Closed Loop Ultrafiltration Feedback Control in Hemodialysis: A Narrative Review
Abstract
:1. Introduction
2. Feedback-Controlled Ultrafiltration: Sensor Technologies
- Crit-Line (Fresenius Medical Care, Waltham, MA, USA) measures Hct with an optical method. It functions either as a stand-alone device or integrated into the Fresenius 2008T HD machine.
- Hemoscan (Gambro-Hospal, Medolla, Italy) measures Hb through optical absorbances of monochromatic light. It is incorporated into the Integra HD machine.
- Nikkiso blood volume monitor (Tokyo, Japan) is available as an add-on for Nikkiso HD machines, where intensity of the reflected light is influenced by RBC and correlates with Hct [50].
- Fresenius Medical Care blood volume monitor (BVM, Bad Homburg, Germany), integrated into the Fresenius 4008, 5008, and 6008 HD machines, uses an online ultrasound technique that measures the speed of sound in blood, which is dependent on the total protein concentration (plasma proteins and Hb) [51].
3. Feedback-Controlled Ultrafiltration in HD: Clinical Results
3.1. Hemocontrol
3.2. Blood Volume Monitor
3.3. Haemo-Master
4. Feedback-Controlled Ultrafiltration in HD: Outlook
5. Conclusions
6. Materials and Methods
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shoji, T.; Tsubakihara, Y.; Fujii, M.; Imai, E. Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004, 66, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Steuer, R.R.; Leypoldt, J.K.; Cheung, A.K.; Harris, D.H.; Conis, J.M. Hematocrit as an indicator of blood volume and a predictor of intradialytic morbid events. Asaio J. 1994, 40, M691–M696. [Google Scholar] [CrossRef]
- Doria, M.; Genovesi, S.; Biagi, F.; Steckiph, D.; Mancini, E.; Stella, A.; Santoro, A. The dialysis staff workload and the blood volume tracking system during the hemodialysis sessions of hypotension-prone patients. Int. J. Artif. Organs 2014, 37, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Dekker, M.J.; Marcelli, D.; Canaud, B.J.; Carioni, P.; Wang, Y.; Grassmann, A.; Konings, C.J.; Kotanko, P.; Leunissen, K.M.; Levin, N.W.; et al. Impact of fluid status and inflammation and their interaction on survival: A study in an international hemodialysis patient cohort. Kidney Int. 2017, 91, 1214–1223. [Google Scholar] [CrossRef]
- Sands, J.J.; Usvyat, L.A.; Sullivan, T.; Segal, J.H.; Zabetakis, P.; Kotanko, P.; Maddux, F.W.; Diaz-Buxo, J.A. Intradialytic hypotension: Frequency, sources of variation and correlation with clinical outcome. Hemodial. Int. 2014, 18, 415–422. [Google Scholar] [CrossRef]
- Keane, D.F.; Raimann, J.G.; Zhang, H.; Willetts, J.; Thijssen, S.; Kotanko, P. The time of onset of intradialytic hypotension during a hemodialysis session associates with clinical parameters and mortality. Kidney Int. 2021, 99, 1408–1417. [Google Scholar] [CrossRef]
- Thijssen, S.; Kappel, F.; Kotanko, P. Absolute blood volume in hemodialysis patients: Why is it relevant, and how to measure it? Blood Purif. 2013, 35, 63–71. [Google Scholar] [CrossRef]
- Daugirdas, J.T. Pathophysiology of dialysis hypotension: An update. Am. J. Kidney Dis. 2001, 38, S11–S17. [Google Scholar] [CrossRef]
