Untargeted Metabolomic Analysis and Cytotoxicity of Extracts of the Marine Dinoflagellate Amphidinium eilatiense Against Human Cancer Cell Lines
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity Assays of Methanolic Crude Extracts
2.2. Cytotoxicity Assays of Bioassay-Guided Fractions
2.3. Cytotoxicity Assays of Bioactive Sub-Fractions
2.4. Untargeted Metabolomic Analysis of Bioactive Fractions
2.4.1. LC-HRMS Analysis of FNP-5 and FNP-6
2.4.2. Interpretation of Untargeted Metabolomic Profiles of Bioactive Fractions
3. Discussion
3.1. Cytotoxicity of Amphidinium Extracts
3.2. Chemical and Metabolomic Analysis of Bioactive Fractions
4. Conclusions
5. Materials and Methods
5.1. Dinoflagellate Culture and Biomass Harvest
5.2. Methanolic Extraction of A. eilatiense (AeSQ181) Biomass
5.3. Fractionation of A. eilatiense (AeSQ181) Methanolic Extract
5.4. Cytotoxicity Assays
5.4.1. Cell Culture and Conditions
5.4.2. Cell Viability Assays
5.5. Liquid Chromatography Coupled to High-Resolution Mass Spectrometry Analysis (LC-HRMS)
5.6. Untargeted Metabolomic Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cembella, A.D. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 2003, 42, 420–447. [Google Scholar]
- Cousseau, A.; Siano, R.; Probert, I.; Bach, S.; Mehiri, M. Marine dinoflagellates as a source of new bioactive structures. Stud. Nat. Prod. Chem. 2020, 65, 125–171. [Google Scholar]
- Khalifa, S.A.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.-E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G. Marine natural products: A source of novel anticancer drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Muñoz, D.; Praptiwi, R.A.; Lawton, L.A.; Edwards, C. High value phycotoxins from the dinoflagellate Prorocentrum. Front. Mar. Sci. 2021, 8, 638739. [Google Scholar] [CrossRef]
- Durán-Riveroll, L.M.; Cembella, A.D.; Okolodkov, Y.B. A review on the biodiversity and biogeography of toxigenic benthic marine dinoflagellates of the coasts of Latin America. Front. Mar. Sci. 2019, 6, 148. [Google Scholar]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.Ø.; Romano, G.; Ianora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front. Mar. Sci. 2016, 3, 68. [Google Scholar]
- Shah, M.M.R.; Samarakoon, K.W.; Ko, J.; Lakmal, H.C.; Lee, J.; An, S.; Jeon, Y. Potentiality of benthic dinoflagellate cultures and screening of their bioactivities in Jeju Island, Korea. Afr. J. Biotechnol. 2014, 13, 792–805. [Google Scholar]
- Assunção, J.; Guedes, A.C.; Malcata, F.X. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar. Drugs 2017, 15, 393. [Google Scholar] [CrossRef]
- Camacho, F.G.; Rodríguez, J.G.; Mirón, A.S.; García, M.C.; Belarbi, E.; Chisti, Y.; Grima, E.M. Biotechnological significance of toxic marine dinoflagellates. Biotechnol. Adv. 2007, 25, 176–194. [Google Scholar]
- Hassan, S.; Meenatchi, R.; Pachillu, K.; Bansal, S.; Brindangnanam, P.; Arockiaraj, J.; Kiran, G.S.; Selvin, J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J. Basic Microbiol. 2022, 62, 999–1029. [Google Scholar]
- Orefice, I.; Balzano, S.; Romano, G.; Sardo, A. Amphidinium spp. as a Source of Antimicrobial, Antifungal, and Anticancer Compounds. Life 2023, 13, 2164. [Google Scholar] [CrossRef] [PubMed]
- Sreenikethanam, A.; Raj, S.; Gugulothu, P.; Bajhaiya, A.K. Genetic engineering of microalgae for secondary metabolite production: Recent developments, challenges, and future prospects. Front. Boengineering Biotechnol. 2022, 10, 836056. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, L. Dinoflagellates important marine producers of natural bio-compounds with high biotechnological and pharmacological potential. J. Food Chem. Nanotechnol. 2020, 6, 138–149. [Google Scholar]
- Garrido, R.; Lagos, N.; Lagos, M.; Rodríguez-Navarro, A.J.; García, C.; Truan, D.; Henriquez, A. Treatment of chronic anal fissure by gonyautoxin. Color. Dis. 2007, 9, 619–624. [Google Scholar]
- Lattes, K.; Venegas, P.; Lagos, N.; Lagos, M.; Pedraza, L.; Rodriguez-Navarro, A.; García, C. Local infiltration of gonyautoxin is safe and effective in treatment of chronic tension-type headache. Neurol. Res. 2009, 31, 228–233. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, University of Galway. 2025. Available online: https://www.algaebase.org (accessed on 2 February 2025).
