Previous Issue
Volume 16, May
 
 

Toxins, Volume 16, Issue 6 (June 2024) – 25 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 4089 KiB  
Article
Identification of a Novel Aflatoxin B1-Degrading Strain, Bacillus halotolerans DDC-4, and Its Response Mechanisms to Aflatoxin B1
by Jia Guo, Hanlu Zhang, Yixuan Zhao, Xiaoxu Hao, Yu Liu, Suhong Li and Rina Wu
Toxins 2024, 16(6), 256; https://doi.org/10.3390/toxins16060256 - 31 May 2024
Abstract
Aflatoxin B1 (AFB1) contamination is a food safety issue threatening human health globally. Biodegradation is an effective method for overcoming this problem, and many microorganisms have been identified as AFB1-degrading strains. However, the response mechanisms of these microbes [...] Read more.
Aflatoxin B1 (AFB1) contamination is a food safety issue threatening human health globally. Biodegradation is an effective method for overcoming this problem, and many microorganisms have been identified as AFB1-degrading strains. However, the response mechanisms of these microbes to AFB1 remain unclear. More degrading enzymes, especially of new types, need to be discovered. In this study, a novel AFB1-degrading strain, DDC-4, was isolated using coumarin as the sole carbon source. This strain was identified as Bacillus halotolerans through physiological, biochemical, and molecular methods. The strain’s degradation activity was predominantly attributable to thermostable extracellular proteins (degradation rate remained approximately 80% at 90 °C) and was augmented by Cu2+ (95.45% AFB1 was degraded at 48 h). Alpha/beta hydrolase (arylesterase) was selected as candidate AFB1-degrading enzymes for the first time as a gene encoding this enzyme was highly expressed in the presence of AFB1. Moreover, AFB1 inhibited many genes involved in the nucleotide synthesis of strain DDC-4, which is possibly the partial molecular mechanism of AFB1’s toxicity to microorganisms. To survive under this stress, sporulation-related genes were induced in the strain. Altogether, our study identified a novel AFB1-degrading strain and explained its response mechanisms to AFB1, thereby providing new insights for AFB1 biodegradation. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

24 pages, 7201 KiB  
Review
A Guide to the Clinical Management of Vipera Snakebite in Italy
by Matteo Riccardo Di Nicola, Marta Crevani, Ignazio Avella, Anna Cerullo, Jean-Lou C. M. Dorne, Giovanni Paolino and Caterina Zattera
Toxins 2024, 16(6), 255; https://doi.org/10.3390/toxins16060255 - 31 May 2024
Abstract
The genus Vipera encompasses most species of medically significant venomous snakes of Europe, with Italy harbouring four of them. Envenomation by European vipers can result in severe consequences, but underreporting and the absence of standardised clinical protocols hinder effective snakebite management. This study [...] Read more.
The genus Vipera encompasses most species of medically significant venomous snakes of Europe, with Italy harbouring four of them. Envenomation by European vipers can result in severe consequences, but underreporting and the absence of standardised clinical protocols hinder effective snakebite management. This study provides an updated, detailed set of guidelines for the management and treatment of Vipera snakebite tailored for Italian clinicians. It includes taxonomic keys for snake identification, insights into viper venom composition, and recommendations for clinical management. Emphasis is placed on quick and reliable identification of medically relevant snake species, along with appropriate first aid measures. Criteria for antivenom administration are outlined, as well as indications on managing potential side effects. While the protocol is specific to Italy, its methodology can potentially be adapted for other European countries, depending on local resources. The promotion of comprehensive data collection and collaboration among Poison Control Centres is advocated to optimise envenomation management protocols and improve the reporting of epidemiological data concerning snakebite at the country level. Full article
Show Figures

Figure 1

17 pages, 889 KiB  
Review
Indoxyl Sulfate-Induced Macrophage Toxicity and Therapeutic Strategies in Uremic Atherosclerosis
by Takuya Wakamatsu, Suguru Yamamoto, Shiori Yoshida and Ichiei Narita
Toxins 2024, 16(6), 254; https://doi.org/10.3390/toxins16060254 - 31 May 2024
Abstract
Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease (CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to traditional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification in CKD patients. The accumulation of uremic [...] Read more.
Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease (CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to traditional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification in CKD patients. The accumulation of uremic toxins is a significant factor in CKD-related systemic disorders. Basic research suggests that indoxyl sulfate (IS), a small protein-bound uremic toxin, is associated with macrophage dysfunctions, including increased oxidative stress, exacerbation of chronic inflammation, and abnormalities in lipid metabolism. Strategies to mitigate the toxicity of IS include optimizing gut microbiota, intervening against the abnormality of intracellular signal transduction, and using blood purification therapy with higher efficiency. Further research is needed to examine whether lowering protein-bound uremic toxins through intervention leads to a reduction in CVD in patients with CKD. Full article
(This article belongs to the Special Issue Uremic Toxins Lowering Strategies in Chronic Kidney Disease)
Show Figures

Figure 1

20 pages, 1362 KiB  
Article
Actinobacteria as Promising Biocontrol Agents for In Vitro and In Planta Degradation and Detoxification of Zearalenone
by Larissa De Troyer, Noémie De Zutter, Sarah De Saeger, Frédéric Dumoulin, Siska Croubels, Siegrid De Baere, Leen De Gelder and Kris Audenaert
Toxins 2024, 16(6), 253; https://doi.org/10.3390/toxins16060253 - 28 May 2024
Viewed by 222
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. [...] Read more.
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

