α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes
Abstract
:1. Introduction
2. Results
2.1. The 2D Crystallization of α-LTX
2.2. Formation of Pore Arrays in Biological Membranes
2.3. Conformational Changes in the α-LTX Tetramer
2.4. Domain Arrangement in α-LTX
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. α-LTX Purification
5.2. Oligomerization Studies
5.3. CryoEM Specimen Preparation
5.4. Cryo-Electron Microscopy and Data Collection
5.5. Image Analysis
5.6. Cell Culture and Electrophysiology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenthal, L.; Meldolesi, J. α-Latrotoxin and Related Toxins. Pharmacol. Ther. 1989, 42, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Ushkaryov, Y.A.; Rohou, A.; Sugita, S. α-Latrotoxin and Its Receptors. Handb. Exp. Pharmacol. 2008, 184, 171–206. [Google Scholar] [CrossRef]
- Finkelstein, A.; Rubin, L.L.; Tzeng, M.C. Black Widow Spider Venom: Effect of Purified Toxin on Lipid Bilayer Membranes. Science 1976, 193, 1009–1011. [Google Scholar] [CrossRef]
- Mironov, S.L.; Sokolov, Y.; Chanturiya, A.N.; Lishko, V.K. Channels Produced by Spider Venoms in Bilayer Lipid Membrane: Mechanisms of Ion Transport and Toxic Action. Biochim. Biophys. Acta 1986, 862, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Krasilnikov, O.V.; Sabirov, R.Z. Comparative Analysis of Latrotoxin Channels of Different Conductance in Planar Lipid Bilayers. Evidence for Cluster Organization. Biochim. Biophys. Acta 1992, 1112, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Filippov, A.K.; Tertishnikova, S.M.; Alekseev, A.E.; Tsurupa, G.P.; Pashkov, V.N.; Grishin, E.V. Mechanism of α-Latrotoxin Action as Revealed by Patch-Clamp Experiments on Xenopus Oocytes Injected with Rat Brain Messenger RNA. Neuroscience 1994, 61, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Van Renterghem, C.; Iborra, C.; Martin-Moutot, N.; Lelianova, V.; Ushkaryov, Y.; Seagar, M.; Van Renterghem, C.; Iborra, C.; Martin-Moutot, N.; Lelianova, V.; et al. α-Latrotoxin Forms Calcium-Permeable Membrane Pores via Interactions with Latrophilin or Neurexin. Eur. J. Neurosci. 2000, 12, 3953–3962. [Google Scholar] [CrossRef]
- Scheer, H.; Madeddu, L.; Dozio, N.; Gatti, G.; Vicentini, L.M.; Meldolesi, J. α-Latrotoxin of Black Widow Spider Venom: An Interesting Neurotoxin and a Tool for Investigating the Process of Neurotransmitter Release. J. Physiol. 1984, 79, 216–221. [Google Scholar]
- ongenecker, H.E., Jr.; Hurlbut, W.P.; Mauro, A.; Clark, A.W.; Longenecker, H.E.; Hurlbut, W.P.; Mauro, A.; Clark, A.W. Effects of Black Widow Spider Venom on the Frog Neuromuscular Junction. Effects on End-Plate Potential, Miniature End-Plate Potential and Nerve Terminal Spike. Nature 1970, 225, 701–703. [Google Scholar] [CrossRef]
- Hurlbut, W.P.; Ceccarelli, B. Use of Black Widow Spider Venom to Study the Release of Neurotransmitters. Adv. Cytopharmacol. 1979, 3, 87–115. [Google Scholar]
- Sudhof, T.C. α-Latrotoxin and Its Receptors: Neurexins and CIRL/Latrophilins. Annu. Rev. Neurosci. 2001, 24, 933–962. [Google Scholar] [CrossRef] [PubMed]
- Orlova, E.V.; Rahman, M.A.; Gowen, B.; Volynski, K.E.; Ashton, A.C.; Manser, C.; van Heel, M.; Ushkaryov, Y.A.; Orlova, E.V.; Rahman, M.A.; et al. Structure of α-Latrotoxin Oligomers Reveals That Divalent Cation-Dependent Tetramers Form Membrane Pores. Nat. Struct. Biol. 2000, 7, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Ashton, A.C.; Rahman, M.A.; Volynski, K.E.; Manser, C.; Orlova, E.V.; Matsushita, H.; Davletov, B.A.; Van Heel, M.; Grishin, E.V.; Ushkaryov, Y.A. Tetramerisation of α-Latrotoxin by Divalent Cations Is Responsible for Toxin-Induced Non-Vesicular Release and Contributes to the Ca2+-Dependent Vesicular Exocytosis from Synaptosomes. Biochimie 2000, 82, 453–468. [Google Scholar] [CrossRef] [PubMed]
