Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom
Abstract
:1. Introduction
2. Results
2.1. Purification, Sequencing, and Synthesis of the Peptide
2.2. Permeabilization of Liposomes
2.3. Circular Dichroism Spectroscopy
2.4. Decreased Cell Viability After Liposome Treatment with LyeTx III Peptide
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Purification of LyeTx III
5.1.1. Cation Exchange Chromatography
5.1.2. Reverse-Phase Chromatography
5.2. Mass Spectrometry
5.2.1. MALDI-TOF-MS
5.2.2. FT-ICR Mass Spectrometer
5.2.3. Edman Degradation
5.3. Peptide Synthesis and Purification
5.4. Preparation of POPC Liposomes and Leakage of Calcein Assay
5.5. Circular Dichroism Spectroscopy
5.6. Cell Culture
5.7. Cell Viability Assay
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rádis-Baptista, G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins 2021, 13, 147. [Google Scholar] [CrossRef]
- Wu, T.; Wang, M.; Wu, W.; Luo, Q.; Jiang, L.; Tao, H.; Deng, M. Spider Venom Peptides as Potential Drug Candidates Due to Their Anticancer and Antinociceptive Activities. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e146318. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, M.A.L.; Pinto, B.; Cassali, G.; Bueno, L.; Pêgas, G.; Oliveira, F.; Silva, I.; Klein, A.; Souza-Fagundes, E.M.d.; de Lima, M.E.; et al. LyeTx I-b Peptide Attenuates Tumor Burden and Metastasis in a Mouse 4T1 Breast Cancer Model. Antibiotics 2021, 10, 1136. [Google Scholar] [CrossRef] [PubMed]
- de Avelar Júnior, J.T.; Lima-Batista, E.; Castro Junior, C.J.; Pimenta, A.M.d.C.; Dos Santos, R.G.; Souza-Fagundes, E.M.; De Lima, M.E. LyeTxI-b, a Synthetic Peptide Derived From a Spider Venom, Is Highly Active in Triple-Negative Breast Cancer Cells and Acts Synergistically With Cisplatin. Front. Mol. Biosci. 2022, 9, 876833. [Google Scholar] [CrossRef]
- Kwon, N.-Y.; Sung, S.-H.; Sung, H.-K.; Park, J.-K. Anticancer Activity of Bee Venom Components against Breast Cancer. Toxins 2022, 14, 460. [Google Scholar] [CrossRef]
- Yang, T.; Li, J.; Jia, Q.; Zhan, S.; Zhang, Q.; Wang, Y.; Wang, X. Antimicrobial Peptide 17BIPHE2 Inhibits the Proliferation of Lung Cancer Cells in Vitro and in Vivo by Regulating the ERK Signaling Pathway. Oncol. Lett. 2021, 22, 501. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Xie, Y.; Ye, S.; He, K.; Yi, L.; Cui, R. Spider Peptide Toxin Lycosin-I Induces Apoptosis and Inhibits Migration of Prostate Cancer Cells. Exp. Biol. Med. 2018, 243, 725–735. [Google Scholar] [CrossRef]
- Abdel-Salam, M.A.L.; Carvalho-Tavares, J.; Gomes, K.S.; Teixeira-Carvalho, A.; Kitten, G.T.; Nyffeler, J.; Dias, F.F.; Dos Reis, P.V.M.; Pimenta, A.M.C.; Leist, M.; et al. The Synthetic Peptide LyeTxI-b Derived from Lycosa Erythrognatha Spider Venom Is Cytotoxic to U-87 MG Glioblastoma Cells. Amino Acids 2019, 51, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Dhawan, D.K.; Saini, A.; Preet, S. Antimicrobial Peptides against Colorectal Cancer-a Focused Review. Pharmacol. Res. 2021, 167, 105529. [Google Scholar] [CrossRef]
- Okada, M.; Ortiz, E.; Corzo, G.; Possani, L.D. Pore-Forming Spider Venom Peptides Show Cytotoxicity to Hyperpolarized Cancer Cells Expressing K+ Channels: A Lentiviral Vector Approach. PLoS ONE 2019, 14, e0215391. [Google Scholar] [CrossRef] [PubMed]
