] [CrossRef]
- Zasada, A.A.; Wiatrzyk, A.; Czajka, U.; Brodzik, K.; Formińska, K.; Mosiej, E.; Prygiel, M.; Krysztopa-Grzybowska, K.; Wdowiak, K. Application of Loop-Mediated Isothermal Amplification Combined with Colorimetric and Lateral Flow Dipstick Visualization as the Potential Point-of-Care Testing for Corynebacterium diphtheriae. BMC Infect. Dis. 2020, 20, 308. [Google Scholar] [CrossRef]
- Notomi, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, 63e. [Google Scholar] [CrossRef] [PubMed]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, R.; Lee, N.Y. Recent Advances in Airborne Pathogen Detection Using Optical and Electrochemical Biosensors. Anal. Chim. Acta 2022, 1234, 340297. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Bondi, M.C.; Taitt, C.R.; Shriver-Lake, L.C.; Ligler, F.S. Multiplexed Measurement of Serum Antibodies Using an Array Biosensor. Biosens. Bioelectron. 2006, 21, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Zeinoddini, M.; Azizi, A.; Bayat, S.; Tavasoli, Z. Localized Surface Plasmon Resonance (LSPR) Detection of Diphtheria Toxoid Using Gold Nanoparticle-Monoclonal Antibody Conjugates. Plasmonics 2018, 13, 583–590. [Google Scholar] [CrossRef]
- Ziółkowski, R.; Jarczewska, M.; Drozd, M.; Zasada, A.A.; Malinowska, E. Studies on the Development of Electrochemical Immunosensor for Detection of Diphtheria Toxoid. J. Electrochem. Soc. 2019, 166, B472–B481. [Google Scholar] [CrossRef]
- Ziółkowski, R.; Kaczmarek, A.; Kośnik, I.; Malinowska, E. Reduced Nonspecific Protein Adsorption by Application of Diethyldithiocarbamate in Receptor Layer of Diphtheria Toxoid Electrochemical Immunosensor. Bioelectrochemistry 2020, 132, 107415. [Google Scholar] [CrossRef] [PubMed]
- Ameku, W.A.; Ataide, V.N.; Costa, E.T.; Gomes, L.R.; Napoleão-Pêgo, P.; William Provance, D.; Paixão, T.R.L.C.; Salles, M.O.; De-Simone, S.G. A Pencil-Lead Immunosensor for the Rapid Electrochemical Measurement of Anti-Diphtheria Toxin Antibodies. Biosensors 2021, 11, 489. [Google Scholar] [CrossRef] [PubMed]
- Marchlewicz, K.; Ostrowska, I.; Oszwałdowski, S.; Zasada, A.; Ziółkowski, R.; Malinowska, E. Molecular Diagnostic of Toxigenic Corynebacterium diphtheriae Strain by DNA Sensor Potentially Suitable for Electrochemical Point-of-Care Diagnostic. Talanta 2021, 227, 122161. [Google Scholar] [CrossRef]
- Sangal, V.; Hoskisson, P.A. Corynephages: Infections of the Infectors. In Corynebacterium diphtheriae and Related Toxigenic Species; Burkovski, A., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 67–81. ISBN 978-94-007-7623-4. [Google Scholar]
- Trost, E.; Blom, J.; De Castro Soares, S.; Huang, I.-H.; Al-Dilaimi, A.; Schröder, J.; Jaenicke, S.; Dorella, F.A.; Rocha, F.S.; Miyoshi, A.; et al. Pangenomic Study of Corynebacterium diphtheriae That Provides Insights into the Genomic Diversity of Pathogenic Isolates from Cases of Classical Diphtheria, Endocarditis, and Pneumonia. J. Bacteriol. 2012, 194, 3199–3215. [Google Scholar] [CrossRef]
- Rosana, Y.; Gabriella Lusiana, D.I.; Yasmon, A. Genetic Characterization of Diphtheria Tox B to Evaluate Vaccine Efficacy in Indonesia. Iran. J. Microbiol. 2022, 14, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Mokrousov, I. Corynebacterium diphtheriae: Genome Diversity, Population Structure and Genotyping Perspectives. Infect. Genet. Evol. 2009, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, L.; Bjorn, M.J.; Horn, G.; Fong, D.; Buck, G.A.; Collier, R.J.; Kaplan, D.A. Nucleotide Sequence of the Structural Gene for Diphtheria Toxin Carried by Corynebacteriophage Beta. Proc. Natl. Acad. Sci. USA 1983, 80, 6853–6857. [Google Scholar] [CrossRef] [PubMed]
- Ratti, G.; Rappuoli, R.; Giannini, G. The Complete Nucleotide Sequence of the Gene Coding for Diphtheria Toxin in the Corynephage Omega (Tox+) Genome. Nucleic Acids Res. 1983, 11, 6589–6595. [Google Scholar] [CrossRef] [PubMed]