- Karafas, S.; Teng, S.T.; Leaw, C.P.; Alves-de-Souza, C. An evaluation of the genus Amphidinium (Dinophyceae) combining evidence from morphology, phylogenetics, and toxin production, with the introduction of six novel species. Harmful Algae 2017, 68, 128–151. [Google Scholar]
- Murray, S.A.; Kohli, G.S.; Farrell, H.; Spiers, Z.B.; Place, A.R.; Dorantes-Aranda, J.J.; Ruszczyk, J. A fish kill associated with a bloom of Amphidinium carterae in a coastal lagoon in Sydney, Australia. Harmful Algae 2015, 49, 19–28. [Google Scholar]
- Pagliara, P.; Caroppo, C. Toxicity assessment of Amphidinium carterae, Coolia cfr. monotis and Ostreopsis cfr. ovata (Dinophyta) isolated from the northern Ionian Sea (Mediterranean Sea). Toxicon 2012, 60, 1203–1214. [Google Scholar]
- Barone, M.E.; Murphy, E.; Parkes, R.; Fleming, G.T.; Campanile, F.; Thomas, O.P.; Touzet, N. Antibacterial activity and amphidinol profiling of the marine dinoflagellate Amphidinium carterae (Subclade III). Int. J. Mol. Sci. 2021, 22, 12196. [Google Scholar] [CrossRef]
- Durán-Riveroll, L.M.; Weber, J.; Krock, B. First identification of amphidinols from Mexican strains and new analogs. Toxins 2023, 15, 163. [Google Scholar] [CrossRef]
- Lee, J.J.; Olea, R.; Cevasco, M.; Pochon, X.; Correia, M.; Shpigel, M.; Pawlowski, J. A marine dinoflagellate, Amphidinium eilatiensis n. sp., from the benthos of a mariculture sedimentation pond in Eilat, Israel. J. Eukaryot. Microbiol. 2003, 50, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Durán-Riveroll, L.M.; Juárez, O.E.; Okolodkov, Y.B.; Mejía-Camacho, A.L.; Ramírez-Corona, F.; Casanova-Gracia, D.; Osorio-Ramírez, M.d.C.; Cervantes-Urieta, V.A.; Cembella, A.D. Morphological and molecular characterization of the benthic dinoflagellate Amphidinium from coastal waters of Mexico. Phycology 2023, 3, 305–324. [Google Scholar] [CrossRef]
- Espiritu, R.A.; Tan, M.C.S.; Oyong, G.G. Evaluation of the anti-cancer potential of amphidinol 2, a polyketide metabolite from the marine dinoflagellate Amphidinium klebsii. Jordan J. Biol. Sci. 2017, 10, 297–302. [Google Scholar]
- Martínez Andrade, K.A.; Lauritano, C.; Druka, D.; Romano, G.; Grohmann, T.; Jaspars, M.; Martín, J.; Díaz, C.; Cautain, B.; de la Cruz, M. Amphidinol 22, a new cytotoxic and antifungal amphidinol from the dinoflagellate Amphidinium carterae. Mar. Drugs 2019, 17, 385. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Chakraborty, T.K.; Das, S. Chemistry of potent anti-cancer compounds, amphidinolides. Curr. Med. Chem. Anti-Cancer Agents 2001, 1, 131–149. [Google Scholar] [CrossRef]
- Kobayashi, J. Amphidinolides and its related macrolides from marine dinoflagellates. J. Antibiot. 2008, 61, 271–284. [Google Scholar] [CrossRef]
- Akakabe, M.; Kumagai, K.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Kaneno, D.; Fukushi, E.; Kawabata, J.; Masuda, A.; Tsuda, M. Iriomoteolides-10a and 12a, cytotoxic macrolides from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2016, 64, 1019–1023. [Google Scholar] [CrossRef]