- Capogna, M.; Volynski, K.E.; Emptage, N.J.; Ushkaryov, Y.A. The α-Latrotoxin Mutant LTXN4C Enhances Spontaneous and Evoked Transmitter Release in CA3 Pyramidal Neurons. J. Neurosci. 2003, 23, 4044–4053. [Google Scholar] [CrossRef] [PubMed]
- Ichtchenko, K.; Khvotchev, M.; Kiyatkin, N.; Simpson, L.; Sugita, S.; Südhof, T.C. α-Latrotoxin Action Probed with Recombinant Toxin: Receptors Recruit α-Latrotoxin but Do Not Transduce an Exocytotic Signal. EMBO J. 1998, 17, 6188–6199. [Google Scholar] [CrossRef] [PubMed]
- Volynski, K.E.; Capogna, M.; Ashton, A.C.; Thomson, D.; Orlova, E.V.; Manser, C.F.; Ribchester, R.R.; Ushkaryov, Y.A. Mutant α-Latrotoxin (LTXN4C) Does Not Form Pores and Causes Secretion by Receptor Stimulation. This Action Does Not Require Neurexins. J. Biol. Chem. 2003, 278, 31058–31066. [Google Scholar] [CrossRef] [PubMed]
- Déak, F.; Liu, X.; Khvotchev, M.; Li, G.; Kavalali, E.T.; Sugita, S.; Sudhof, T.C. α-Latrotoxin Stimulates a Novel Pathway of Ca2+-Dependent Synaptic Exocytosis Independent of the Classical Synaptic Fusion Machinery. J. Neurosci. 2009, 29, 8639–8648. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lee, D.; Wang, L.; Khvotchev, M.; Chiew, S.K.; Arunachalam, L.; Collins, T.; Feng, Z.P.; Sugita, S. N-Terminal Insertion and C-Terminal Ankyrin-like Repeats of α-Latrotoxin Are Critical for Ca2+-Dependent Exocytosis. J. Neurosci. 2005, 25, 10188–10197. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Blum, D.; Engelhard, L.; Raunser, S.; Wagner, R.; Gatsogiannis, C. Molecular Architecture of Black Widow Spider Neurotoxins. Nat. Commun. 2021, 12, 6956. [Google Scholar] [CrossRef]
- Grishin, E.V. Black Widow Spider Toxins: The Present and the Future. Toxicon 1998, 36, 1693–1701. [Google Scholar] [CrossRef]
- Kiyatkin, N.I.; Dulubova, I.E.; Chekhovskaya, I.A.; Grishin, E.V. Cloning and Structure of CDNA Encoding α-Latrotoxin from Black Widow Spider Venom. FEBS Lett. 1990, 270, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Kiyatkin, N.; Dulubova, I.; Grishin, E. Cloning and Structural Analysis of α-Latroinsectotoxin CDNA. Abundance of Ankyrin-like Repeats. Eur. J. Biochem. 1993, 213, 121–127. [Google Scholar] [CrossRef]
- Dulubova, I.E.; Krasnoperov, V.G.; Khvotchev, M.V.; Pluzhnikov, K.A.; Volkova, T.M.; Grishin, E.V.; Vais, H.; Bell, D.R.; Usherwood, P.N. Cloning and Structure of δ-Latroinsectotoxin, a Novel Insect-Specific Member of the Latrotoxin Family: Functional Expression Requires C-Terminal Truncation. J. Biol. Chem. 1996, 271, 7535–7543. [Google Scholar] [CrossRef] [PubMed]
- Hlubek, M.D.; Stuenkel, E.L.; Krasnoperov, V.G.; Petrenko, A.G.; Holz, R.W. Calcium-Independent Receptor for α-Latrotoxin and Neurexin 1α Facilitate Toxin-Induced Channel Formation: Evidence That Channel Formation Results from Tethering of Toxin to Membrane. Mol. Pharmacol. 2000, 57, 519–528. [Google Scholar] [CrossRef]
- Tse, F.W.; Tse, A. A-Latrotoxin Stimulates Inward Current, Rise in Cytosolic Calcium Concentration, and Exocytosis in at Pituitary Gonadotropes. Endocrinology 1999, 140, 3025–3033. [Google Scholar] [CrossRef]
- Henderson, R.; Baldwin, J.M.; Downing, K.H.; Lepault, J.; Zemlin, F. Structure of Purple Membrane from Halobacterium-Halobium—Recording, Measurement and Evaluation of Electron-Micrographs at 3.5 Å Resolution. Ultramicroscopy 1986, 19, 147–178. [Google Scholar] [CrossRef]
- Michaely, P.; Tomchick, D.R.; Machius, M.; Anderson, R.G. Crystal Structure of a 12 ANK Repeat Stack from Human AnkyrinR. EMBO J. 2002, 21, 6387–6396. [Google Scholar] [CrossRef]
- Human Protein Atlas. Available online: https://www.proteinatlas.org/search/hek293 (accessed on 10 April 2024).