- Assimon, M.M.; Flythe, J.E. Intradialytic Blood Pressure Abnormalities: The Highs, The Lows and All That Lies Between. Am. J. Nephrol. 2015, 42, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Mancini, E.; Mambelli, E.; Irpinia, M.; Gabrielli, D.; Cascone, C.; Conte, F.; Meneghel, G.; Cavatorta, F.; Antonelli, A.; Villa, G.; et al. Prevention of dialysis hypotension episodes using fuzzy logic control system. Nephrol. Dial. Transplant. 2007, 22, 1420–1427. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.C.; Chaudhuri, S.; Pickering, A.; Usvyat, L.; Larkin, J.; Waguespack, P.; Kuang, Z.; Kooman, J.P.; Maddux, F.W.; et al. Real-time prediction of intradialytic hypotension using machine learning and cloud computing infrastructure. Nephrol. Dial. Transplant. 2023, 38, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Van der Sande, F.M.; van de Wal-Visscher, E.R.; Stuard, S.; Moissl, U.; Kooman, J.P. Using Bioimpedance Spectroscopy to Assess Volume Status in Dialysis Patients. Blood Purif. 2020, 49, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Zhu, F.; Kotanko, P. Assessment of extracellular fluid volume and fluid status in hemodialysis patients: Current status and technical advances. Semin. Dial. 2012, 25, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, I.; Balasubramaniam, S.; Fernando, M.E.; Srinivasaprasad, N.D.; Suren, S.; Thirumalvalavan, K.; Veerakumar, A.M. Volume Assessment in Hemodialysis: A Comparison of Present Methods in Clinical Practice with Sonographic Lung Comets. Indian. J. Nephrol. 2019, 29, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Mancini, E.; Paolini, F.; Zucchelli, P. Blood volume monitoring and control. Nephrol. Dial. Transplant. 1996, 11 (Suppl. 2), 42–47. [Google Scholar] [CrossRef] [PubMed]
- Barth, C.; Boer, W.; Garzoni, D.; Kuenzi, T.; Ries, W.; Schaefer, R.; Schneditz, D.; Tsobanelis, T.; van der Sande, F.; Wojke, R.; et al. Characteristics of hypotension-prone haemodialysis patients: Is there a critical relative blood volume? Nephrol. Dial. Transplant. 2003, 18, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Reddan, D.N.; Szczech, L.A.; Hasselblad, V.; Lowrie, E.G.; Lindsay, R.M.; Himmelfarb, J.; Toto, R.D.; Stivelman, J.; Winchester, J.F.; Zillman, L.A.; et al. Intradialytic blood volume monitoring in ambulatory hemodialysis patients: A randomized trial. J. Am. Soc. Nephrol. 2005, 16, 2162–2169. [Google Scholar] [CrossRef]
- Santoro, A.; Mancini, E.; Paolini, F.; Spongano, M.; Zucchelli, P. Automatic control of blood volume trends during hemodialysis. Asaio J. 1994, 40, M419–M422. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Mancini, E.; Paolini, F.; Cavicchioli, G.; Bosetto, A.; Zucchelli, P. Blood volume regulation during hemodialysis. Am. J. Kidney Dis. 1998, 32, 739–748. [Google Scholar] [CrossRef]
- Santoro, A.; Mancini, E.; Basile, C.; Amoroso, L.; Di Giulio, S.; Usberti, M.; Colasanti, G.; Verzetti, G.; Rocco, A.; Imbasciati, E.; et al. Blood volume controlled hemodialysis in hypotension-prone patients: A randomized, multicenter controlled trial. Kidney Int. 2002, 62, 1034–1045. [Google Scholar] [CrossRef]
- Ronco, C.; Brendolan, A.; Milan, M.; Rodeghiero, M.P.; Zanella, M.; La Greca, G. Impact of biofeedback-induced cardiovascular stability on hemodialysis tolerance and efficiency. Kidney Int. 2000, 58, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Giordano, R.; Vernaglione, L.; Montanaro, A.; De Maio, P.; De Padova, F.; Marangi, A.L.; Di Marco, L.; Santese, D.; Semeraro, A.; et al. Efficacy and safety of haemodialysis treatment with the Hemocontrol biofeedback system: A prospective medium-term study. Nephrol. Dial. Transplant. 2001, 16, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Bégin, V.; Déziel, C.; Madore, F. Biofeedback regulation of ultrafiltration and dialysate conductivity for the prevention of hypotension during hemodialysis. Asaio J. 2002, 48, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Wolkotte, C.; Hassell, D.R.; Moret, K.; Gerlag, P.G.; van den Wall Bake, A.W.; van der Sande, F.M.; Kooman, J.P. Blood volume control by biofeedback and dialysis-induced symptomatology. A short-term clinical study. Nephron 2002, 92, 605–609. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.W.; Lambie, S.H.; Fluck, R.J. Biofeedback controlled hemodialysis (BF-HD) reduces symptoms and increases both hemodynamic tolerability and dialysis adequacy in non-hypotension prone stable patients. Clin. Nephrol. 2003, 60, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Franssen, C.F.; Dasselaar, J.J.; Sytsma, P.; Burgerhof, J.G.; de Jong, P.E.; Huisman, R.M. Automatic feedback control of relative blood volume changes during hemodialysis improves blood pressure stability during and after dialysis. Hemodial. Int. 2005, 9, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; Lambie, S.H.; Camici, P.G.; Baker, C.S.; McIntyre, C.W. Occurrence of regional left ventricular dysfunction in patients undergoing standard and biofeedback dialysis. Am. J. Kidney Dis. 2006, 47, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Garzoni, D.; Keusch, G.; Kleinoeder, T.; Martin, H.; Dhondt, A.; Cremaschi, L.; Tatsis, E.; Ibrahim, N.; Boer, W.; Kuehne, S.; et al. Reduced complications during hemodialysis by automatic blood volume controlled ultrafiltration. Int. J. Artif. Organs 2007, 30, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Déziel, C.; Bouchard, J.; Zellweger, M.; Madore, F. Impact of hemocontrol on hypertension, nursing interventions, and quality of life: A randomized, controlled trial. Clin. J. Am. Soc. Nephrol. 2007, 2, 661–668. [Google Scholar] [CrossRef]
- Dasselaar, J.J.; Huisman, R.M.; de Jong, P.E.; Burgerhof, J.G.; Franssen, C.F. Effects of relative blood volume-controlled hemodialysis on blood pressure and volume status in hypertensive patients. Asaio J. 2007, 53, 357–364. [Google Scholar] [CrossRef]
- Winkler, R.E.; Pätow, W.; Ahrenholz, P. Blood volume monitoring. Contrib. Nephrol. 2008, 161, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Sentveld, B.; van den Brink, M.; Brulez, H.F.; Potter van Loon, B.J.; Weijmer, M.C.; Siegert, C.E. The influence of blood volume-controlled ultrafiltration on hemodynamic stability and quality of life. Hemodial. Int. 2008, 12, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, D.; Krystal, B.; Katzarski, K.; Youssef, M.; Hachache, T.; Lopot, F.; Lasseur, C.; Gunne, T.; Draganov, B.; Wojke, R.; et al. Improved intradialytic stability during haemodialysis with blood volume-controlled ultrafiltration. J. Nephrol. 2009, 22, 232–240. [Google Scholar] [PubMed]
- Veljančic, L.; Popović, J.; Radović, M.; Ahrenholz, P.; Ries, W.; Frenken, L.; Wojke, R. Simultaneous blood temperature control and blood volume control reduces intradialytic symptoms. Int. J. Artif. Organs 2011, 34, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Colì, L.; La Manna, G.; Comai, G.; Ursino, M.; Ricci, D.; Piccari, M.; Locatelli, F.; Di Filippo, S.; Cristinelli, L.; Bacchi, M.; et al. Automatic adaptive system dialysis for hemodialysis-associated hypotension and intolerance: A noncontrolled multicenter trial. Am. J. Kidney Dis. 2011, 58, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Gil, H.W.; Bang, K.; Lee, S.Y.; Han, B.G.; Kim, J.K.; Kim, Y.O.; Song, H.C.; Kwon, Y.J.; Kim, Y.S. Efficacy of hemocontrol biofeedback system in intradialytic hypotension-prone hemodialysis patients. J. Korean Med. Sci. 2014, 29, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Nesrallah, G.E.; Suri, R.S.; Thiessen-Philbrook, H.; Heidenheim, P.; Lindsay, R.M. Can extracellular fluid volume expansion in hemodialysis patients be safely reduced using the hemocontrol biofeedback algorithm? A randomized trial. Asaio J. 2008, 54, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Antlanger, M.; Josten, P.; Kammer, M.; Exner, I.; Lorenz-Turnheim, K.; Eigner, M.; Paul, G.; Klauser-Braun, R.; Sunder-Plassmann, G.; Säemann, M.D.; et al. Blood volume-monitored regulation of ultrafiltration to decrease the dry weight in fluid-overloaded hemodialysis patients: A randomized controlled trial. BMC Nephrol. 2017, 18, 238. [Google Scholar] [CrossRef] [PubMed]