13 pages, 1495 KiB  
Article
Concomitant Botulinum Toxin Injections for Neurogenic Detrusor Overactivity and Spasticity—A Retrospective Analysis of Practice and Safety
by Arnaud Leilaz, Charles Joussain, Pierre Denys, Djamel Bensmail and Jonathan Levy
Toxins 2024, 16(6), 252; https://doi.org/10.3390/toxins16060252 - 28 May 2024
Viewed by 195
Abstract
As multiple indications for botulinum toxin injections (BTIs) can coexist for neurological patients, there are to date no description of concomitant injections (CIs) to treat both spasticity and neurogenic detrusor overactivity incontinence (NDOI) in patients with spinal cord injuries (SCIs) and multiple sclerosis [...] Read more.
As multiple indications for botulinum toxin injections (BTIs) can coexist for neurological patients, there are to date no description of concomitant injections (CIs) to treat both spasticity and neurogenic detrusor overactivity incontinence (NDOI) in patients with spinal cord injuries (SCIs) and multiple sclerosis (MS). We therefore identified patients followed at our institution by health data hub digging, using a specific procedure coding system in use in France, who have been treated at least once with detrusor and skeletal muscle BTIs within the same 1-month period, over the past 5 years (2017–2021). We analyzed 72 patients representing 319 CIs. Fifty (69%) were male, and the patients were mostly SCI (76%) and MS (18%) patients and were treated by a mean number of CIs of 4.4 ± 3.6 [1–14]. The mean cumulative dose was 442.1 ± 98.8 U, and 95% of CIs were performed within a 72 h timeframe. Among all CIs, five patients had symptoms evocative of distant spread but only one had a confirmed pathological jitter in single-fiber EMG. Eleven discontinued CIs for surgical alternatives: enterocystoplasty (five), tenotomy (three), intrathecal baclofen (two) and neurotomy (one). Concomitant BTIs for treating both spasticity and NDOI at the same time appeared safe when performed within a short delay and in compliance with actual knowledge for maximum doses. Full article
Show Figures

Figure 1

13 pages, 1176 KiB  
Article
Frequent Dietary Multi-Mycotoxin Exposure in UK Children and Its Association with Dietary Intake
by Praosiri Charusalaipong, Margaret-Jane Gordon, Louise Cantlay, Nicosha De Souza, Graham W. Horgan, Ruth Bates and Silvia W. Gratz
Toxins 2024, 16(6), 251; https://doi.org/10.3390/toxins16060251 - 28 May 2024
Viewed by 279
Abstract
Mycotoxins are potent fungal toxins that frequently contaminate agricultural crops and foods. Mycotoxin exposure is frequently reported in humans, and children are known to be particularly at risk of exceeding safe levels of exposure. Urinary biomonitoring is used to assess overall dietary exposure [...] Read more.
Mycotoxins are potent fungal toxins that frequently contaminate agricultural crops and foods. Mycotoxin exposure is frequently reported in humans, and children are known to be particularly at risk of exceeding safe levels of exposure. Urinary biomonitoring is used to assess overall dietary exposure to multiple mycotoxins. This study aims to quantify multi-mycotoxin exposure in UK children and to identify major food groups contributing to exposure. Four repeat urine samples were collected from 29 children (13 boys and 16 girls, aged 2.4–6.8 years), and food diaries were recorded to assess their exposure to eleven mycotoxins. Urine samples (n = 114) were hydrolysed with β-glucuronidase, enriched through immunoaffinity columns and analysed by LC-MS/MS for deoxynivalenol (DON), nivalenol (NIV), T-2/HT-2 toxins, zearalenone (ZEN), ochratoxin A (OTA) and aflatoxins. Food diaries were analysed using WinDiet software, and the daily intake of high-risk foods for mycotoxin contamination summarised. The most prevalent mycotoxins found in urine samples were DON (95.6% of all samples), OTA (88.6%), HT-2 toxin (53.5%), ZEN (48.2%) and NIV (26.3%). Intake of total cereal-based foods was strongly positively associated with urinary levels of DON and T-2/HT-2 and oat intake with urinary T-2/HT-2. Average daily mycotoxin excretion ranged from 12.10 µg/d (DON) to 0.03 µg/d (OTA), and co-exposure to three or more mycotoxins was found in 66% of samples. Comparing mycotoxin intake estimates to tolerable daily intakes (TDI) demonstrates frequent TDI exceedances (DON 34.2% of all samples, T-2/HT-2 14.9%, NIV 4.4% and ZEN 5.2%). OTA was frequently detected at low levels. When mean daily OTA intake was compared to the reference value for non-neoplastic lesions, the resulting Margin of Exposure (MoE) of 65 was narrow, indicating a health concern. In conclusion, this study demonstrates frequent exposure of UK children to multiple mycotoxins at levels high enough to pose a health concern if exposure is continuous. Full article
(This article belongs to the Special Issue Human Biomonitoring and Risk Assessment of Mycotoxins)
Show Figures