- Aarbiou, J.; Tjabringa, G.S.; Verhoosel, R.M.; Ninaber, D.K.; White, S.R.; Peltenburg, L.T.C.; Rabe, K.F.; Hiemstra, P.S. Mechanisms of Cell Death Induced by the Neutrophil Antimicrobial Peptides Alpha-Defensins and LL-37. Inflamm. Res. 2006, 55, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Bankell, E.; Liu, X.; Lundqvist, M.; Svensson, D.; Swärd, K.; Sparr, E.; Nilsson, B.-O. The Antimicrobial Peptide LL-37 Triggers Release of Apoptosis-Inducing Factor and Shows Direct Effects on Mitochondria. Biochem. Biophys. Rep. 2022, 29, 101192. [Google Scholar] [CrossRef] [PubMed]
- Tolos Vasii, A.M.; Moisa, C.; Dochia, M.; Popa, C.; Copolovici, L.; Copolovici, D.M. Anticancer Potential of Antimicrobial Peptides: Focus on Buforins. Polymers 2024, 16, 728. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, Y.; Li, S.; Li, H.; Tian, L.; Wang, H.; Shang, D. Anticancer Mechanisms of Temporin-1CEa, an Amphipathic α-Helical Antimicrobial Peptide, in Bcap-37 Human Breast Cancer Cells. Life Sci. 2013, 92, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Giribaldi, J.; Smith, J.J.; Schroeder, C.I. Recent Developments in Animal Venom Peptide Nanotherapeutics with Improved Selectivity for Cancer Cells. Biotechnol. Adv. 2021, 50, 107769. [Google Scholar] [CrossRef]
- Yan, W.; Wei, L.; Mehmood, A.; Shah, W. Nanotechnology-Enabled Therapies Improve Blood-Brain Barrier Challenges in Brain Tumor. Int. J. Polym. Mater. Polym. Biomater. 2024, 73, 1429–1450. [Google Scholar] [CrossRef]
- Santos, D.M.; Verly, R.M.; Piló-Veloso, D.; de Maria, M.; de Carvalho, M.a.R.; Cisalpino, P.S.; Soares, B.M.; Diniz, C.G.; Farias, L.M.; Moreira, D.F.F.; et al. LyeTx I, a Potent Antimicrobial Peptide from the Venom of the Spider Lycosa Erythrognatha. Amino Acids 2010, 39, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Huth, H.W.; Santos, D.M.; Gravina, H.D.; Resende, J.M.; Goes, A.M.; De Lima, M.E.; Ropert, C. Upregulation of P38 Pathway Accelerates Proliferation and Migration of MDA-MB-231 Breast Cancer Cells. Oncol. Rep. 2017, 37, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Adams, M.E. Lycotoxins, Antimicrobial Peptides from Venom of the Wolf Spider Lycosa Carolinensis. J. Biol. Chem. 1998, 273, 2059–2066. [Google Scholar] [CrossRef] [PubMed]
- Keefe, D.M.K.; Bateman, E.H. Potential Successes and Challenges of Targeted Cancer Therapies. J. Natl. Cancer Inst. Monogr. 2019, 2019, lgz008. [Google Scholar] [CrossRef] [PubMed]
- Del Genio, V.; Bellavita, R.; Falanga, A.; Hervé-Aubert, K.; Chourpa, I.; Galdiero, S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Escoubas, P.; King, G.F. Venomics as a Drug Discovery Platform. Expert Rev. Proteom. 2009, 6, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the Use of Therapeutic Peptides for Cancer Treatment. J. Biomed. Sci. 2017, 24, 21. [Google Scholar] [CrossRef]
- Chinnadurai, R.K.; Khan, N.; Meghwanshi, G.K.; Ponne, S.; Althobiti, M.; Kumar, R. Current Research Status of Anti-Cancer Peptides: Mechanism of Action, Production, and Clinical Applications. Biomed. Pharmacother. 2023, 164, 114996. [Google Scholar] [CrossRef] [PubMed]
- Desai, T.J.; Toombs, J.E.; Minna, J.D.; Brekken, R.A.; Udugamasooriya, D.G. Identification of Lipid-Phosphatidylserine (PS) as the Target of Unbiasedly Selected Cancer Specific Peptide-Peptoid Hybrid PPS1. Oncotarget 2016, 7, 30678–30690. [Google Scholar] [CrossRef] [PubMed]
