Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake
Abstract
:1. Introduction
2. Results
2.1. Environmental Variables
2.2. Seasonal Dynamics of Phytoplankton, Microcystis spp. And mcyE Copy Numbers
2.3. Seasonal Dynamics of Crustacean Zooplankton Communities
2.4. Crustacean Ingestion of Potentially Toxic Microcystis
2.5. Relationships of Crustacean Ingestion of mcyE-Containing Cells with Crustacean Assemblage Composition, Microcystis Biomass, and Environmental Parameters
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Study Site
5.2. Sampling
5.3. Phyto- and Zooplankton Biomass, Crustacean Preparation for Molecular Analyses
5.4. DNA Extraction and Molecular Analyses
5.5. Data Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chorus, I.; Welker, M. (Eds.) Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; CRC Press: London, UK, 2021; ISBN 978-1-003-08144-9. [Google Scholar]
- Janssen, E.M.-L. Cyanobacterial Peptides beyond Microcystins—A Review on Co-Occurrence, Toxicity, and Challenges for Risk Assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Otten, T.G. Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls. Microb Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-L.; Utsumi, M. An Overview of the Accumulation of Microcystins in Aquatic Ecosystems. J. Environ. Manag. 2018, 213, 520–529. [Google Scholar] [CrossRef]
- Ger, K.A.; Otten, T.G.; DuMais, R.; Ignoffo, T.; Kimmerer, W. In Situ Ingestion of Microcystis Is Negatively Related to Copepod Abundance in the Upper San Francisco Estuary. Limnol. Oceanogr. 2018, 63, 2394–2410. [Google Scholar] [CrossRef]
- Zamora-Barrios, C.A.; Nandini, S.; Sarma, S.S.S. Bioaccumulation of Microcystins in Seston, Zooplankton and Fish: A Case Study in Lake Zumpango, Mexico. Environ. Pollut. 2019, 249, 267–276. [Google Scholar] [CrossRef]
- Sotton, B.; Guillard, J.; Anneville, O.; Maréchal, M.; Savichtcheva, O.; Domaizon, I. Trophic Transfer of Microcystins through the Lake Pelagic Food Web: Evidence for the Role of Zooplankton as a Vector in Fish Contamination. Sci. Total Environ. 2014, 466–467, 152–163. [Google Scholar] [CrossRef]
- Feist, S.M.; Lance, R.F. Genetic Detection of Freshwater Harmful Algal Blooms: A Review Focused on the Use of Environmental DNA (eDNA) in Microcystis aeruginosa and Prymnesium parvum. Harmful Algae 2021, 110, 102124. [Google Scholar] [CrossRef]
- Chen, L.; Giesy, J.P.; Adamovsky, O.; Svirčev, Z.; Meriluoto, J.; Codd, G.A.; Mijovic, B.; Shi, T.; Tuo, X.; Li, S.-C.; et al. Challenges of Using Blooms of Microcystis Spp. in Animal Feeds: A Comprehensive Review of Nutritional, Toxicological and Microbial Health Evaluation. Sci. Total Environ. 2021, 764, 142319. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, P.; Liu, Y.; Qiu, T. Transfer, Distribution and Bioaccumulation of Microcystins in the Aquatic Food Web in Lake Taihu, China, with Potential Risks to Human Health. Sci. Total Environ. 2009, 407, 2191–2199. [Google Scholar] [CrossRef]