Figure 1

1 pages, 160 KiB  
Correction
Correction: de Oliveira et al. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins 2024, 16, 71
by Ana L. Novo de Oliveira, Miguel T. Lacerda, Maria J. Ramos and Pedro A. Fernandes
Toxins 2024, 16(6), 250; https://doi.org/10.3390/toxins16060250 - 28 May 2024
Viewed by 118
Abstract
In the published publication [...] Full article
22 pages, 2896 KiB  
Review
Application of Biosensors for the Detection of Mycotoxins for the Improvement of Food Safety
by Rafał Szelenberger, Natalia Cichoń, Wojciech Zajaczkowski and Michal Bijak
Toxins 2024, 16(6), 249; https://doi.org/10.3390/toxins16060249 - 27 May 2024
Viewed by 203
Abstract
Mycotoxins, secondary metabolites synthesized by various filamentous fungi genera such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria, are potent toxic compounds. Their production is contingent upon specific environmental conditions during fungal growth. Arising as byproducts of fungal metabolic [...] Read more.
Mycotoxins, secondary metabolites synthesized by various filamentous fungi genera such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria, are potent toxic compounds. Their production is contingent upon specific environmental conditions during fungal growth. Arising as byproducts of fungal metabolic processes, mycotoxins exhibit significant toxicity, posing risks of acute or chronic health complications. Recognized as highly hazardous food contaminants, mycotoxins present a pervasive threat throughout the agricultural and food processing continuum, from plant cultivation to post-harvest stages. The imperative to adhere to principles of good agricultural and industrial practice is underscored to mitigate the risk of mycotoxin contamination in food production. In the domain of food safety, the rapid and efficient detection of mycotoxins holds paramount significance. This paper delineates conventional and commercial methodologies for mycotoxin detection in ensuring food safety, encompassing techniques like liquid chromatography, immunoassays, and test strips, with a significant emphasis on the role of electrochemiluminescence (ECL) biosensors, which are known for their high sensitivity and specificity. These are categorized into antibody-, and aptamer-based, as well as molecular imprinting methods. This paper examines the latest advancements in biosensors for mycotoxin testing, with a particular focus on their amplification strategies and operating mechanisms. Full article
21 pages, 4080 KiB  
Article
α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes
by Alexis Rohou, Edward P. Morris, Julia Makarova, Alexander G. Tonevitsky and Yuri A. Ushkaryov
Toxins 2024, 16(6), 248; https://doi.org/10.3390/toxins16060248 - 27 May 2024
Viewed by 255
Abstract
α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection [...] Read more.
α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect. Full article
Show Figures

Figure 1

18 pages, 6729 KiB  
Article
Effects of Scallop Mantle Toxin on Intestinal Microflora and Intestinal Barrier Function in Mice
by Xiong Geng, Ran Lin, Yasushi Hasegawa, Luomeng Chao, Huayan Shang, Jingjing Yang, Weina Tian, Wenting Ma, Miaomiao Zhuang and Jianrong Li
Toxins 2024, 16(6), 247; https://doi.org/10.3390/toxins16060247 - 27 May 2024
Viewed by 310
Abstract
Previous studies have shown that feeding mice with food containing mantle tissue from Japanese scallops results in aggravated liver and kidney damage, ultimately resulting in mortality within weeks. The aim of this study is to evaluate the toxicity of scallop mantle in China’s [...] Read more.
Previous studies have shown that feeding mice with food containing mantle tissue from Japanese scallops results in aggravated liver and kidney damage, ultimately resulting in mortality within weeks. The aim of this study is to evaluate the toxicity of scallop mantle in China’s coastal areas and explore the impact of scallop mantle toxins (SMT) on intestinal barrier integrity and gut microbiota in mice. The Illumina MiSeq sequencing of V3-V4 hypervariable regions of 16S ribosomal RNA was employed to study the alterations in gut microbiota in the feces of SMT mice. The results showed that intestinal flora abundance and diversity in the SMT group were decreased. Compared with the control group, significant increases were observed in serum indexes related to liver, intestine, inflammation, and kidney functions among SMT-exposed mice. Accompanied by varying degrees of tissue damage observed within these organs, the beneficial bacteria of Muribaculaceae and Marinifilaceae significantly reduced, while the harmful bacteria of Enterobacteriaceae and Helicobacter were significantly increased. Taken together, this article elucidates the inflammation and glucose metabolism disorder caused by scallop mantle toxin in mice from the angle of gut microbiota and metabolism. SMT can destroy the equilibrium of intestinal flora and damage the intestinal mucosal barrier, which leads to glucose metabolism disorder and intestinal dysfunction and may ultimately bring about systemic toxicity. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