- Berglund, L.; Björling, E.; Oksvold, P.; Fagerberg, L.; Asplund, A.; Szigyarto, C.A.K.; Persson, A.; Ottosson, J.; Wernérus, H.; Nilsson, P.; et al. A Genecentric Human Protein Atlas for Expression Profiles Based on Antibodies. Mol. Cell. Proteom. 2008, 7, 2019–2027. [Google Scholar] [CrossRef]
- Ichtchenko, K.; Bittner, M.A.; Krasnoperov, V.; Little, A.R.; Chepurny, O.; Holz, R.W.; Petrenko, A.G. A Novel Ubiquitously Expressed α-Latrotoxin Receptor Is a Member of the CIRL Family of G-Protein-Coupled Receptors. J. Biol. Chem. 1999, 274, 5491–5498. [Google Scholar] [CrossRef]
- Krasnoperov, V.; Bittner, M.A.; Holz, R.W.; Chepurny, O.; Petrenko, A.G. Structural Requirements for α-Latrotoxin Binding and α-Latrotoxin-Stimulated Secretion. Biochemistry 1999, 274, 3590–3596. [Google Scholar] [CrossRef]
- Klaholz, B.P. Structure Sorting of Multiple Macromolecular States in Heterogeneous Cryo-EM Samples by 3D Multivariate Statistical Analysis. Open J. Stat. 2015, 05, 820–836. [Google Scholar] [CrossRef]
- Magazanik, L.G.; Fedorova, I.M.; Kovalevskaya, G.I.; Pashkov, V.N.; Bulgakov, O.V.; Grishin, E.V. Selective Presynaptic Insectotoxin (α-Latroinsectotoxin) Isolated from Black Widow Spider Venom. Neuroscience 1992, 46, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Shatursky, O.Y.; Pashkov, V.N.; Bulgacov, O.V.; Grishin, E.V. Interaction of A-Latroinsectotoxin from Latrodectus Mactans Venom with Bilayer Lipid Membranes. Biochim. Biophys. Acta 1995, 1233, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Khvotchev, M.; Sudhof, T.C. α-Latrotoxin Triggers Transmitter Release via Direct Insertion into the Presynaptic Plasma Membrane. EMBO J. 2000, 19, 3250–3262. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.J.C.; Serra, M.D.; Froelich, C.J.; Wallace, M.I.; Anderluh, G. Membrane Pore Formation at Protein–Lipid Interfaces. Trends Biochem. Sci. 2014, 39, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Mancheño, J.M.; Martín-Benito, J.; Martínez-Ripoll, M.; Gavilanes, J.G.; Hermoso, J.A. Crystal and Electron Microscopy Structures of Sticholysin II Actinoporin Reveal Insights into the Mechanism of Membrane Pore Formation. Structure 2003, 11, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Shatursky, O.Y.; Volkova, T.M.; Romanenko, O.V.; Himmelreich, N.H.; Grishin, E.V. Vitamin B1 Thiazole Derivative Reduces Transmembrane Current through Ionic Channels Formed by Toxins from Black Widow Spider Venom and Sea Anemone in Planar Phospholipid Membranes. Biochim. Biophys. Acta 2007, 1768, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Shatursky, O.Y.; Volkova, T.M.; Himmelreich, N.H.; Grishin, E.V. The Geometry of the Ionic Channel Lumen Formed by α-Latroinsectotoxin from Black Widow Spider Venom in the Bilayer Lipid Membranes. Biochim. Biophys. Acta 2007, 1768, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- McMahon, H.T.; Rosenthal, L.; Meldolesi, J.; Nicholls, D.G. α-Latrotoxin Releases Both Vesicular and Cytoplasmic Glutamate from Isolated Nerve Terminals. J. Neurochem. 1990, 55, 2039–2047. [Google Scholar] [CrossRef]