- Tsuda, M.; Makihara, R.; Tsuda, M.; Suzuki, T. Iriomoteolides-14a and 14b, new cytotoxic 15-membered macrolides from marine dinoflagellate Amphidinium species. Chem. Pharm. Bull. 2020, 68, 864–867. [Google Scholar] [CrossRef]
- Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.; Kitaya, Y. Iriomoteolide-1a, a potent cytotoxic 20-membered macrolide from a benthic dinoflagellate Amphidinium species. J. Org. Chem. 2007, 72, 4469–4474. [Google Scholar] [CrossRef]
- Kumagai, K.; Minamida, M.; Akakabe, M.; Tsuda, M.; Konishi, Y.; Tominaga, A.; Tsuda, M.; Fukushi, E.; Kawabata, J. Amphirionin-2, a novel linear polyketide with potent cytotoxic activity from a marine dinoflagellate Amphidinium species. Bioorganic Med. Chem. Lett. 2015, 25, 635–638. [Google Scholar]
- Nogueira, T.; Cristina, M.d.S.; Marcus, V.N. New FDA oncology small molecule drugs approvals in 2020: Mechanism of action and clinical applications. Bioorganic Med. Chem. 2021, 46, 116340. [Google Scholar]
- Mejía-Camacho, A.L.; Durán-Riveroll, L.M.; Cembella, A.D. Toxicity bioassay and cytotoxic effects of the benthic marine dinoflagellate Amphidinium operculatum. J. Xenobiotics 2021, 11, 33–45. [Google Scholar] [CrossRef]
- Barone, M.E.; Murphy, E.; Fierli, D.; Campanile, F.; Fleming, G.T.; Thomas, O.P.; Touzet, N. Bioactivity of amphidinol-containing extracts of Amphidinium carterae grown under varying cultivation conditions. Curr. Microbiol. 2024, 81, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Park, J.Y. Epidemiology of cancer. In Anesthesia for Oncological Surgery; Springer: Berlin/Heidelberg, Germany, 2024; pp. 11–16. [Google Scholar]
- Kim, J.; Harper, A.; McCormack, V.; Sung, H.; Houssami, N.; Morgan, E.; Mutebi, M.; Garvey, G.; Soerjomataram, I.; Fidler-Benaoudia, M.M. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat. Med. 2025, 1–9. [Google Scholar]
- Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R.L. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar]
- Liu, X.; Bian, Z.; Hu, S.; Dickinson, C.F.; Benjamin, M.M.; Jia, J.; Tian, Y.; Place, A.; Hanna, G.S.; Luesch, H. The chemistry of phytoplankton. Chem. Rev. 2024, 124, 13099–13177. [Google Scholar]
- Sugawara, T.; Yamashita, K.; Sakai, S.; Asai, A.; Nagao, A.; Shiraishi, T.; Imai, I.; Hirata, T. Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Biosci. Biotechnol. Biochem. 2007, 71, 1069–1072. [Google Scholar]
- Samarakoon, K.W.; Ko, J.-Y.; Rahman, S.M.M.; Lee, J.-H.; Kang, M.-C.; Kwon, O.-N.; Lee, J.-B.; Jeon, Y.-J. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae 2013, 28, 111–119. [Google Scholar] [CrossRef]
- Kobayashi, J.i.; Kubota, T. Bioactive metabolites from marine dinoflagellates. In Comprehensive Natural Products II: Chemistry and Biology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 263–325. [Google Scholar]
- Kobayashi, J.; Shimbo, K.; Sato, M.; Tsuda, M. Amphidinolides H2–H5, G2, and G3, new cytotoxic 26-and 27-membered macrolides from dinoflagellate Amphidinium sp. J. Org. Chem. 2002, 67, 6585–6592. [Google Scholar]
- Kubota, T.; Tsuda, M.; Takahashi, M.; Ishibashi, M.; Oka, S.; Kobayashi, J. Colopsinols D and E, new polyhydroxyl linear carbon chain compounds from marine dinoflagellate Amphidinium sp. Chem. Pharm. Bull. 2000, 48, 1447–1451. [Google Scholar]