14 pages, 1842 KiB  
Article
Retrospective Evaluation of Clinical and Clinicopathologic Findings, Case Management, and Outcome for Dogs and Cats Exposed to Micrurus fulvius (Eastern Coral Snake): 92 Cases (2021–2022)
by Jordan M. Sullivan, Taelor L. Aasen, Corey J. Fisher and Michael Schaer
Toxins 2024, 16(6), 246; https://doi.org/10.3390/toxins16060246 - 27 May 2024
Viewed by 298
Abstract
This retrospective, observational study describes the clinical findings, case management trends, and outcomes of 83 dogs and nine cats exposed to eastern coral snakes in a university teaching hospital setting. The medical records of dogs and cats that received antivenom following coral snake [...] Read more.
This retrospective, observational study describes the clinical findings, case management trends, and outcomes of 83 dogs and nine cats exposed to eastern coral snakes in a university teaching hospital setting. The medical records of dogs and cats that received antivenom following coral snake exposure were reviewed. Data collected included signalment, time to antivenom administration, physical and laboratory characteristics at presentation, clinical course during hospitalization, length of hospitalization, and survival to discharge. The mean time from presentation to coral snake antivenom administration was 2.26 ± 1.46 h. Excluding cases where the owner declined in-hospital care, the mean hospitalization time for dogs and cats was 50.8 h and 34 h, respectively. The mean number of antivenom vials was 1.29 (1–4). Gastrointestinal signs (vomiting and ptyalism) occurred in 42.2% (35/83) of dogs and 33.3% (3/9) of cats. Peripheral neurologic system deficits (ataxia, paresis to plegia, absent reflexes, and hypoventilation) were noted in 19.6% (18/92) of dogs and cats. Hemolysis was also common in 37.9% (25/66) of dogs but was not observed in cats. Mechanical ventilation (MV) was indicated in 12% (10/83) of dogs but no cats. Acute kidney injury (AKI), while rare, was a common cause of euthanasia at 20% (2/5) and was the most common complication during MV at 44.4% (4/9). Pigmenturia/hemolysis occurred in 88.9% (8/9) of MV cases and in all cases with AKI. Despite delays in antivenom administration by several hours, dogs and cats with coral snake exposure have low mortality rates (6% of dogs (5/83) and 0% of cats). Gastrointestinal signs were common but were not predictive of progression to neurological signs. Thus, differentiating between coral snake exposure and envenomation before the onset of neurological signs remains challenging. Full article
(This article belongs to the Special Issue Pre-clinical and Clinical Management of Snakebite Envenomation)
Show Figures

Figure 1

18 pages, 633 KiB  
Review
Challenges of Diphtheria Toxin Detection
by Marta Prygiel, Ewa Mosiej, Maciej Polak, Katarzyna Krysztopa-Grzybowska, Karol Wdowiak, Kamila Formińska and Aleksandra A. Zasada
Toxins 2024, 16(6), 245; https://doi.org/10.3390/toxins16060245 - 26 May 2024
Viewed by 400
Abstract
Diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae, C. ulcerans and C. pseudotuberculosis. Moreover, new Corynebacterium species with the potential to produce diphtheria toxin have also been described. Therefore, the detection of the toxin is the most important test in [...] Read more.
Diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae, C. ulcerans and C. pseudotuberculosis. Moreover, new Corynebacterium species with the potential to produce diphtheria toxin have also been described. Therefore, the detection of the toxin is the most important test in the microbiological diagnosis of diphtheria and other corynebacteria infections. Since the first demonstration in 1888 that DT is a major virulence factor of C. diphtheriae, responsible for the systemic manifestation of the disease, various methods for DT detection have been developed, but the diagnostic usefulness of most of them has not been confirmed on a sufficiently large group of samples. Despite substantial progress in the science and diagnostics of infectious diseases, the Elek test is still the basic recommended diagnostic test for DT detection. The challenge here is the poor availability of an antitoxin and declining experience even in reference laboratories due to the low prevalence of diphtheria in developed countries. However, recent and very promising assays have been developed with the potential for use as rapid point-of-care testing (POCT), such as ICS and LFIA for toxin detection, LAMP for tox gene detection, and biosensors for both. Full article
(This article belongs to the Special Issue Multi Methods for Detecting Natural Toxins)
Show Figures

