Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises—A Randomized Controlled Trial
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics of the Participants
2.2. Effect on Primary Outcome Measures
2.3. Effect on Secondary Outcome Measures
2.4. Quantitative Analysis of Spasticity Using Electromyography
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Design
5.2. BONT/A Injection Methods
5.3. Structured Stretching Exercises Plus BONT/A Injections
5.4. Outcome Measures
5.5. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sunnerhagen, K.S.; Opheim, A.; Alt Murphy, M. Onset, time course and prediction of spasticity after stroke or traumatic brain injury. Ann. Phys. Rehabil. Med. 2019, 62, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Chen, J.; Guo, Y.; Tan, S. Prevalence and Risk Factors for Spasticity after Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 616097. [Google Scholar] [CrossRef]
- Liao, L.Y.; Xu, P.D.; Fang, X.Q.; Wang, Q.H.; Tao, Y.; Cheng, H.; Gao, C.Y. Prevalence and clinical predictors of spasticity after intracerebral hemorrhage. Brain Behav. 2023, 13, e2906. [Google Scholar] [CrossRef] [PubMed]
- Cha, E.G.; Kim, S.-Y.; Lee, H.I.; Kim, D.Y.; Lee, J.; Sohn, M.K.; Lee, S.-G.; Oh, G.-J.; Lee, Y.-S.; Joo, M.C.; et al. Prevalence Rate of Spasticity at 3 Months after Stroke in Korea: The Korean Stroke Cohort for Functioning and Rehabilitation (KOSCO) Study. Brain Neurorehabil. 2016, 9, e6. [Google Scholar] [CrossRef]
- Sunnerhagen, K.S.; Olver, J.; Francisco, G.E. Assessing and treating functional impairment in poststroke spasticity. Neurology 2013, 80, S35–S44. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-L.; Hu, G.-C. Post-stroke Spasticity: A Review of Epidemiology, Pathophysiology, and Treatments. Int. J. Gerontol. 2018, 12, 280–284. [Google Scholar] [CrossRef]
- Wissel, J.; Manack, A.; Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology 2013, 80, S13–S19. [Google Scholar] [CrossRef]
- Wissel, J.; Verrier, M.; Simpson, D.M.; Charles, D.; Guinto, P.; Papapetropoulos, S.; Sunnerhagen, K.S. Post-stroke spasticity: Predictors of early development and considerations for therapeutic intervention. PM R 2015, 7, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Lackritz, H.; Parmet, Y.; Frenkel-Toledo, S.; Baniña, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S. Effect of post-stroke spasticity on voluntary movement of the upper limb. J. Neuroeng. Rehabil. 2021, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Trompetto, C.; Marinelli, L.; Mori, L.; Bragazzi, N.; Maggi, G.; Cotellessa, F.; Puce, L.; Vestito, L.; Molteni, F.; Gasperini, G.; et al. Increasing the Passive Range of Joint Motion in Stroke Patients Using Botulinum Toxin: The Role of Pain Relief. Toxins 2023, 15, 335. [Google Scholar] [CrossRef]
- Brainin, M.; Norrving, B.; Sunnerhagen, K.S.; Goldstein, L.B.; Cramer, S.C.; Donnan, G.A.; Duncan, P.W.; Francisco, G.; Good, D.; Graham, G.; et al. Poststroke chronic disease management: Towards improved identification and interventions for poststroke spasticity-related complications. Int. J. Stroke 2011, 6, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.; Karam, P.; Forestier, A.; Loze, J.Y.; Bensmail, D. Botulinum toxin use in patients with post-stroke spasticity: A nationwide retrospective study from France. Front. Neurol. 2023, 14, 1245228. [Google Scholar] [CrossRef] [PubMed]