- Schneditz, D.; Pogglitsch, H.; Horina, J.; Binswanger, U. A blood protein monitor for the continuous measurement of blood volume changes during hemodialysis. Kidney Int. 1990, 38, 342–346. [Google Scholar] [CrossRef]
- Kenner, T.; Hinghofer-Szalkay, H.; Leopold, H.; Pogglitsch, H. [The relation between the density of blood and the arterial pressure in animal experiments and in patients during hemodialysis (author’s transl)]. Z. Kardiol. 1977, 66, 399–401. [Google Scholar]
- Wilkinson, J.S.; Fleming, S.J.; Greenwood, R.N.; Cattell, W.R.; Aldridge, C. Continuous measurement of blood hydration during ultrafiltration using optical methods. Med. Biol. Eng. Comput. 1987, 25, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Schneditz, D.; Kenner, T.; Heimel, H.D.; Stabinger, H. A sound-speed sensor for the measurement of total protein concentration in disposable, blood-perfused tubes. J. Acoust. Soc. Am. 1989, 86, 2073–2080. [Google Scholar] [CrossRef]
- Greenwood, R.N.; Aldridge, C.; Cattell, W.R. Serial blood water estimations and in-line blood viscometry: The continuous measurement of blood volume during dialysis procedures. Clin. Sci. 1984, 66, 575–583. [Google Scholar] [CrossRef] [PubMed]
- De Vries, P.M.; Kouw, P.M.; Meijer, J.H.; Oe, L.P.; Schneider, H.; Donker, A.J. Changes in blood parameters during hemodialysis as determined by conductivity measurements. ASAIO Trans. 1988, 34, 623–626. [Google Scholar] [PubMed]
- Schallenberg, U.; Stiller, S.; Mann, H. A new method of continuous haemoglobinometric measurement of blood volume during haemodialysis. Life Support. Syst. 1987, 5, 293–305. [Google Scholar] [PubMed]
- Harrison, M.H.; Graveney, M.J.; Cochrane, L.A. Some sources of error in the calculation of relative change in plasma volume. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 13–21. [Google Scholar] [CrossRef]
- Goldsmith, H.L.; Cokelet, G.R.; Gaehtgens, P. Robin Fåhraeus: Evolution of his concepts in cardiovascular physiology. Am. J. Physiol. 1989, 257, H1005–H1015. [Google Scholar] [CrossRef]
- Mitra, S.; Chamney, P.; Greenwood, R.; Farrington, K. The relationship between systemic and whole-body hematocrit is not constant during ultrafiltration on hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Franssen, C.; Dasselaar, J.; Huisman, R. Characteristics of hypotension-prone haemodialysis patients: Is there a critical relative blood volume? Nephrol. Dial. Transplant. 2004, 19, 1010–1011; author reply 1011–1012. [Google Scholar] [CrossRef]
- Yoshida, I.; Ando, K.; Ando, Y.; Ookawara, S.; Suzuki, M.; Furuya, H.; Iimura, O.; Takada, D.; Kajiya, M.; Komada, T.; et al. A new device to monitor blood volume in hemodialysis patients. Ther. Apher. Dial. 2010, 14, 560–565. [Google Scholar] [CrossRef]