Graphical abstract

23 pages, 2756 KiB  
Review
Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides
by Kavitha Lakavath, Chandan Kafley, Anjana Sajeevan, Soumyajit Jana, Jean Louis Marty and Yugender Goud Kotagiri
Toxins 2024, 16(6), 244; https://doi.org/10.3390/toxins16060244 - 26 May 2024
Viewed by 227
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as [...] Read more.
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques. Full article
29 pages, 3752 KiB  
Article
Glycan Profile and Sequence Variants of Certified Ricin Reference Material and Other Ricin Samples Yield Unique Molecular Signature Features
by Roland Josuran, Andreas Wenger, Christian Müller, Bettina Kampa, Sylvia Worbs, Brigitte G. Dorner and Sabina Gerber
Toxins 2024, 16(6), 243; https://doi.org/10.3390/toxins16060243 - 26 May 2024
Viewed by 256
Abstract
A certified reference material of ricin (CRM-LS-1) was produced by the EuroBioTox consortium to standardise the analysis of this biotoxin. This study established the N-glycan structures and proportions including their loci and occupancy of ricin CRM-LS-1. The glycan profile was compared with [...] Read more.
A certified reference material of ricin (CRM-LS-1) was produced by the EuroBioTox consortium to standardise the analysis of this biotoxin. This study established the N-glycan structures and proportions including their loci and occupancy of ricin CRM-LS-1. The glycan profile was compared with ricin from different preparations and other cultivars and isoforms. A total of 15 different oligomannosidic or paucimannosidic structures were identified in CRM-LS-1. Paucimannose was mainly found within the A-chain and oligomannose constituted the major glycan type of the B-chain. Furthermore, the novel primary structure variants E138 and D138 and four different C-termini of the A-chain as well as two B-chain variants V250 and F250 were elucidated. While the glycan proportions and loci were similar among all variants in CRM-LS-1 and ricin isoforms D and E of all cultivars analysed, a different stoichiometry for isoforms D and E and the amino acid variants were found. This detailed physicochemical characterization of ricin regarding the glycan profile and amino acid sequence variations yields unprecedented insight into the molecular features of this protein toxin. The variable attributes discovered within different cultivars present signature motifs and may allow discrimination of the biotoxin’s origin that are important in molecular forensic profiling. In conclusion, our data of in-depth CRM-LS-1 characterization combined with the analysis of other cultivars is representative for known ricin variants. Full article
29 pages, 742 KiB  
Review
Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity
by Marieke Vandecruys, Stefan De Smet, Jasmine De Beir, Marie Renier, Sofie Leunis, Hanne Van Criekinge, Griet Glorieux, Jeroen Raes, Karsten Vanden Wyngaert, Evi Nagler, Patrick Calders, Diethard Monbaliu, Véronique Cornelissen, Pieter Evenepoel and Amaryllis H. Van Craenenbroeck
Toxins 2024, 16(6), 242; https://doi.org/10.3390/toxins16060242 - 26 May 2024
Viewed by 231
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial [...] Read more.
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored. Full article
(This article belongs to the Special Issue Toxins: 15th Anniversary)
13 pages, 1000 KiB  
Review
Clostridioides difficile Toxins: Host Cell Interactions and Their Role in Disease Pathogenesis
by Md Zahidul Alam and Rajat Madan
Toxins 2024, 16(6), 241; https://doi.org/10.3390/toxins16060241 - 24 May 2024
Viewed by 289
Abstract
Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of [...] Read more.
Clostridioides difficile, a Gram-positive anaerobic bacterium, is the leading cause of hospital-acquired antibiotic-associated diarrhea worldwide. The severity of C. difficile infection (CDI) varies, ranging from mild diarrhea to life-threatening conditions such as pseudomembranous colitis and toxic megacolon. Central to the pathogenesis of the infection are toxins produced by C. difficile, with toxin A (TcdA) and toxin B (TcdB) as the main virulence factors. Additionally, some strains produce a third toxin known as C. difficile transferase (CDT). Toxins damage the colonic epithelium, initiating a cascade of cellular events that lead to inflammation, fluid secretion, and further tissue damage within the colon. Mechanistically, the toxins bind to cell surface receptors, internalize, and then inactivate GTPase proteins, disrupting the organization of the cytoskeleton and affecting various Rho-dependent cellular processes. This results in a loss of epithelial barrier functions and the induction of cell death. The third toxin, CDT, however, functions as a binary actin-ADP-ribosylating toxin, causing actin depolymerization and inducing the formation of microtubule-based protrusions. In this review, we summarize our current understanding of the interaction between C. difficile toxins and host cells, elucidating the functional consequences of their actions. Furthermore, we will outline how this knowledge forms the basis for developing innovative, toxin-based strategies for treating and preventing CDI. Full article
Show Figures

Figure 1

19 pages, 10599 KiB  
Article
Identification and Evolutionary Analysis of the Widely Distributed CAP Superfamily in Spider Venom
by Hongcen Jiang, Yiru Wang, Guoqing Zhang, Anqiang Jia, Zhaoyuan Wei and Yi Wang
Toxins 2024, 16(6), 240; https://doi.org/10.3390/toxins16060240 - 24 May 2024
Viewed by 395
Abstract
Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, [...] Read more.
Venom plays a crucial role in the defense and predation of venomous animals. Spiders (Araneae) are among the most successful predators and have a fascinating venom composition. Their venom mainly contains disulfide-rich peptides and large proteins. Here, we analyzed spider venom protein families, utilizing transcriptomic and genomic data, and highlighted their similarities and differences. We show that spiders have specific combinations of toxins for better predation and defense, typically comprising a core toxin expressed alongside several auxiliary toxins. Among them, the CAP superfamily is widely distributed and highly expressed in web-building Araneoidea spiders. Our analysis of evolutionary relationships revealed four subfamilies (subA-subD) of the CAP superfamily that differ in structure and potential functions. CAP proteins are composed of a conserved CAP domain and diverse C-terminal domains. CAP subC shares similar domains with the snake ion channel regulator svCRISP proteins, while CAP subD possesses a sequence similar to that of insect venom allergen 5 (Ag5). Furthermore, we show that gene duplication and selective expression lead to increased expression of CAP subD, making it a core member of the CAP superfamily. This study sheds light on the functional diversity of CAP subfamilies and their evolutionary history, which has important implications for fully understanding the composition of spider venom proteins and the core toxin components of web-building spiders. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