- Deri, Z.; Bors, P.; dam-Vizi, V. Effect of α-Latrotoxin on Acetylcholine Release and Intracellular Ca2+ Concentration in Synaptosomes: Na+-Dependent and Na+-Independent Components. J. Neurochem. 1993, 60, 1065–1072. [Google Scholar] [CrossRef]
- Martín-Benito, J.; Gavilanes, F.; de los Ríos, V.; Mancheño, J.M.; Fernández, J.J.; Gavilanes, J.G. Two-Dimensional Crystallization on Lipid Monolayers and Three-Dimensional Structure of Sticholysin II, a Cytolysin from the Sea Anemone Stichodactyla Helianthus. Biophys. J. 2000, 78, 3186–3194. [Google Scholar] [CrossRef] [PubMed]
- Mancheño, J.M.; Martín-Benito, J.; Gavilanes, J.G.; Vázquez, L. A Complementary Microscopy Analysis of Sticholysin II Crystals on Lipid Films: Atomic Force and Transmission Electron Characterizations. Biophys. Chem. 2006, 119, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Klink, B.U.; Alavizargar, A.; Subramaniam, K.K.; Chen, M.; Heuer, A.; Gatsogiannis, C. Molecular Mechanism of α-Latrotoxin Action. bioRxiv 2024. [Google Scholar] [CrossRef]
- Van Heel, M.; Harauz, G.; Orlova, E.V.; Schmidt, R.; Schatz, M. A New Generation of the IMAGIC Image Processing System. J. Struct. Biol. 1996, 116, 17–24. [Google Scholar] [CrossRef] [PubMed]
- van Heel, M.; Gowen, B.; Matadeen, R.; Orlova, E.V.; Finn, R.; Pape, T.; Cohen, D.; Stark, H.; Schmidt, R.; Schatz, M.; et al. Single-Particle Electron Cryo-Microscopy: Towards Atomic Resolution. Q. Rev. Biophys. 2000, 33, 307–369. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.; Radermacher, M.; Penczek, P.; Zhu, J.; Li, Y.; Ladjadj, M.; Leith, A. SPIDER and WEB: Processing and Visualization of Images in 3D Electron Microscopy and Related Fields. J. Struct. Biol. 1996, 116, 190–199. [Google Scholar] [CrossRef]
- Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 1994, 50, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Harauz, G.; van Heel, M. Exact Filters for General Geometry Three Dimensional Reconstruction. Optik 1986, 73, 146–156. [Google Scholar]
- van Heel, M.; Schatz, M. Fourier Shell Correlation Threshold Criteria. J. Struct. Biol. 2005, 151, 250–262. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Pein, F.; Eltzner, B.; Munk, A. Analysis of Patchclamp Recordings: Model-Free Multiscale Methods and Software. Eur. Biophys. J. 2021, 50, 187–209. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohou, A.; Morris, E.P.; Makarova, J.; Tonevitsky, A.G.; Ushkaryov, Y.A. α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes. Toxins 2024, 16, 248. https://doi.org/10.3390/toxins16060248
Rohou A, Morris EP, Makarova J, Tonevitsky AG, Ushkaryov YA. α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes. Toxins. 2024; 16(6):248. https://doi.org/10.3390/toxins16060248
Chicago/Turabian StyleRohou, Alexis, Edward P. Morris, Julia Makarova, Alexander G. Tonevitsky, and Yuri A. Ushkaryov. 2024. "α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes" Toxins 16, no. 6: 248. https://doi.org/10.3390/toxins16060248
APA StyleRohou, A., Morris, E. P., Makarova, J., Tonevitsky, A. G., & Ushkaryov, Y. A. (2024). α-Latrotoxin Tetramers Spontaneously Form Two-Dimensional Crystals in Solution and Coordinated Multi-Pore Assemblies in Biological Membranes. Toxins, 16(6), 248. https://doi.org/10.3390/toxins16060248