- Deslouches, B.; Di, Y.P. Antimicrobial Peptides with Selective Antitumor Mechanisms: Prospect for Anticancer Applications. Oncotarget 2017, 8, 46635–46651. [Google Scholar] [CrossRef] [PubMed]
- Preta, G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front. Cell Dev. Biol. 2020, 8, 571237. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Vasil, A.I.; Hale, J.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of Net Charge and the Number of Positively Charged Residues on the Biological Activity of Amphipathic Alpha-Helical Cationic Antimicrobial Peptides. Adv. Exp. Med. Biol. 2009, 611, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Edwards, I.A.; Elliott, A.G.; Kavanagh, A.M.; Zuegg, J.; Blaskovich, M.A.T.; Cooper, M.A. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides. ACS Infect. Dis. 2016, 2, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Zelezetsky, I.; Tossi, A. Alpha-Helical Antimicrobial Peptides—Using a Sequence Template to Guide Structure-Activity Relationship Studies. Biochim. Biophys. Acta 2006, 1758, 1436–1449. [Google Scholar] [CrossRef]
- Galzitskaya, O.V. Creation of New Antimicrobial Peptides. Int. J. Mol. Sci. 2023, 24, 9451. [Google Scholar] [CrossRef]
- Chen, N.; Jiang, C. Antimicrobial Peptides: Structure, Mechanism, and Modification. Eur. J. Med. Chem. 2023, 255, 115377. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Takahashi, H.; Sugai, M.; Iwai, H.; Kohno, T.; Sekimizu, K.; Natori, S.; Shimada, I. Channel-Forming Membrane Permeabilization by an Antibacterial Protein, Sapecin: Determination of Membrane-Buried and Oligomerization Surfaces by NMR. J. Biol. Chem. 2004, 279, 4981–4987. [Google Scholar] [CrossRef] [PubMed]
- Parrasia, S.; Szabò, I.; Zoratti, M.; Biasutto, L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol. Pharm. 2022, 19, 3700–3729. [Google Scholar] [CrossRef]
- Sonju, J.J.; Dahal, A.; Singh, S.S.; Jois, S.D. Peptide-Functionalized Liposomes as Therapeutic and Diagnostic Tools for Cancer Treatment. J. Control. Release 2021, 329, 624–644. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ruan, S.; Wang, Z.; Feng, N.; Zhang, Y. Hyaluronic Acid Coating Reduces the Leakage of Melittin Encapsulated in Liposomes and Increases Targeted Delivery to Melanoma Cells. Pharmaceutics 2021, 13, 1235. [Google Scholar] [CrossRef]
- Badivi, S.; Kazemi, S.; Eskandarisani, M.; Moghaddam, N.A.; Mesbahian, G.; Karimifard, S.; Afzali, E. Targeted Delivery of Bee Venom to A549 Lung Cancer Cells by PEGylate Liposomal Formulation: An Apoptotic Investigation. Sci. Rep. 2024, 14, 17302. [Google Scholar] [CrossRef]
- César Moreira Brito, J.; Gustavo Lima, W.; Magalhães Resende, J.; Cristina Sampaio de Assis, D.; Boff, D.; Nascimento Cardoso, V.; Almeida Amaral, F.; Maria Souza-Fagundes, E.; Odília Antunes Fernandes, S.; Elena de Lima, M. Pegylated LyeTx I-b Peptide Is Effective against Carbapenem-Resistant Acinetobacter Baumannii in an in Vivo Model of Pneumonia and Shows Reduced Toxicity. Int. J. Pharm. 2021, 609, 121156. [Google Scholar] [CrossRef]
- Pinto, F.E.; Fonseca, V.R.; Souza, L.M.; Terra, L.A.; Subramanian, S.; Simon, S.; Sjöblom, J.; Pereira, T.M.; Lacerda, V.; Romão, W. Asphaltenes Subfractions Characterization and Calculation of Their Solubility Parameter Using ESI(-) FT-ICR MS: Part II. Fuel 2022, 312, 122864. [Google Scholar] [CrossRef]