- Agasild, H.; Panksep, K.; Tõnno, I.; Blank, K.; Kõiv, T.; Freiberg, R.; Laugaste, R.; Jones, R.I.; Nõges, P.; Nõges, T. Role of Potentially Toxic Cyanobacteria in Crustacean Zooplankton Diet in a Eutrophic Lake. Harmful Algae 2019, 89, 101688. [Google Scholar] [CrossRef]
- Kozlowsky-Suzuki, B.; Wilson, A.E.; da Silva Ferrão-Filho, A. Biomagnification or Biodilution of Microcystins in Aquatic Foodwebs? Meta-Analyses of Laboratory and Field Studies. Harmful Algae 2012, 18, 47–55. [Google Scholar] [CrossRef]
- Abrantes, N.; Nogueira, A.; Gonçalves, F. Short-Term Dynamics of Cladocerans in a Eutrophic Shallow Lake during a Shift in the Phytoplankton Dominance. Ann. Limnol.-Int. J. Lim. 2009, 45, 237–245. [Google Scholar] [CrossRef]
- Cremona, F.; Blank, K.; Haberman, J. Effects of Environmental Stressors and Their Interactions on Zooplankton Biomass and Abundance in a Large Eutrophic Lake. Hydrobiologia 2021, 848, 4401–4418. [Google Scholar] [CrossRef]
- Ger, K.A.; Faassen, E.J.; Pennino, M.G.; Lürling, M. Effect of the Toxin (Microcystin) Content of Microcystis on Copepod Grazing. Harmful Algae 2016, 52, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Kosiba, J.; Krztoń, W.; Wilk-Woźniak, E. Effect of Microcystins on Proto- and Metazooplankton Is More Evident in Artificial Than in Natural Waterbodies. Microb Ecol. 2018, 75, 293–302. [Google Scholar] [CrossRef]
- Lehman, P.W.; Kurobe, T.; Huynh, K.; Lesmeister, S.; Teh, S.J. Covariance of Phytoplankton, Bacteria, and Zooplankton Communities Within Microcystis Blooms in San Francisco Estuary. Front. Microbiol. 2021, 12, 632264. [Google Scholar] [CrossRef]
- Kâ, S.; Mendoza-Vera, J.M.; Bouvy, M.; Champalbert, G.; N’Gom-Kâ, R.; Pagano, M. Can Tropical Freshwater Zooplankton Graze Efficiently on Cyanobacteria? Hydrobiologia 2012, 679, 119–138. [Google Scholar] [CrossRef]
- Peltomaa, E.T.; Aalto, S.L.; Vuorio, K.M.; Taipale, S.J. The Importance of Phytoplankton Biomolecule Availability for Secondary Production. Front. Ecol. Evol. 2017, 5, 128. [Google Scholar] [CrossRef]
- Ersoy, Z.; Brucet, S.; Bartrons, M.; Mehner, T. Short-Term Fish Predation Destroys Resilience of Zooplankton Communities and Prevents Recovery of Phytoplankton Control by Zooplankton Grazing. PLoS ONE 2019, 14, e0212351. [Google Scholar] [CrossRef]
- Lürling, M.; Van Oosterhout, F.; Faassen, E. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins. Toxins 2017, 9, 64. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms Like It Hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, C.; Bernard, C.; Spoof, L.; Bruno, M. Microcystins and Nodularins. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis; Meriluoto, J., Spoof, L., Codd, G.A., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2016; Volume 1, pp. 107–126. [Google Scholar]
- Sivonen, K.; Jones, G. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK; New York, NY, USA, 1999; pp. 44–111. ISBN 978-0-419-23930-7. [Google Scholar]
- Carey, C.C.; Ewing, H.A.; Cottingham, K.L.; Weathers, K.C.; Thomas, R.Q.; Haney, J.F. Occurrence and Toxicity of the Cyanobacterium Gloeotrichia echinulata in Low-Nutrient Lakes in the Northeastern United States. Aquat. Ecol. 2012, 46, 395–409. [Google Scholar] [CrossRef]