12 pages, 14393 KiB  
Article
The Effects of Aflatoxin B1 on Liver Cholestasis and Its Nutritional Regulation in Ducks
by Aimei Yu, Huanbin Wang, Qianhui Cheng, Shahid Ali Rajput and Desheng Qi
Toxins 2024, 16(6), 239; https://doi.org/10.3390/toxins16060239 - 24 May 2024
Viewed by 298
Abstract
The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The [...] Read more.
The aim of this study was to investigate the effects of aflatoxin B1 (AFB1) on cholestasis in duck liver and its nutritional regulation. Three hundred sixty 1-day-old ducks were randomly divided into six groups and fed for 4 weeks. The control group was fed a basic diet, while the experimental group diet contained 90 μg/kg of AFB1. Cholestyramine, atorvastatin calcium, taurine, and emodin were added to the diets of four experimental groups. The results show that in the AFB1 group, the growth properties, total bile acid (TBA) serum levels and total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) liver levels decreased, while the malondialdehyde (MDA) and TBA liver levels increased (p < 0.05). Moreover, AFB1 caused cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin could reduce the TBA serum and liver levels (p < 0.05), alleviating the symptoms of cholestasis. The qPCR results show that AFB1 upregulated cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) gene expression and downregulated ATP binding cassette subfamily B member 11 (BSEP) gene expression in the liver, and taurine and emodin downregulated CYP7A1 and CYP8B1 gene expression (p < 0.05). In summary, AFB1 negatively affects health and alters the expression of genes related to liver bile acid metabolism, leading to cholestasis. Cholestyramine, atorvastatin calcium, taurine, and emodin can alleviate AFB1-induced cholestasis. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (Volume III))
Show Figures

Figure 1

15 pages, 2176 KiB  
Article
Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS
by Kai Zhang and Lauren Zhang
Toxins 2024, 16(6), 238; https://doi.org/10.3390/toxins16060238 - 23 May 2024
Viewed by 299
Abstract
Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can [...] Read more.
Patulin, a toxic mycotoxin, can contaminate apple-derived products. The FDA has established an action level of 50 ppb (ng/g) for patulin in apple juice and apple juice products. To effectively monitor this mycotoxin, there is a need for adequate analytical methods that can reliably and efficiently determine patulin levels. In this work, we developed an automated sample preparation workflow followed by liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) detection to identify and quantify patulin in a single method, further expanding testing capabilities for monitoring patulin in foods compared to traditional optical methods. Using a robotic sample preparation system, apple juice, apple cider, apple puree, apple-based baby food, applesauce, fruit rolls, and fruit jam were fortified with 13C-patulin and extracted using dichloromethane (DCM) without human intervention, followed by an LC-APCI-MS/MS analysis in negative ionization mode. The method achieved a limit of quantification of 4.0 ng/g and linearity ranging from 2 to 1000 ng/mL (r2 > 0.99). Quantitation was performed with isotope dilution using 13C-patulin as an internal standard and solvent calibration standards. Average recoveries (relative standard deviations, RSD%) in seven spike matrices were 95% (9%) at 10 ng/g, 110% (5%) at 50 ng/g, 101% (7%) at 200 ng/g, and 104% (4%) at 1000 ng/g (n = 28). The ranges of within-matrix and between-matrix variability (RSD) were 3–8% and 4–9%, respectively. In incurred samples, the identity of patulin was further confirmed with a comparison of the information-dependent acquisition-enhanced product ion (IDA-EPI) MS/MS spectra to a reference standard. The metrological traceability of the patulin measurements in an incurred apple cider (21.1 ± 8.0 µg/g) and apple juice concentrate (56.6 ± 15.6 µg/g) was established using a certified reference material and calibration data to demonstrate data confidence intervals (k = 2, 95% confidence interval). Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

13 pages, 13323 KiB  
Article
Sensitive Detection and Differentiation of Biologically Active Ricin and Abrin in Complex Matrices via Specific Neutralizing Antibody-Based Cytotoxicity Assay
by Zhi Li, Bo Ma, Mengqiang Gong, Lei Guo, Lili Wang, Hua Xu and Jianwei Xie
Toxins 2024, 16(6), 237; https://doi.org/10.3390/toxins16060237 - 23 May 2024
Viewed by 285
Abstract
Ricin and abrin are highly potent plant-derived toxins, categorized as type II ribosome-inactivating proteins. High toxicity, accessibility, and the lack of effective countermeasures make them potential agents in bioterrorism and biowarfare, posing significant threats to public safety. Despite the existence of many effective [...] Read more.
Ricin and abrin are highly potent plant-derived toxins, categorized as type II ribosome-inactivating proteins. High toxicity, accessibility, and the lack of effective countermeasures make them potential agents in bioterrorism and biowarfare, posing significant threats to public safety. Despite the existence of many effective analytical strategies for detecting these two lethal toxins, current methods are often hindered by limitations such as insufficient sensitivity, complex sample preparation, and most importantly, the inability to distinguish between biologically active and inactive toxin. In this study, a cytotoxicity assay was developed to detect active ricin and abrin based on their potent cell-killing capability. Among nine human cell lines derived from various organs, HeLa cells exhibited exceptional sensitivity, with limits of detection reaching 0.3 ng/mL and 0.03 ng/mL for ricin and abrin, respectively. Subsequently, toxin-specific neutralizing monoclonal antibodies MIL50 and 10D8 were used to facilitate the precise identification and differentiation of ricin and abrin. The method provides straightforward and sensitive detection in complex matrices including milk, plasma, coffee, orange juice, and tea via a simple serial-dilution procedure without any complex purification and enrichment steps. Furthermore, this assay was successfully applied in the unambiguous identification of active ricin and abrin in samples from OPCW biotoxin exercises. Full article
(This article belongs to the Special Issue Multi Methods for Detecting Natural Toxins)
Show Figures