- Schneditz, D.; Moser, M.; Smolle-Jüttner, F.M.; Dörp, E.; Pogglitsch, H.; Kenner, T. Methods in clinical hemorheology: The continuous measurement of arterial blood density and blood sound speed in man. Biorheology 1990, 27, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Moret, K.; Aalten, J.; van den Wall Bake, W.; Gerlag, P.G.G.; Beerenhout, C.M.; van der Sande, F.M.; Leunissen, K.M.L.; Kooman, J.P. The effect of sodium profiling and feedback technologies on plasma conductivity and ionic mass balance: A study in hypotension-prone dialysis patients. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transplant. Assoc.-Eur. Ren. Assoc. 2006, 21, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.C.W.; Quinn, R.R.; Ravani, P.; Duff, H.; MacRae, J.M. Randomized Crossover Trial of Blood Volume Monitoring-Guided Ultrafiltration Biofeedback to Reduce Intradialytic Hypotensive Episodes with Hemodialysis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1831–1840. [Google Scholar] [CrossRef]
- Ookawara, S.; Ito, K.; Uchida, T.; Tokuyama, K.; Kiryu, S.; Suganuma, T.; Hojyo, K.; Miyazawa, H.; Ueda, Y.; Ito, C.; et al. Hemodialysis crossover study using a relative blood volume change-guided ultrafiltration control compared with standard hemodialysis: The BV-UFC study. Ren. Replace. Ther. 2020, 6, 45. [Google Scholar] [CrossRef]
- Zschätzsch, S.; Stauss-Grabo, M.; Gauly, A.; Braun, J. Integrating Monitoring of Volume Status and Blood Volume-Controlled Ultrafiltration into Extracorporeal Kidney Replacement Therapy. Int. J. Nephrol. Renovasc Dis. 2021, 14, 349–358. [Google Scholar] [CrossRef]
- Preciado, P.; Zhang, H.; Thijssen, S.; Kooman, J.P.; van der Sande, F.M.; Kotanko, P. All-cause mortality in relation to changes in relative blood volume during hemodialysis. Nephrol. Dial. Transplant. 2019, 34, 1401–1408. [Google Scholar] [CrossRef]
- Casper, S.; Fuertinger, D.H.; Tapia Silva, L.M.; Rivera Fuentes, L.; Thijssen, S.; Kotanko, P. Proportional integral feedback control of ultrafiltration rate in hemodialysis. Int. J. Artif. Organs 2022, 45, 271–277. [Google Scholar] [CrossRef]
- Rivera-Fuentes, L.; Tapia, L.; Thijssen, S.; Rogg, S.; Kotanko, P. P1079NOVEL ultrafiltration rate feedback controller for attainment of relative blood volume targets during hemodialysis. Nephrol. Dial. Transplant. 2020, 35, gfaa142-P1079. [Google Scholar] [CrossRef]
- Schmidt, R.; Roeher, O.; Hickstein, H.; Korth, S. Prevention of haemodialysis-induced hypotension by biofeedback control of ultrafiltration and infusion. Nephrol. Dial. Transplant. 2001, 16, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Randhay, A.; Eldehni, M.T.; Selby, N.M. Feedback control in hemodialysis. Semin. Dial. 2023. [Google Scholar] [CrossRef]
Author (Year) | Method | Intervention | Outcomes | |||
---|---|---|---|---|---|---|
Design 1 | Study Duration | Sample Size 2 | Eligibility Criteria | |||
Non-Randomized Trials | ||||||
Santoro et al. (1994) [18] | Prospective, pilot study. Alternating sequential design: [A-B-A] | 18 HD sessions | 5 | >30% IDH frequency | RBV → UFR and DC (HBS prototype) vs. CHD | % BV reduction B: −10.2, A1: −11.2, A2: −11.5; NS IDH (n) B: 1, A1: 8, A2: 5; p < 0.05 |
Santoro et al. (1998) [19] | Prospective, pilot study. Single-blind, alternating sequential design: [A-B-A] | 12 weeks | 8 | ≥20% IDH frequency | RBV → UFR and DC (HBS) vs. CHD | % BV reduction B: –10.6, A1: −12.3, A2: –12.5; NS % SBP reduction B: –12.4, A1: –20, A2: –17.5; p < 0.05 Severe IDH (n) B: 3, A1: 26, A2: 16; p < 0.05 |
Basile et al. (2001) [22] | Prospective, multicentric, non-inferior, sequential design. Medium term: [A-B]; short term: [W-A]-[W-B] | Medium term: 20–36 months; Short term: 14 weeks | 19 | HD ≥ 6 months + ≥20% symptomatic IDH | RBV → UFR and DC (HBS) vs. CHD | Symptomatic IDH Medium term (%): B: 21.0 vs. A: 31.8; p < 0.0001 Short term (n): B: 26 vs. A: 45; p < 0.002 HBS is safe in the medium term. |