- Reynolds, C.S. Ecology of Phytoplankton; Ecology, biodiversity, and conservation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2006; ISBN 978-0-511-19094-0. [Google Scholar]
- Haberman, J.; Haldna, M. How Are Spring Zooplankton and Autumn Zooplankton Influenced by Water Temperature in a Polymictic Lake? Proc. Est. Acad. Sci. 2017, 66, 264. [Google Scholar] [CrossRef]
- Chiu, Y.-T.; Chen, Y.-H.; Wang, T.-S.; Yen, H.-K.; Lin, T.-F. A qPCR-Based Tool to Diagnose the Presence of Harmful Cyanobacteria and Cyanotoxins in Drinking Water Sources. Int. J. Environ. Res. Public Health 2017, 14, 547. [Google Scholar] [CrossRef]
- Davis, T.; Harke, M.; Marcoval, M.; Goleski, J.; Orano-Dawson, C.; Berry, D.; Gobler, C. Effects of Nitrogenous Compounds and Phosphorus on the Growth of Toxic and Non-Toxic Strains of Microcystis during Cyanobacterial Blooms. Aquat. Microb. Ecol. 2010, 61, 149–162. [Google Scholar] [CrossRef]
- Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The Effects of Temperature and Nutrients on the Growth and Dynamics of Toxic and Non-Toxic Strains of Microcystis during Cyanobacteria Blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
- Rantala, A.; Rajaniemi-Wacklin, P.; Lyra, C.; Lepistö, L.; Rintala, J.; Mankiewicz-Boczek, J.; Sivonen, K. Detection of Microcystin-Producing Cyanobacteria in FinnishLakes with Genus-Specific Microcystin Synthetase Gene E (mcyE) PCR and Associations with Environmental Factors. Appl. Environ. Microbiol. 2006, 72, 6101–6110. [Google Scholar] [CrossRef]
- Wang, X.; Sun, M.; Wang, J.; Yang, L.; Luo, L.; Li, P.; Kong, F. Microcystis Genotype Succession and Related Environmental Factors in Lake Taihu during Cyanobacterial Blooms. Microb Ecol. 2012, 64, 986–999. [Google Scholar] [CrossRef]
- Vilar, M.C.P.; Rodrigues, T.F.C.P.; Silva, L.O.; Pacheco, A.B.F.; Ferrão-Filho, A.S.; Azevedo, S.M.F.O. Ecophysiological Aspects and Sxt Genes Expression Underlying Induced Chemical Defense in STX-Producing Raphidiopsis raciborskii (Cyanobacteria) against the Zooplankter Daphnia Gessneri. Toxins 2021, 13, 406. [Google Scholar] [CrossRef]
- Davis, T.W.; Gobler, C.J. Grazing by Mesozooplankton and Microzooplankton on Toxic and Non-Toxic Strains of Microcystis in the Transquaking River, a Tributary of Chesapeake Bay. J. Plankton Res. 2011, 33, 415–430. [Google Scholar] [CrossRef]
- Panksep, K.; Tamm, M.; Mantzouki, E.; Rantala-Ylinen, A.; Laugaste, R.; Sivonen, K.; Tammeorg, O.; Kisand, V. Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi. Toxins 2020, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Caspers, H. OECD: Eutrophication of Waters. Monitoring, Assessment and Control—154pp. Paris: Organisation for Economic Co-Operation and Development 1982. (Publié En Français Sous Le titre »Eutrophication Des Eaux. Méthodes de Surveillance, d’Evaluation et de Lutte«). Int. Rev. Der Gesamten Hydrobiol. Und Hydrogr. 1984, 69, 200. [Google Scholar] [CrossRef]