- Brashear, A.; Gordon, M.F.; Elovic, E.; Kassicieh, V.D.; Marciniak, C.; Do, M.; Lee, C.H.; Jenkins, S.; Turkel, C. Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke. N. Engl. J. Med. 2002, 347, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Ojardias, E.; Ollier, E.; Lafaie, L.; Celarier, T.; Giraux, P.; Bertoletti, L. Time course response after single injection of botulinum toxin to treat spasticity after stroke: Systematic review with pharmacodynamic model-based meta-analysis. Ann. Phys. Rehabil. Med. 2022, 65, 101579. [Google Scholar] [CrossRef] [PubMed]
- Rosales, R.L.; Balcaitiene, J.; Berard, H.; Maisonobe, P.; Goh, K.J.; Kumthornthip, W.; Mazlan, M.; Latif, L.A.; Delos Santos, M.M.D.; Chotiyarnwong, C.; et al. Early AbobotulinumtoxinA (Dysport®) in Post-Stroke Adult Upper Limb Spasticity: ONTIME Pilot Study. Toxins 2018, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Zhang, C.; Liu, Y.; Magat, E.; Verduzco-Gutierrez, M.; Francisco, G.E.; Zhou, P.; Zhang, Y.; Li, S. The Effects of Botulinum Toxin Injections on Spasticity and Motor Performance in Chronic Stroke with Spastic Hemiplegia. Toxins 2020, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- Prazeres, A.; Lira, M.; Aguiar, P.; Monteiro, L.; Vilasbôas, Í.; Melo, A. Efficacy of physical therapy associated with botulinum toxin type A on functional performance in post-stroke spasticity: A randomized, double-blinded, placebo-controlled trial. Neurol. Int. 2018, 10, 7385. [Google Scholar] [CrossRef] [PubMed]
- Francisco, G.E.; Balbert, A.; Bavikatte, G.; Bensmail, D.; Carda, S.; Deltombe, T.; Draulans, N.; Escaldi, S.; Gross, R.; Jacinto, J.; et al. A practical guide to optimizing the benefits of post-stroke spasticity interventions with botulinum toxin A: An international group consensus. J. Rehabil. Med. 2021, 53, jrm00134. [Google Scholar] [CrossRef] [PubMed]
- Abijo, A.; Lee, C.-Y.; Huang, C.-Y.; Ho, P.-C.; Tsai, K.-J. The Beneficial Role of Photobiomodulation in Neurodegenerative Diseases. Biomedicines 2023, 11, 1828. [Google Scholar] [CrossRef] [PubMed]
- Paolillo, F.R.; Luccas, G.A.A.; Parizotto, N.A.; Paolillo, A.R.; de Castro Neto, J.C.; Bagnato, V.S. The effects of transcranial laser photobiomodulation and neuromuscular electrical stimulation in the treatment of post-stroke dysfunctions. J. Biohotonics 2023, 16, e202200260. [Google Scholar] [CrossRef]
- Das Neves, M.F.; Aleixo, D.C.; Mendes, I.S.; Lima, F.P.S.; Nicolau, R.A.; Arisawa, E.A.L.; Lopes-Martins, R.A.B.; Lima, M.O. Long-term analyses of spastic muscle behavior in chronic poststroke patients after near-infrared low-level laser therapy (808 nm): A double-blinded placebo-controlled clinical trial. Lasers Med. Sci. 2020, 35, 1459–1467. [Google Scholar] [CrossRef]
- das Neves, M.F.; Pinto, A.P.; Maegima, L.T.; Lima, F.P.S.; Lopes-Martins, R.Á.B.; Lo Schiavo Arisawa, E.A.; Lima, M.O. Effects of photobiomodulation on pain, lactate and muscle performance (ROM, torque, and EMG parameters) of paretic upper limb in patients with post-stroke spastic hemiparesis—A randomized controlled clinical trial. Lasers Med. Sci. 2024, 39, 88. [Google Scholar] [CrossRef] [PubMed]