Begin et al. (2002) [23] | Prospective, alternating sequential design: [BA-BA-BA] | 12 weeks | 7 | ≥30% IDH frequency in 3 months | RBV → UFR and DC (HBS) vs. CHD | % Event free session 3 B: 50.8 vs. A: 29.2; p < 0.01 Post-HD SBP increased over the study course with HBS (p = 0.02). |
Wolkotte et al. (2002) [24] | Prospective, preliminary, sequential design: [A-B] | 9 weeks (20 HD sessions) | 16 | ≥1 IDH or minor IME incidence in 4 weeks 4 | RBV → UFR and DC (HBS) vs. CHD | % IDH B: 6.3 vs. A: 15.8; p < 0.05 % Minor IME B: 11.0 vs. A: 18.1; p < 0.05 |
McIntyre et al. (2003) [25] | Prospective, sequential design: [A-O-B] | 8 weeks | 15 | Chronic HD | RBV → UFR and DC (HBS) vs. CHD | Symptomatic IDH (n) B: 0.13 vs. A: 3; p < 0.001 % Session with SBP drop > 40% B: 3.5 vs. A: 7.0; p < 0.001 Interdialytic weight gain (kg) B: 1.82 vs. A: 2.08; p = 0.009 Equilibrated Kt/V B: 1.13 vs. A: 1.01; p = 0.01 Urea mass removed (g) B: 32.7 vs. A: 24.9; p < 0.01 |
Franssen et al. (2005) [26] | Prospective, sequential design: [A-B1 (constant weight)-B2 (reduced weight)] | 12 weeks | 12 | HD > 6 months + >50% symptomatic IDH required intervention in 6 weeks | RBV → UFR and DC (HBS) vs. CHD | % IDH required intervention B1: 37, B2: 28, A: 64; p < 0.01 0–16-h post-HD BP is higher with HBS (p < 0.05). 16–24-h post-HD BP is NS. Post-HD weight reduction is NS. |
Garzoni et al. (2007) [28] | Prospective, multicentric, alternating sequential design: [A-B-A-B…] | At least 18 HD sessions | 56 | HD ≥ 3 months + ≥4 sessions with IME in 4 weeks | RBV → UFR (BVM) vs. CHD | % IME per session All patients (n = 51): B: 69.5 vs. A: 78.5; p = 0.064 (NS) Patients with the highest IME rate (n = 31): B: 97.9 vs. A: 118.5; p = 0.004 SBP reduction (mmHg) B: −18.8 vs. A: −22.2; p = 0.007 DBP reduction (mmHg) B: −7.8 vs. A: −9.1; p = 0.064 Heart rate increase (/min) B: 1.8 vs. A: 2.3; p = 0.014 |
Mancini et al. (2007) [10] | Prospective, multicentric, alternating sequential design: R-[B-A-B-A…] | 30 HD sessions | 55 | ≥30% IDH frequency in 2 months | BP→ UFR vs. CHD | % Severe IDH B: 8.3 vs. A: 13.8; p = 0.01 Mild IDH is reduced during FC-HD (−12.3%) but NS. |
Winkler et al. (2008) [31] | Prospective, cohort, sequential design: R-B | 50 weeks | 18 | IME during HD + DM | RBV → UFR and DC (HBS) vs. baseline | After 48 weeks of HBS 83.7% muscle cramps reduction (p < 0.01) 88.9% IDH reduction (p < 0.01) 34.8% single-pool Kt/V increase (p < 0.05) 33.3% double pool Kt/V increase (p < 0.05) 43.4% AntiMed reduction (NS) 4.4% BP reduction (NS) 25.2% LV mass index reduction (p < 0.05) |
Sentveld et al. (2008) [32] | Prospective, alternating sequential design: [A-O-B-A] | 10 weeks | 18 | Chronic HD + stable cardiac function | RBV → UFR (BVM) vs. CHD | Post-HD SBP (mmHg) B: 143.5 vs. A1: 137.1; p = 0.018 B: 143.5 vs. A2: 141.1; p = 0.043 SBP reduction (mmHg) B: −3.9 vs. A1: −13.7; p = 0.003 B: −3.9 vs. A2: −11.0; p = 0.035 Mean UF volume (mL) B: 2407 vs. A1: 2266; p = 0.049 Mean dry weight reduced from 73.3 to 70.9 kg (p = 0.032). Quality of life 5 improved after period B (p = 0.035) but inconsistent between phases. |
Coli et al. (2011) [35] | Prospective, multicentric, sequential design: [A-B] | 7 months | 55 | ≥1 IME or IDH per week in 6 months | Multiple inputs → UFR and DC (proprietary mathematic model)) vs. CHD/HDF | % IDH B: 0.9 vs. A: 58.7; p < 0.001 Body weight, IDWG, presession natremia were NS. |
Doria et al. (2014) [3] | Prospective, single-blind, sequential design: [A-B] | 6 months | 10 | >20% IDH frequency in 6 months | RBV → UFR and DC (HBS) vs. CHD | Session without IDH (n) B: 333 vs. A: 288; p < 0.001 Session required intervention (n) B: 57 vs. A: 102; p < 0.001 % Premature HD termination B: 0.5 vs. A: 3.8; p < 0.001 IDH-related staff worktime (min) B: 578 vs. A: 1416; p < 0.001 |