- DeMott, W.R.; Zhang, Q.; Carmichael, W.W. Effects of Toxic Cyanobacteria and Purified Toxins on the Survival and Feeding of a Copepod and Three Species of Daphnia. Limnol. Oceanogr. 1991, 36, 1346–1357. [Google Scholar] [CrossRef]
- Karpowicz, M.; Ejsmont-Karabin, J. Diversity and Structure of Pelagic Zooplankton (Crustacea, Rotifera) in NE Poland. Water 2021, 13, 456. [Google Scholar] [CrossRef]
- Zingel, P.; Haberman, J. A Comparison of Zooplankton Densities and Biomass in Lakes Peipsi and Võrtsjärv (Estonia): Rotifers and Crustaceans versus Ciliates. Hydrobiologia 2008, 599, 153–159. [Google Scholar] [CrossRef]
- Hansen, A.-M.; Santer, B. The Influence of Food Resources on the Development, Survival and Reproduction of the Two Cyclopoid Copepods: Cyclops Vicinus and Mesocyclops Leuckarti. J. Plankton Res. 1995, 17, 631–646. [Google Scholar] [CrossRef]
- Hopp, U.; Maier, G. Implication of the Feeding Limb Morphology for Herbivorous Feeding in Some Freshwater Cyclopoid Copepods. Freshw. Biol. 2005, 50, 742–747. [Google Scholar] [CrossRef]
- Šorf, M.; Brandl, Z. The Rotifer Contribution to the Diet of Eudiaptomus gracilis (G. O. Sars, 1863) (Copepoda, Calanoida). Crustaceana 2012, 85, 1421–1429. [Google Scholar] [CrossRef]
- Ger, K.A.; Panosso, R.; Lürling, M. Consequences of Acclimation to Microcystis on the Selective Feeding Behavior of the Calanoid Copepod Eudiaptomus Gracilis. Limnol. Oceanogr. 2011, 56, 2103–2114. [Google Scholar] [CrossRef]
- Agasild, H.; Blank, K.; Haberman, J.; Tuvikene, L.; Zingel, P.; Nõges, P.; Olli, K.; Bernotas, P.; Cremona, F. Interactive Effects Shape the Dynamics of Chydorus Sphaericus (O.F. Müller, 1776) Population in a Shallow Eutrophic Lake. Hydrobiologia 2024, 852, 341–357. [Google Scholar] [CrossRef]
- Vijverberg, J.; Boersma, M. Long-Term Dynamics of Small-Bodied and Large-Bodied Cladocerans during the Eutrophication of a Shallow Reservoir, with Special Attention for Chydorus sphaericus. Hydrobiologia 1997, 360, 233–242. [Google Scholar] [CrossRef]
- Wojtal-Frankiewicz, A.; Bernasińska, J.; Jurczak, T.; Gwoździński, K.; Frankiewicz, P.; Wielanek, M. Microcystin Assimilation and Detoxification by Daphnia spp. in Two Ecosystems of Different Cyanotoxin Concentrations. J. Limnol. 2013, 72, 13. [Google Scholar] [CrossRef]
- Urrutia-Cordero, P.; Ekvall, M.K.; Hansson, L. Responses of Cyanobacteria to Herbivorous Zooplankton across Predator Regimes: Who Mows the Bloom? Freshw. Biol. 2015, 60, 960–972. [Google Scholar] [CrossRef]
- Kim, B.; Nakano, S.; Kim, B.; Han, M. Grazing and Growth of the Heterotrophic Flagellate Diphylleia rotans on the Cyanobacterium Microcystis aeruginosa. Aquat. Microb. Ecol. 2006, 45, 163–170. [Google Scholar] [CrossRef]
- Nandini, S.; Sarma, S.S.S. Experimental Studies on Zooplankton-Toxic Cyanobacteria Interactions: A Review. Toxics 2023, 11, 176. [Google Scholar] [CrossRef]
- Haney, J.F. Field Studies on Zooplankton-cyanobacteria Interactions. N. Z. J. Mar. Freshw. Res. 1987, 21, 467–475. [Google Scholar] [CrossRef]