- Bumbea, A.M.; Rogoveanu, O.C.; Turcu-Stiolica, A.; Pirici, I.; Cioroianu, G.; Stanca, D.I.; Criciotoiu, O.; Biciusca, V.; Traistaru, R.M.; Caimac, D.V. Management of Upper-Limb Spasticity Using Modern Rehabilitation Techniques versus Botulinum Toxin Injections Following Stroke. Life 2023, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
- Lannin, N.A.; Ada, L.; English, C.; Ratcliffe, J.; Faux, S.G.; Palit, M.; Gonzalez, S.; Olver, J.; Cameron, I.; Crotty, M. Effect of Additional Rehabilitation after Botulinum Toxin—A on Upper Limb Activity in Chronic Stroke: The InTENSE Trial. Stroke 2020, 51, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cuaresma, L.; Lucena-Anton, D.; Gonzalez-Medina, G.; Martin-Vega, F.J.; Galan-Mercant, A.; Luque-Moreno, C. Effectiveness of Stretching in Post-Stroke Spasticity and Range of Motion: Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- Brusola, G.; Garcia, E.; Albosta, M.; Daly, A.; Kafes, K.; Furtado, M. Effectiveness of physical therapy interventions on post-stroke spasticity: An umbrella review. NeuroRehabilitation 2023, 52, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Smania, N.; Picelli, A.; Munari, D.; Geroin, C.; Ianes, P.; Waldner, A.; Gandolfi, M. Rehabilitation procedures in the management of spasticity. Eur. J. Phys. Rehabil. Med. 2010, 46, 423–438. [Google Scholar] [PubMed]
- Holzgreve, F.; Fraeulin, L.; Haenel, J.; Schmidt, H.; Bader, A.; Frei, M.; Groneberg, D.A.; Ohlendorf, D.; van Mark, A. Office work and stretch training (OST) study: Effects on the prevalence of musculoskeletal diseases and gender differences: A non-randomised control study. BMJ Open 2021, 11, e044453. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, S.H.; Noh, S.E.; Bang, H.J.; Lee, K.M. Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2019, 100, 1015–1022. [Google Scholar] [CrossRef]
- Yelnik, A.P.; Colle, F.M.; Bonan, I.V.; Vicaut, E. Treatment of shoulder pain in spastic hemiplegia by reducing spasticity of the subscapular muscle: A randomised, double blind, placebo controlled study of botulinum toxin A. J. Neurol. Neurosurg. Psychiatry 2007, 78, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Adey-Wakeling, Z.; Arima, H.; Crotty, M.; Leyden, J.; Kleinig, T.; Anderson, C.S.; Newbury, J. Incidence and associations of hemiplegic shoulder pain poststroke: Prospective population-based study. Arch. Phys. Med. Rehabil. 2015, 96, 241–247.e1. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.M.; Guo, T.T.; Sun, X.; Ge, H.X.; Chen, X.D.; Zhao, K.J.; Zhang, L.N. Effectiveness of Botulinum Toxin A in Treatment of Hemiplegic Shoulder Pain: A Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2021, 102, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- De Melo Carvalho Rocha, E.; Riberto, M.; da Ponte Barbosa, R.; Geronimo, R.M.P.; Menezes-Junior, M. Use of Botulinum Toxin as a Treatment of Hemiplegic Shoulder Pain Syndrome: A Randomized Trial. Toxins 2023, 15, 327. [Google Scholar] [CrossRef] [PubMed]