- Nakao, H.; Pruckler, J.M.; Mazurova, I.K.; Narvskaia, O.V.; Glushkevich, T.; Marijevski, V.F.; Kravetz, A.N.; Fields, B.S.; Wachsmuth, I.K.; Popovic, T. Heterogeneity of Diphtheria Toxin Gene, Tox, and Its Regulatory Element, dtxR, in Corynebacterium diphtheriae Strains Causing Epidemic Diphtheria in Russia and Ukraine. J. Clin. Microbiol. 1996, 34, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Kolodkina, V.L.; Titov, L.P.; Sharapa, T.N.; Drozhzhina, O.N. Point Mutations Sites in Tox Promoter/Operator and Diphtheria Toxin Repressor (DtxR) Gene Associated with the Level of Toxin Production by Corynebacterium diphtheriae Strains Isolated in Belarus. Mol. Genet. Microbiol. Virol. 2007, 22, 24–33. [Google Scholar] [CrossRef]
- Grosse-Kock, S.; Kolodkina, V.; Schwalbe, E.C.; Blom, J.; Burkovski, A.; Hoskisson, P.A.; Brisse, S.; Smith, D.; Sutcliffe, I.C.; Titov, L.; et al. Genomic Analysis of Endemic Clones of Toxigenic and Non-Toxigenic Corynebacterium diphtheriae in Belarus during and after the Major Epidemic in 1990s. BMC Genom. 2017, 18, 873. [Google Scholar] [CrossRef]
- Sing, A.; Bierschenk, S.; Heesemann, J. Classical Diphtheria Caused by Corynebacterium ulcerans in Germany: Amino Acid Sequence Differences between Diphtheria Toxins from Corynebacterium diphtheriae and C. ulcerans. Clin. Infect. Dis. 2005, 40, 325–326. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes L 276/33. Available online: https://eur-lex.europa.eu/legal-content/en/NIM/?uri=CELEX:32010L0063 (accessed on 1 February 2024).
Technique | Method | LOD [ng/mL] | Time to Obtain the Result f | Experience of Laboratory Staff | Comments |
---|---|---|---|---|---|
In vivo a | Animal model | ND | 48–120 h | very high | traditional “gold standard”; animal facility required; not recommended due to the 3R rule |
Cell lines a | In vitro tissue culture cytotoxicity | 0.01–0.1 | 24–120 h | very high | specialized laboratory facilities required; mainly used for measuring serum antitoxin levels |
Immunological a | Elek test | ND d | 24–48 h 16–24 h g | very high | basic recommended diagnostic test; prone to misinterpretation; technically demanding |
Counterimmunoelectrophoresis (CIE) | ND | 16–24 h | average | evaluated on a small number of isolates | |
Agglutination methods | 0.2–5 | 12 h | average | evaluated on a small number of isolates | |
Enzyme-linked immunosorbent assay (ELISA) | <1 | 22 h | high | no commercially available kits; recommended by WHO for detection and quantification of anti-DT antibodies | |
Enzyme immunoassay (EIA) | 0.1 | 3 h | average | easy to interpret | |
Immunoblotting | 5–10 | 11–24 h | average | not recommended for routine diagnostic use | |
Immunochromatographic strip test (ICS) | 0.5 | 3.5–6.5 h | low | easy to apply and interpret | |
Molecular b | Polymerase Chain Reaction (PCR) | 2.5 e | 4–5 h h | average | allows to detect NTTB strains; must be confirmed by the Elek test; specialized laboratory facilities required |
Real-time PCR | <0.017 e | 3–4 h h | high | ||
Loop-mediated isothermal amplification (LAMP) | 2.84 e | 1 h h | average | not require a very precise heating device; potential Point-of-Care Testing; allows to detect NTTB strains; must be confirmed by the Elek test | |
Optical/electrochemical c | Biosensors | 0.005–10 | 1–2 h | low | potential Point-of-Care Testing, allows to detect NTTB strains (genosensors); genosensors’ results must be confirmed by the Elek test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prygiel, M.; Mosiej, E.; Polak, M.; Krysztopa-Grzybowska, K.; Wdowiak, K.; Formińska, K.; Zasada, A.A. Challenges of Diphtheria Toxin Detection. Toxins 2024, 16, 245. https://doi.org/10.3390/toxins16060245
Prygiel M, Mosiej E, Polak M, Krysztopa-Grzybowska K, Wdowiak K, Formińska K, Zasada AA. Challenges of Diphtheria Toxin Detection. Toxins. 2024; 16(6):245. https://doi.org/10.3390/toxins16060245
Chicago/Turabian StylePrygiel, Marta, Ewa Mosiej, Maciej Polak, Katarzyna Krysztopa-Grzybowska, Karol Wdowiak, Kamila Formińska, and Aleksandra A. Zasada. 2024. "Challenges of Diphtheria Toxin Detection" Toxins 16, no. 6: 245. https://doi.org/10.3390/toxins16060245
APA StylePrygiel, M., Mosiej, E., Polak, M., Krysztopa-Grzybowska, K., Wdowiak, K., Formińska, K., & Zasada, A. A. (2024). Challenges of Diphtheria Toxin Detection. Toxins, 16(6), 245. https://doi.org/10.3390/toxins16060245