- Jarvis, A.C.; Hart, R.C.; Combrink, S. Zooplankton Feeding on Size Fractionated Microcystis Colonies and Chlorella in a Hypertrophic Lake (Hartbeespoort Dam, South Africa): Implications to Resource Utilization and Zooplankton Succession. J. Plankton Res. 1987, 9, 1231–1249. [Google Scholar] [CrossRef]
- Yang, D.; Park, S. Freshwater Anostracan, Branchinella kugenumaensis, as a Potential Controlling Consumer Species on Toxic Cyanobacteria Microcystis aeruginosa. Aquat. Ecol. 2017, 51, 449–461. [Google Scholar] [CrossRef]
- Fryer, G. Evolution and Adaptive Radiation in the Chydoridae (Crustacea: Cladocera): A Study in Comparative Functional Morphology and Ecology. Phil. Trans. R. Soc. Lond. B 1968, 254, 221–384. [Google Scholar] [CrossRef]
- Tõnno, I.; Agasild, H.; Kõiv, T.; Freiberg, R.; Nõges, P.; Nõges, T. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. PLoS ONE 2016, 11, e0154526. [Google Scholar] [CrossRef]
- Li, Y.; Li, D. Physiological Variations of Bloom-Forming Microcystis (Cyanophyceae) Related to Colony Size Changes during Blooms. Phycologia 2012, 51, 599–603. [Google Scholar] [CrossRef]
- Ferrão-Filho, A.D.S.; Azevedo, S.M.F.O. Effects of Unicellular and Colonial Forms of Toxic Microcystis aeruginosa from Laboratory Cultures and Natural Populations on Tropical Cladocerans. Aquat. Ecol. 2003, 37, 23–35. [Google Scholar] [CrossRef]
- Ginter, C.C.; Boettger, A.S.; Fish, F.E. Morphology and Microanatomy of Harbor Porpoise (Phocoena phocoena) Dorsal Fin Tubercles. J. Morphol. 2011, 272, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Salujõe, J.; Gottlob, H.; Agasild, H.; Haberman, J.; Krause, T.; Zingel, P. Feeding of 0+ Smelt Osmerus Eperlanus in Lake Peipsi. Est. J. Ecol. 2008, 57, 58. [Google Scholar] [CrossRef]
- Drobac Backović, D.; Tokodi, N.; Marinović, Z.; Lujić, J.; Dulić, T.; Simić, S.B.; Đorđević, N.B.; Kitanović, N.; Šćekić, I.; Urbányi, B.; et al. Cyanobacteria, Cyanotoxins, and Their Histopathological Effects on Fish Tissues in Fehérvárcsurgó Reservoir, Hungary. Environ. Monit. Assess 2021, 193, 554. [Google Scholar] [CrossRef]
- Tanner, R.; Kangur, K.; Spoof, L.; Meriluoto, J. Hepatotoxic Cyanobacterial Peptides in Estonian Freshwater Bodies and Inshore Marine Water. Proc. Est. Acad. Sci. Biol. Ecol. 2005, 54, 40. [Google Scholar] [CrossRef]
- García-Chicote, J.; Armengol, X.; Rojo, C. Zooplankton Abundance: A Neglected Key Element in the Evaluation of Reservoir Water Quality. Limnologica 2018, 69, 46–54. [Google Scholar] [CrossRef]
- Gonzales Ferraz, M.E.; Agasild, H.; Piirsoo, K.; Saat, M.; Nõges, T.; Panksep, K. Seasonal Dynamics of Toxigenic Microcystis in a Large, Shallow Lake Peipsi (Estonia) Using Microcystin mcyE Gene Abundance. Environ. Monit. Assess 2024, 196, 747. [Google Scholar] [CrossRef]
- Laugaste, R.; Panksep, K.; Haldna, M. Dominant Cyanobacterial Genera in Lake Peipsi (Estonia/Russia): Effect of Weather and Nutrients in Summer Months. Est. J. Ecol. 2013, 62, 229–243. [Google Scholar] [CrossRef]