- Sheean, G.; Lannin, N.A.; Turner-Stokes, L.; Rawicki, B.; Snow, B.J. Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: International consensus statement. Eur. J. Neurol. 2010, 17 (Suppl. S2), 74–93. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.-W.; Wu, W.-C.; Chen, Y.-J.; Pong, Y.-P.; Chang, K.-C. Predictors of Clinically Important Improvements in Motor Function and Daily Use of Affected Arm after a Botulinum Toxin A Injection in Patients with Chronic Stroke. Toxins 2022, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- De Sire, A.; Moggio, L.; Demeco, A.; Fortunato, F.; Spanò, R.; Aiello, V.; Marotta, N.; Ammendolia, A. Efficacy of rehabilitative techniques in reducing hemiplegic shoulder pain in stroke: Systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2022, 65, 101602. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Momosaki, R.; Niimi, M.; Yamada, N.; Hara, H.; Abo, M. Botulinum Toxin Therapy Combined with Rehabilitation for Stroke: A Systematic Review of Effect on Motor Function. Toxins 2019, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, T.; Abo, M.; Murata, K.; Kenmoku, M.; Yoshizawa, I.; Ishikawa, A.; Suzuki, M.; Nakaya, N.; Taguchi, K. Association of Long-Term Treatment by Botulinum Neurotoxins and Occupational Therapy with Subjective Physical Status in Patients with Post-Stroke Hemiplegia. Toxins 2019, 11, 453. [Google Scholar] [CrossRef]
- Baguley, I.J.; Nott, M.T.; Turner-Stokes, L.; De Graaff, S.; Katrak, P.; McCrory, P.; de Abadal, M.; Hughes, A. Investigating muscle selection for botulinum toxin-A injections in adults with post-stroke upper limb spasticity. J. Rehabil. Med. 2011, 43, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.M.; Patel, A.T.; Alfaro, A.; Ayyoub, Z.; Charles, D.; Dashtipour, K.; Esquenazi, A.; Graham, G.D.; McGuire, J.R.; Odderson, I. OnabotulinumtoxinA Injection for Poststroke Upper-Limb Spasticity: Guidance for Early Injectors from a Delphi Panel Process. PM R 2017, 9, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Lannin, N.A.; Ada, L.; English, C.; Ratcliffe, J.; Faux, S.; Palit, M.; Gonzalez, S.; Olver, J.; Schneider, E.; Crotty, M.; et al. Long-term effect of additional rehabilitation following botulinum toxin—A on upper limb activity in chronic stroke: The InTENSE randomised trial. BMC Neurol. 2022, 22, 154. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, J.E.; Kang, B.H.; Yang, S.N. Efficiency of botulinum toxin injection into the arm on postural balance and gait after stroke. Sci. Rep. 2023, 13, 8426. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Hong, B.Y.; Kim, J.S.; Sul, B.; Yoon, S.C.; Ji, E.K.; Son, D.B.; Hwang, B.Y.; Lim, S.H. Which brain lesions produce spasticity? An observational study on 45 stroke patients. PLoS ONE 2019, 14, e0210038. [Google Scholar] [CrossRef]
- Intiso, D.; Centra, A.M.; Gravina, M.; Chiaramonte, A.; Bartolo, M.; Di Rienzo, F. Botulinum Toxin—A High-Dosage Effect on Functional Outcome and Spasticity-Related Pain in Subjects with Stroke. Toxins 2023, 15, 509. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ji, D.M.; Kim, C.Y.; Choi, S.B.; Joo, M.C.; Kim, M.S. Therapeutic Effects of a Newly Developed 3D Magnetic Finger Rehabilitation Device in Subacute Stroke Patients: A Pilot Study. Brain Sci. 2022, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Young, J.H.; Kyu, P.B.; Suk, S.H.; Kyoo, K.Y.; Bom, P.S.; Jong, P.N.; Hyun, K.S.; Hyun, K.T.; Ryoon, H.T. Development of the Korean Version of Modified Barthel Index (K-MBI): Multi-center Study for Subjects with Stroke. Ann. Rehabil. Med. 2007, 31, 283–297. [Google Scholar]