Hyo Wook et al. (2014) [36] | Prospective, multicentric, sequential design: [A-O-B] | 18 weeks | 60 | HD > 3 months + >25% IDH frequency in 1 month | RBV → UFR and DC (HBS) vs. CHD | % Symptomatic IDH B: 38.4 vs. A: 62.1; p < 0.001 IDH-related nursing interventions (/session) B: 0.56 vs. A: 0.96; p < 0.001 % Post-HD recovery time from fatigue is shorter with HBS (p = 0.048) |
Ookawara et al. (2020) [54] | Prospective, multicentric, alternating sequential design: R-[A-B-A*]-[B-A-A*]-[A-B-An]-[B-A-A*]-[A-B-An]-[B-A-A*]-[A-B-A*]-[B-A-A*] | 12 weeks | 48 | HD ≥ 3 months + stable cardiac function + a UF-induced BV reduction during HD | RBV → UFR (Haemo-Master) vs. CHD | % IDH prevalence B: 51.6 vs. A: 51.3; NS % Symptomatic IDH intervention B: 4.4 vs. A: 3.9; NS % BV reduction B: −12.1 vs. A: −14.4; p < 0.001 |
Zschätzsch et al. (2021) [55] | Mixed-methods, intra-individual comparison, explorative design: retrospective [A-B1]-prospective [B2] | 12 weeks | 21 | ≥4 weeks using Fresenius 5008 with BVM + treated by 5008 without BVM for 4 weeks in 2 years | B1: RBV → UFR (5008 BVM) vs. CHD vs. & B1: RBV → UFR (5008 BVM) vs. B2: RBV → UFR (6008 BVM) | % IME B1: 2.8, B2: 2.5, A: 2.4; NS Kt/V B1: 1.60 vs. A: 1.65; NS B1: 1.55 vs. B2: 1.55; NS Total UF volume (mL) B1: 2344 vs. A: 2189; NS B1: 2316 vs. B2: 2492; p = 0.003 |
Randomized Controlled Trials | ||||||
Ronco et al. (2000) [21] | Prospective, crossover, sequential design. Randomization: [AB] or [BA] | 4 weeks | 12 | HD > 6 months + >70% symptomatic IDH in 12 sessions + IDWG > 3 kg + normal hydration status | RBV → UFR and DC (HBS) vs. Acetate-free biofiltration | % IDH B: 33.3 vs. A: 81.9; p < 0.001 % Saline infusion B: 20.8 vs. A: 79.2; p < 0.001 Single-pool Kt/V B: 1.26 vs. A: 1.34; p < 0.005 Equilibrated Kt/V B: 1.12 vs. A: 1.03; p < 0.001 % Urea rebound B: 6.4 vs. A: 14.2; p < 0.001 |
Santoro et al. (2002) [20] | Prospective, multicentric, crossover, single-blind, alternating sequential design. Balanced block randomization: R-[ABAB] or R-[BABA] | 18 weeks | 32 | 20–80% IDH frequency in 2 months + ≥1 comorbidity (cardiac disease, DM, or hypertension) | RBV → UFR and DC (HBS) vs. CHD | % IDH B: 33.5 vs. A: 23.5; p = 0.004 The more IDH in period A, the better response in period B (p < 0.001). 10% overall IME reduction in period B (p < 0.001). |
Reddan et al. (2005) [17] | Prospective, multicentric, open loop algorithm design. Randomization: R-[A] or R-[B] | 26 weeks | 443 | HD ≥ 2 months | RBV → UFR (Crit-Line + intervention algorithm) vs. CHD | Adjusted hospitalization risk ratio (Group B vs. A) non-access related: 1.61; p = 0.01 access related: 1.52; p = 0.04 % Mortality B: 8.7 vs. A: 3.3; p = 0.021 |
Moret et al. (2006) [52] | Prospective, crossover, sequential design. Block randomization: [A-W-B1-W-B2-W-B3] or [B1-W-B2-W-B3-W-A] or [B2-W-B3-W-A-W-B1] or [B3-W-A-W-B1-W-B2] | 4 months | 10 | >2 incidence of <100 mmHg SBP or a drop > 30 mmHg with IDH symptoms in 3 weeks | B1: Linear sodium profiling vs. B2: RBV → UFR and DC (HBS) vs. B3: Plasma conductivity →DC vs. CHD | % Symptomatic IDH B2: 8 vs. B1: 14 vs. A: 16 vs. B3: 17; NS IDGW and pre-HD SBP are NS. |
Selby et al. (2006) [27] | Prospective, crossover, sequential design. Randomization: [O-A-W-B] or [O-B-W-A] | 4 weeks | 8 | IDH prone + >51 g/m LV mass index | RBV → UFR and DC (HBS) vs. CHD | New regional wall motion abnormalities development (n) B: 23 vs. A: 42 (odds ratio: 1.8; 95% CI: 1.1–3.0) Asymptomatic IDH (n) B: 12 vs. A: 24 (odds ratio: 2.0; 95% CI: 1.01–4.4) |