- Haberman, J.; Haldna, M.; Laugaste, R.; Blank, K. Recent Changes in Large and Shallow Lake Peipsi (Estonia/Russia): Causes and Consequences. Pol. J. Ecol. 2010, 58, 645–662. [Google Scholar]
- Kangur, K.; Möls, T. Changes in Spatial Distribution of Phosphorus and Nitrogen in the Large North-Temperate Lowland Lake Peipsi (Estonia/Russia). In European Large Lakes Ecosystem Changes and Their Ecological and Socioeconomic Impacts; Nõges, T., Eckmann, R., Kangur, K., Nõges, P., Reinart, A., Roll, G., Simola, H., Viljanen, M., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2008; Volume 199, pp. 31–39. ISBN 978-1-4020-8378-5. [Google Scholar]
- Utermöhl, H. Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik: Mit 1 Tabelle Und 15 Abbildungen Im Text Und Auf 1 Tafel. Mitt. Int. Ver. Theor. Angew. Limnol. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- Studenikina, E.I.; Cherepakhina, M.M. Srednii ves osnovykh form zooplanktona Azavskogo morya [mean weight forms of the Azov Sea]. Gidrobiol. Zhurnal 1969, 5, 89–91. [Google Scholar]
- Balushkina, E.V.; Winberg, G.G. Relation between body mass and length of planktonic animals. In Obshchiye Osnovy Izucheniya Vodnykh Ekosistemi; Nauka: Moscow, Russia, 1979; pp. 169–172. [Google Scholar]
- Haberman, S.J. Maximum Likelihood Estimates in Exponential Response Models. Ann. Statist. 1977, 5, 815–841. [Google Scholar] [CrossRef]
- Koskenniemi, K.; Lyra, C.; Rajaniemi-Wacklin, P.; Jokela, J.; Sivonen, K. Quantitative Real-Time PCR Detection of Toxic Nodularia Cyanobacteria in the Baltic Sea. Appl. Environ. Microbiol. 2007, 73, 2173–2179. [Google Scholar] [CrossRef]
- Overlingė, D.; Toruńska-Sitarz, A.; Kataržytė, M.; Pilkaitytė, R.; Gyraitė, G.; Mazur-Marzec, H. Characterization and Diversity of Microcystins Produced by Cyanobacteria from the Curonian Lagoon (SE Baltic Sea). Toxins 2021, 13, 838. [Google Scholar] [CrossRef]
- Pacheco, A.; Guedes, I.; Azevedo, S. Is qPCR a Reliable Indicator of Cyanotoxin Risk in Freshwater? Toxins 2016, 8, 172. [Google Scholar] [CrossRef]
P11 Peipsi s.s. | P38 Peipsi s.s. | P17 Lämmijärv | ||||
---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | |
TP, µg/L | 37.83 | 23–58 | 41.17 | 26–78 | 101 | 39–160 |
TN, µg/L | 706.67 | 380–1000 | 901.67 | 530–1300 | 1091.67 | 660–1600 |
NO3−, µg/L | 37.17 | 20–100 | 143.83 | 20–610 | 58.83 | 20–220 |
NO2−, µg/L | 3.50 | 3–6 | 4.33 | 3–7 | 3.83 | 3–7 |
NH4+, µg/L | 27.17 | 10–53 | 23 | 10–74 | 24 | 10–44 |
Water Temp, °C | 15.8 | 7–25 | 16.0 | 6.9–25.4 | 15.9 | 6.7–25.7 |
Secchi depth, m | 1.7 | 0.8–2.4 | 1.2 | 0.6–1.3 | 0.7 | 0.5–1.1 |
pH | 8.52 | 8.2–8.8 | 8.47 | 7.9–8.8 | 8.51 | 8.2–9.2 |
O2, mg/L | 10.38 | 8–13.2 | 10.25 | 8.4–12.1 | 9.78 | 7.2–11.8 |
Chl-a, µg/L | 17.95 | 6.1–30.5 | 22.65 | 6.3–44.8 | 57.77 | 20.9–109 |
OECD clasif. | Eutrophic | Eutrophic | Eutrophic/hypertrophic |
Taxon | Average (±SD) Length, mm | Maximum Taxon-Specific Ingestion, mcyE Cells/ind | Mean (±SD) Taxon-Specific Ingestion, mcyE Cells/ind | Mean (±SD) Weight-Specific Ingestion, mcyE Cells/100 mg |