- Santisteban, L.; Térémetz, M.; Bleton, J.P.; Baron, J.C.; Maier, M.A.; Lindberg, P.G. Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review. PLoS ONE 2016, 11, e0154792. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Lin, K.C.; Liing, R.J.; Wu, C.Y.; Chen, C.L.; Chang, K.C. Validity, responsiveness, and minimal clinically important difference of EQ-5D-5L in stroke patients undergoing rehabilitation. Qual. Life Res. 2016, 25, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Xin, G.; Peng, F.; Yue, W.; Samuel, O.W.; Pingao, H.; Yanjuan, G.; Hui, W.; Guanglin, L. A new EMG-based index towards the assessment of elbow spasticity for post-stroke patients. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 3640–3643. [Google Scholar] [CrossRef]
Intervention Group (n = 21) | Control Group (n = 22) | ||
---|---|---|---|
Age | (years, mean ± SD) | 66.3 ± 8.2 | 68.1 ± 8.4 |
Sex | Male | 9 | 10 |
Female | 12 | 12 | |
Stroke type | Infarct | 14 | 15 |
Hemorrhage | 7 | 7 | |
Hemiplegic side | Right | 8 | 9 |
Left | 13 | 13 | |
Duration after stroke onset | (days) | 71.1 ± 9.1 | 74.8 ± 9.2 |
Comorbidity | Hypertension | 20 | 20 |
Diabetes | 11 | 12 | |
Hyperlipidemia | 16 | 17 | |
NIHSS | Onset | 14.1 ± 3.0 | 13.9 ± 3.1 |
K-MMSE | (at the beginning of the study) | 19.3 ± 4.0 | 18.5 ± 4.5 |
Modified MAS | 0 | 0 | 0 |
grade | 1 | 0 | 0 |
2 | 0 | 0 | |
3 | 14 | 16 | |
4 | 7 | 6 | |
5 | 0 | 0 |
Muscles (BONT/A, UI) | This Study | AbbVie Website | Allergan Delphi Panel |
---|---|---|---|
Biceps brachii (BB) | 90 | 60–200 | 0–50 |
Brachioradialis (BR) | 45 | 45–75 | 25–50 |
Flexor carpi radialis (FCR) | 30 | 12.5–50 | 50–75 |
Flexor carpi ulnaris (FCU) | 30 | 12.5–50 | 25–50 |
Flexor digitorum superficialis (FDS) | 45 | 30–50 | 20–60 |
Flexor digitorum profundus (FDP) | 60 | 30–50 | 25–75 |
Modified Score | Actual Score | Modified Ashworth Scale |
---|---|---|
0 | 0 | No increase in muscle tone |
1 | 1 | Slight increase in muscle tone, manifested by a catch and release or by minimal resistance at the end of the range of motion (ROM) when the affected part is moved in flexion or extension |
2 | 1+ | Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM |
3 | 2 | More marked increase in muscle tone through most of the ROM, but affected parts easily moved |
4 | 3 | Considerable increase in muscle tone, passive movement difficult |
5 | 4 | Affected part rigid in flexion or extension |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, I.-S.; Ryu, J.-W.; Jin, S.; Kim, S.-A.; Kim, M.-S. Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises—A Randomized Controlled Trial. Toxins 2024, 16, 267. https://doi.org/10.3390/toxins16060267
Hwang I-S, Ryu J-W, Jin S, Kim S-A, Kim M-S. Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises—A Randomized Controlled Trial. Toxins. 2024; 16(6):267. https://doi.org/10.3390/toxins16060267
Chicago/Turabian StyleHwang, In-Su, Jin-Whan Ryu, Sol Jin, Soo-A Kim, and Min-Su Kim. 2024. "Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises—A Randomized Controlled Trial" Toxins 16, no. 6: 267. https://doi.org/10.3390/toxins16060267
APA StyleHwang, I.-S., Ryu, J.-W., Jin, S., Kim, S.-A., & Kim, M.-S. (2024). Long-Term Enhancement of Botulinum Toxin Injections for Post-Stroke Spasticity by Use of Stretching Exercises—A Randomized Controlled Trial. Toxins, 16(6), 267. https://doi.org/10.3390/toxins16060267