Figure 1

15 pages, 3020 KiB  
Article
The Possible Role of Mycotoxins in the Pathogenesis of Endometrial Cancer
by Márkó Unicsovics, Zsófia Molnár, Miklós Mézes, Katalin Posta, György Nagyéri, Szabolcs Várbíró, Nándor Ács, Levente Sára and Zsuzsanna Szőke
Toxins 2024, 16(6), 236; https://doi.org/10.3390/toxins16060236 - 23 May 2024
Viewed by 652
Abstract
Endometrial cancer is one of the most common cancer types among women. Many factors can contribute to the development of this disease, including environmental factors and, thus, eating habits. Our study aims to determine the levels of various mycotoxins and their metabolites in [...] Read more.
Endometrial cancer is one of the most common cancer types among women. Many factors can contribute to the development of this disease, including environmental factors and, thus, eating habits. Our study aims to determine the levels of various mycotoxins and their metabolites in the blood serum and endometrial tissue samples of participants with previously proven endometrial cancer and to find possible contributions to cancer development. In the cohort clinical trial, 52 participants aged between 44 and 86 were studied. The participants were divided into two groups: patients or matched controls. All patients had previously histologically diagnosed endometrial cancer. The cancer patients were divided into low-grade endometrioid and low- plus high-grade endometrioid groups. Controls had no history of endometrial malignancy or premalignancy. Blood serum and endometrial tissue samples were obtained from all study patients. We compared the concentrations of total Aflatoxins (Afs), Deoxynivalenol (DON), Ochratoxin-A (OTA), T2-toxin and HT2 toxin (T2/HT2 toxin), Zearalenone (ZEN), alpha-Zearalenol (α-ZOL), and Fumonisin B1 (FB1) in the serum and endometrium between the different study groups. As a result, we can see a significant correlation between the higher levels of Afs and zearalenone and the presence of endometrial cancer. In the case of Afs, DON, OTA, T2/HT2 toxins, ZEN, and alpha-ZOL, we measured higher endometrial concentrations than in serum. Considering the effect of mycotoxins and eating habits on cancer development, our results might lead to further research exploring the relationship between certain mycotoxins and endometrium cancer. Full article
Show Figures

Figure 1

13 pages, 897 KiB  
Article
Mechanism of Fumonisin Self-Resistance: Fusarium verticillioides Contains Four Fumonisin B1-Insensitive-Ceramide Synthases
by Tamara Krska, Krisztian Twaruschek, Gerlinde Wiesenberger, Franz Berthiller and Gerhard Adam
Toxins 2024, 16(6), 235; https://doi.org/10.3390/toxins16060235 - 22 May 2024
Viewed by 310
Abstract
Fusarium verticillioides produces fumonisins, which are mycotoxins inhibiting sphingolipid biosynthesis in humans, animals, and other eukaryotes. Fumonisins are presumed virulence factors of plant pathogens, but may also play a role in interactions between competing fungi. We observed higher resistance to added fumonisin B [...] Read more.
Fusarium verticillioides produces fumonisins, which are mycotoxins inhibiting sphingolipid biosynthesis in humans, animals, and other eukaryotes. Fumonisins are presumed virulence factors of plant pathogens, but may also play a role in interactions between competing fungi. We observed higher resistance to added fumonisin B1 (FB1) in fumonisin-producing Fusarium verticillioides than in nonproducing F. graminearum, and likewise between isolates of Aspergillus and Alternaria differing in production of sphinganine-analog toxins. It has been reported that in F. verticillioides, ceramide synthase encoded in the fumonisin biosynthetic gene cluster is responsible for self-resistance. We reinvestigated the role of FUM17 and FUM18 by generating a double mutant strain in a fum1 background. Nearly unchanged resistance to added FB1 was observed compared to the parental fum1 strain. A recently developed fumonisin-sensitive baker’s yeast strain allowed for the testing of candidate ceramide synthases by heterologous expression. The overexpression of the yeast LAC1 gene, but not LAG1, increased fumonisin resistance. High-level resistance was conferred by FUM18, but not by FUM17. Likewise, strong resistance to FB1 was caused by overexpression of the presumed F. verticillioides “housekeeping” ceramide synthases CER1, CER2, and CER3, located outside the fumonisin cluster, indicating that F. verticillioides possesses a redundant set of insensitive targets as a self-resistance mechanism. Full article
18 pages, 955 KiB  
Review
Spider and Wasp Acylpolyamines: Venom Components and Versatile Pharmacological Leads, Probes, and Insecticidal Agents
by Gandhi Rádis-Baptista and Katsuhiro Konno
Toxins 2024, 16(6), 234; https://doi.org/10.3390/toxins16060234 - 21 May 2024
Viewed by 302
Abstract
Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs’ levels in the tissues will determine whether beneficial [...] Read more.
Polyamines (PAs) are polycationic biogenic amines ubiquitously present in all life forms and are involved in molecular signaling and interaction, determining cell fate (e.g., cell proliferation, dif-ferentiation, and apoptosis). The intricate balance in the PAs’ levels in the tissues will determine whether beneficial or detrimental effects will affect homeostasis. It’s crucial to note that endoge-nous polyamines, like spermine and spermidine, play a pivotal role in our understanding of neu-rological disorders as they interact with membrane receptors and ion channels, modulating neuro-transmission. In spiders and wasps, monoamines (histamine, dopamine, serotonin, tryptamine) and polyamines (spermine, spermidine, acyl polyamines) comprise, with peptides and other sub-stances, the low molecular weight fraction of the venom. Acylpolyamines are venom components exclusively from spiders and a species of solitary wasp, which cause inhibition chiefly of iono-tropic glutamate receptors (AMPA, NMDA, and KA iGluRs) and nicotinic acetylcholine receptors (nAChRs). The first venom acylpolyamines ever discovered (argiopines, Joro and Nephila toxins, and philanthotoxins) have provided templates for the design and synthesis of numerous analogs. Thus far, analogs with high potency exert their effect at nanomolar concentrations, with high se-lectivity toward their ionotropic and ligand receptors. These potent and selective acylpolyamine analogs can serve biomedical purposes and pest control management. The structural modification of acylpolyamine with photolabile and fluorescent groups converted these venom toxins into use-ful molecular probes to discriminate iGluRs and nAchRs in cell populations. In various cases, the linear polyamines, like spermine and spermidine, constituting venom acyl polyamine backbones, have served as cargoes to deliver active molecules via a polyamine uptake system on diseased cells for targeted therapy. In this review, we examined examples of biogenic amines that play an essential role in neural homeostasis and cell signaling, contributing to human health and disease outcomes, which can be present in the venom of arachnids and hymenopterans. With an empha-sis on the spider and wasp venom acylpolyamines, we focused on the origin, structure, derivatiza-tion, and biomedical and biotechnological application of these pharmacologically attractive, chemically modular venom components. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