- Dos Santos, N.A.; Macrino, C.J.; Allochio Filho, J.F.; Gonçalves, F.F.; Almeida, C.M.; Agostini, F.; Guizolfi, T.; Moura, S.; Lacerda, V.; Filgueiras, P.R.; et al. Exploring the Chemical Profile of Designer Drugs by ESI(+) and PSI(+) Mass Spectrometry-An Approach on the Fragmentation Mechanisms and Chemometric Analysis. J. Mass. Spectrom. 2020, 55, e4596. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, C.M.; Motta, L.C.; Folli, G.S.; Marcarini, W.D.; Costa, C.A.; Vilela, A.C.S.; Barauna, V.G.; Martin, F.L.; Singh, M.N.; Campos, L.C.G.; et al. MALDI(+) FT-ICR Mass Spectrometry (MS) Combined with Machine Learning toward Saliva-Based Diagnostic Screening for COVID-19. J. Proteome Res. 2022, 21, 1868–1875. [Google Scholar] [CrossRef]
- Chan, W.; White, P. Fmoc Solid Phase Peptide Synthesis: A Practical Approach; Oxford Academic: Oxford, UK, 1999. [Google Scholar] [CrossRef]
- Barth, T.; Silva, A.; Dos Santos, S.S.; Santos, J.L.; Andrade, P.D.; Tsai, J.; Caldas, E.D.; Castro, M.d.S.; Pires, O.R. Antimicrobial Activity and Partial Chemical Structure of Acylpolyamines Isolated from the Venom of the Spider Acanthoscurria Natalensis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210017. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.R.; Oliveira, A.G.S.; Arantes, A.; Junqueira, J.G.M.; Alexandre, G.P.; Severino, V.G.P.; Reis, R.M.; Kim, B.; Ribeiro, R.I.M.A. Acetogenins-Rich Fractions of Annona Coriacea Suppress Human Glioblastoma Viability and Migration by Regulating Necroptosis and MMP-2 Activity In Vitro. Molecules 2023, 28, 3809. [Google Scholar] [CrossRef] [PubMed]
Peptide | Sequence | MW * | Net Charge | Identify (%) | Ref. |
---|---|---|---|---|---|
Lyetx III | ----GKAMKAIAKFLGR---------- | 1389.76 | +5 | ||
Lyetx I | -IWLTALKFLGKNLGKHLAKQQLAKL | 2831.73 | +6 | 38.46 | [17] |
LyeTx II | ----AGLGKIGALIQKVIAKYKA--- | 1940.21 | +5 | 8.33 | [18] |
LyTx I | --IWLTALKFLGKHAAKHLAKQQLSKL | 2841.71 | +6 | 23.08 | [19] |
LyTx II | KIKWFKTMKSIAKFIAKEQMKKHLGGE | 3204.80 | +6 | 53.85 | [19] |
Cell Viability (%) 24 h | ||
---|---|---|
Treatment | Cell Line | |
HN13 | HaCaT | |
LyeTx III alone | 98 | 74 |
LyeTx III liposomes | 38 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, D.M.d.; Santiago, L.R.; Santos, N.A.d.; Romão, W.; Resende, J.M.; de Lima, M.E.; Borges, M.H.; Ribeiro, R.I.M.d.A. Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom. Toxins 2025, 17, 32. https://doi.org/10.3390/toxins17010032
Santos DMd, Santiago LR, Santos NAd, Romão W, Resende JM, de Lima ME, Borges MH, Ribeiro RIMdA. Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom. Toxins. 2025; 17(1):32. https://doi.org/10.3390/toxins17010032
Chicago/Turabian StyleSantos, Daniel Moreira dos, Livia Ramos Santiago, Nayara Araújo dos Santos, Wanderson Romão, Jarbas Magalhães Resende, Maria Elena de Lima, Márcia Helena Borges, and Rosy Iara Maciel de Azambuja Ribeiro. 2025. "Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom" Toxins 17, no. 1: 32. https://doi.org/10.3390/toxins17010032
APA StyleSantos, D. M. d., Santiago, L. R., Santos, N. A. d., Romão, W., Resende, J. M., de Lima, M. E., Borges, M. H., & Ribeiro, R. I. M. d. A. (2025). Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom. Toxins, 17(1), 32. https://doi.org/10.3390/toxins17010032