---|---|---|---|---|
Cladocerans | ||||
Daphnia spp. | 1.34 ± 0.21 | 303 | 20 ± 21 | 30 ± 25 |
Bosmina spp. | 0.66 ± 0.13 | 61 | 16 ± 17 | 50 ± 65 |
Chydorus sphaericus | 0.31 ± 0.03 | 22 | 3 ± 5 | 216 ± 150 |
Copepods | ||||
Eudiaptomus gracilis | 1.16 ± 0.09 | 74 | 12 ± 23 | 60 ± 60 |
Heterocope appendiculata | 1.93 ± 0.12 | 6428 | 1203 ± 2192 | 611 ± 1004 |
Mesocyclops leuckarti | 0.85 ± 0.07 | 610 | 92 ± 138 | 494 ± 562 |
Grazers | Total Crustacean Ingestion (mcyE Cells/L) vs. Grazer Abundance | Total Crustacean Ingestion (mcyE Cells/L) vs. Grazer Biomass | Microcystis Biomass vs. Grazer Biomass | McyE water (Copies/L) vs. Grazer Biomass |
---|---|---|---|---|
Cladocerans | 0.398 | 0.311 | −0.607 ** | −0.718 ** |
Copepods | 0.684 ** | 0.425 | −0.318 | −0.346 |
Crustaceans | 0.684 ** | 0.368 | −0.571 * | −0.732 ** |
Daphnia spp. | 0.23 | 0.204 | −0.674 ** | −0.666 ** |
Bosmina spp. | 0.01 | −0.032 | −0.108 | −0.2803 |
C. sphaericus | 0.251 | 0.322 | 0.118 | 0.2795 |
E. gracilis | 0.610 * | 0.538 * | −0.084 | −0.3067 |
M. leuckarti | 0.705 ** | 0.620 * | −0.329 | −0.1787 |
H. appendiculata | −0.698 | 0.030 | 0.151 | −0.2125 |
L. kindtii | −0.243 | 0.099 | −0.361 | 0.0311 |
B. longimanus | −0.57 | −0.059 | −0.479 | 0.0035 |
Variables | Cladoceran, Ingestion (mcyE Cells/L) | Copepod, Ingestion (mcyE cells/L) | Total Crustacean Ingestion (mcyE Cells/L) | Microcystis (mg/L) | McyE Water (Copies/L) |
---|---|---|---|---|---|
Water temp, °C | 0.443 | 0.288 | 0.461 | −0.237 | −0.296 |
NO3−, µg/L | 0.436 | −0.346 | −0.142 | −0.467 | −0.399 |
NH4+, µg/L | 0.393 | 0.161 | 0.014 | −0.244 | −0.335 |
NO2−, µg/L | 0.288 | −0.026 | 0.159 | −0.479 | −0.467 |
TN, µg/L | 0.412 | −0.163 | −0.225 | 0.321 | 0.607 * |
TP, µg/L | −0.036 | 0.431 | 0.256 | 0.726 ** | 0.637 * |
PO4+, µg/L | −0.246 | 0.358 | 0.211 | 0.888 *** | 0.632 * |
Secchi depth, m | 0.075 | −0.222 | −0.052 | −0.758 ** | −0.571 * |
pH | −0.045 | 0.189 | 0.119 | 0.097 | −0.03 |
Chl-a, µg/L | 0.016 | 0.463 | 0.293 | 0.814 *** | 0.664 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agasild, H.; Ferraz, M.E.G.; Saat, M.; Zingel, P.; Piirsoo, K.; Blank, K.; Kisand, V.; Nõges, T.; Panksep, K. Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Toxins 2025, 17, 42. https://doi.org/10.3390/toxins17010042
Agasild H, Ferraz MEG, Saat M, Zingel P, Piirsoo K, Blank K, Kisand V, Nõges T, Panksep K. Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Toxins. 2025; 17(1):42. https://doi.org/10.3390/toxins17010042
Chicago/Turabian StyleAgasild, Helen, Margarita Esmeralda Gonzales Ferraz, Madli Saat, Priit Zingel, Kai Piirsoo, Kätlin Blank, Veljo Kisand, Tiina Nõges, and Kristel Panksep. 2025. "Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake" Toxins 17, no. 1: 42. https://doi.org/10.3390/toxins17010042
APA StyleAgasild, H., Ferraz, M. E. G., Saat, M., Zingel, P., Piirsoo, K., Blank, K., Kisand, V., Nõges, T., & Panksep, K. (2025). Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Toxins, 17(1), 42. https://doi.org/10.3390/toxins17010042