10 pages, 4613 KiB  
Article
Borrelia burgdorferi 0755, a Novel Cytotoxin with Unknown Function in Lyme Disease
by Sam T. Donta
Toxins 2024, 16(6), 233; https://doi.org/10.3390/toxins16060233 - 21 May 2024
Viewed by 978
Abstract
The pathophysiology of Lyme disease, especially in its persistent form, remains to be determined. As many of the neurologic symptoms are similar to those seen in other toxin-associated disorders, a hypothesis was generated that B. burgdorferi, the causative agent of Lyme disease, [...] Read more.
The pathophysiology of Lyme disease, especially in its persistent form, remains to be determined. As many of the neurologic symptoms are similar to those seen in other toxin-associated disorders, a hypothesis was generated that B. burgdorferi, the causative agent of Lyme disease, may produce a neurotoxin to account for some of the symptoms. Using primers against known conserved bacterial toxin groups, and PCR technology, a candidate neurotoxin was discovered. The purified protein was temporarily named BbTox, and was subsequently found to be identical to BB0755, a protein deduced from the genome sequence of B. burgdorferi that has been annotated as a Z ribonuclease. BbTox has cytotoxic activity against cells of neural origin in tissue culture. Its toxic activity appears to be directed against cytoskeletal elements, similar to that seen with toxins of Clostridioides difficile and Clostridioides botulinum, but differing from that of cholera and E. coli toxins, and other toxins. It remains to be determined whether BbTox has direct cytotoxic effects on neural or glial cells in vivo, or its activity is primarily that of a ribonuclease analogous to other bacterial ribonucleases that are involved in antibiotic tolerance remains to be determined. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

15 pages, 3161 KiB  
Article
Glucose and Oxygen Levels Modulate the Pore-Forming Effects of Cholesterol-Dependent Cytolysin Pneumolysin from Streptococcus pneumoniae
by Michelle Salomé Hoffet, Nikola S. Tomov, Sabrina Hupp, Timothy J. Mitchell and Asparouh I. Iliev
Toxins 2024, 16(6), 232; https://doi.org/10.3390/toxins16060232 - 21 May 2024
Viewed by 389
Abstract
A major Streptococcus pneumoniae pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin’s pore-forming capacity remains unknown. In acute brain [...] Read more.
A major Streptococcus pneumoniae pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, binding membrane cholesterol and producing permanent lytic or transient pores. During brain infections, vascular damage with variable ischemia occurs. The role of ischemia on pneumolysin’s pore-forming capacity remains unknown. In acute brain slice cultures and primary cultured glia, we studied acute toxin lysis (via propidium iodide staining and LDH release) and transient pore formation (by analyzing increases in the intracellular calcium). We analyzed normal peripheral tissue glucose conditions (80 mg%), normal brain glucose levels (20 mg%), and brain hypoglycemic conditions (3 mg%), in combinations either with normoxia (8% oxygen) or hypoxia (2% oxygen). At 80 mg% glucose, hypoxia enhanced cytolysis via pneumolysin. At 20 mg% glucose, hypoxia did not affect cell lysis, but impaired calcium restoration after non-lytic pore formation. Only at 3 mg% glucose, during normoxia, did pneumolysin produce stronger lysis. In hypoglycemic (3 mg% glucose) conditions, pneumolysin caused a milder calcium increase, but restoration was missing. Microglia bound more pneumolysin than astrocytes and demonstrated generally stronger calcium elevation. Thus, our work demonstrated that the toxin pore-forming capacity in cells continuously diminishes when oxygen is reduced, overlapping with a continuously reduced ability of cells to maintain homeostasis of the calcium influx once oxygen and glucose are reduced. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

Previous Issue
Back to TopTop