Deziel et al. (2007) [29] | Prospective study. Block randomization (IDH stratified): R-[A] or R-[B] | 28 weeks | 44 | HD ≥ 3 months | RBV → UFR and DC (HBS) vs. CHD | % Session required nursing interventions B: −42.9 vs. A: 35.7; p = 0.04 Quality of life change 6 B: 5.2 vs. A: −6.2; p = 0.004 Overall BP reduction over the study period (p = 0.005) |
Dasselaar et al. (2007) [30] | Prospective, single-blind design. Block randomization: R-[A] or R-[B] | 16 weeks | 28 | >150/90 mmHg BP in >50% sessions + volume overload + use of antihypertensive drug or cardiothoracic ratio > 0.5 | RBV → UFR and DC (HBS) vs. CHD | Pre-HD SBP change (mmHg) B: −22.5; p < 0.01 A: 3; NS Pre-HD DBP change (mmHg) B: −8.3; p < 0.05 A: 1.2; NS IDH frequency decreased in period B compared to period R (p < 0.05). |
Nesrallah et al. (2008) [37] | Prospective study. Concealed randomization (DM stratified): R-[A] or R-[B] | 28 weeks | 60 | HD ≥ 6 months + ECV > 45% of total body water | RBV → UFR and DC (HBS) vs. CHD | %ECV change B: 1.8 vs. A: 0.87; NS % IDH per session B: 11 vs. A: 19; p = 0.014 BP, use of AntiMed, quality of life 7 are NS. |
Gabrielli et al. (2009) [33] | Prospective, multicentric, crossover, sequential design. Randomization: R-[A-B] or R-[B-A] | 18 weeks | 26 | ≥33% IME Frequency in 6 weeks | RBV → UFR (BVM) vs. CHD | % IME B: 32 vs. A: 40; p = 0.02 % Symptomatic IDH B: 24 vs. A: 32; p = 0.04 % IME per session B: 42 vs. A: 53; p = 0.04 Equilibrated Kt/V B: 1.17 vs. A: 1.12; NS |
Veljancic et al. (2011) [34] | Prospective, multicentric, crossover, sequential design. Randomization: R-[A-B] or R-[B-A] | 15 weeks | 26 | Cardiovascular instability history + ≥5 sessions with IME in period R | RBV → UFR (BVM) + BT→ DT (BTM) vs. CHD | % IME B: 18.0 vs. A: 32.8; p = 0.024 |
Antlanger et al. (2017) [38] | Prospective, multicentric design. Block randomization (center stratified): [A] or R-[B1] or R-[B2] | 4 weeks | 50 | HD ≥ 3 months + ≥15% ECV | B1: RBV → UFR and DC (Haemo-Master) vs. B2: RBV → UFR (BVM) + BT → DT (BTM) vs. CHD | % IME B2: 21 vs. A: 34, p = 0.022 B2: 21 vs. B1: 39, p = 0.028 B1: 39 vs. A: 34; NS Dry weight reduction (%body weight) B2: 5.0 vs. B1: 2.0, p = 0.013 B2: 5.0 vs. A: 3.9; NS B1: 2.0 vs. A: 3.9; NS Mean UFR are significantly higher in B2 than in B1 and CHD at similar dialysis times. SBP reduction between groups are NS. |
Leung et al. (2017) [53] | Prospective, multicentric, crossover, single-blind, sequential design. Randomization: R-[A-W-B] or R-[B-W-A] | 22 weeks | 26 | HD > 3 months + ≥30% symptomatic IDH in 8 weeks | RBV → UFR (BVM) vs. CHD | Symptomatic IDH per hour B: 0.10 vs. A: 0.07; NS IDWG, brain natriuretic peptide, cardiac troponin, extra-to-intracellular water ratio, and dialysis recovery time are NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Fuentes, L.R.; Rao, S.; Kotanko, P. Closed Loop Ultrafiltration Feedback Control in Hemodialysis: A Narrative Review. Toxins 2024, 16, 351. https://doi.org/10.3390/toxins16080351
Dong Z, Fuentes LR, Rao S, Kotanko P. Closed Loop Ultrafiltration Feedback Control in Hemodialysis: A Narrative Review. Toxins. 2024; 16(8):351. https://doi.org/10.3390/toxins16080351
Chicago/Turabian StyleDong, Zijun, Lemuel Rivera Fuentes, Sharon Rao, and Peter Kotanko. 2024. "Closed Loop Ultrafiltration Feedback Control in Hemodialysis: A Narrative Review" Toxins 16, no. 8: 351. https://doi.org/10.3390/toxins16080351
APA StyleDong, Z., Fuentes, L. R., Rao, S., & Kotanko, P. (2024). Closed Loop Ultrafiltration Feedback Control in Hemodialysis: A Narrative Review. Toxins, 16(8), 351. https://doi.org/10.3390/toxins16080351