- Pradhan, B.; Ki, J.-S. Phytoplankton toxins and their potential therapeutic applications: A journey toward the quest for potent pharmaceuticals. Mar. Drugs 2022, 20, 271. [Google Scholar] [CrossRef] [PubMed]
- Ternon, E.; Glukhov, E.; Trytten, E.; Lemée, R.; Gerwick, W.H. On the hunt for new toxin families produced by a Mediterranean strain of the benthic dinoflagellate Ostreopsis cf. ovata. Toxins 2022, 14, 234. [Google Scholar]
- Gémin, M.-P.; Réveillon, D.; Hervé, F.; Pavaux, A.-S.; Tharaud, M.; Séchet, V.; Bertrand, S.; Lemée, R.; Amzil, Z. Toxin content of Ostreopsis cf. ovata depends on bloom phases, depth and macroalgal substrate in the NW Mediterranean Sea. Harmful Algae 2020, 92, 101727. [Google Scholar]
- Nurhayati, A.P.D.; Pratiwi, R.; Wahyuono, S.; Abdillah, S. Cytotoxic activity of ethanolic extract and fractions of the marine sponge Cinachyrella sp. J. Pharm. Sci. Res. 2015, 6, 404–410. [Google Scholar]
- García-Portela, M.; Reguera, B.; Sibat, M.; Altenburger, A.; Rodríguez, F.; Hess, P. Metabolomic profiles of Dinophysis acuminata and Dinophysis acuta using non-targeted high-resolution mass spectrometry: Effect of nutritional status and prey. Mar. Drugs 2018, 16, 143. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, F.; Zhang, W. Omics analysis for dinoflagellates biology research. Microorganisms 2019, 7, 288. [Google Scholar] [CrossRef]
- Beedessee, G.; Kubota, T.; Arimoto, A.; Nishitsuji, K.; Waller, R.F.; Hisata, K.; Yamasaki, S.; Satoh, N.; Kobayashi, J.; Shoguchi, E. Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. BMC Biol. 2020, 18, 139. [Google Scholar] [CrossRef] [PubMed]
- Roussel, A.; Mériot, V.; Jauffrais, T.; Berteaux-Lecellier, V.; Lebouvier, N. OMICS approaches to assess dinoflagellate responses to chemical stressors. Biology 2023, 12, 1234. [Google Scholar] [CrossRef]
- Estevez, P.; Gago-Martinez, A. Contribution of mass spectrometry to the advances in risk characterization of marine biotoxins: Towards the characterization of metabolites implied in human intoxications. Toxins 2023, 15, 103. [Google Scholar] [CrossRef]
- Arouri, A.; Mouritsen, O.G. Membrane-perturbing effect of fatty acids and lysolipids. Prog. Lipid Res. 2013, 52, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, V.; Hassing, M.; Lewandowski, P. Marine polyunsaturated fatty acids and cancer therapy. Br. J. Cancer 2013, 108, 486–492. [Google Scholar] [CrossRef]
- D’Eliseo, D.; Velotti, F. Omega-3 fatty acids and cancer cell cytotoxicity: Implications for multi-targeted cancer therapy. J. Clin. Med. 2016, 5, 15. [Google Scholar] [CrossRef]
- Høyrup, P.; Davidsen, J.; Jørgensen, K. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length. J. Phys. Chem. B 2001, 105, 2649–2657. [Google Scholar] [CrossRef]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.-F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Otsuki, K.; Li, W. Molecular networking as a natural products discovery strategy. Acta Mater. Medica 2023, 2, 126–141. [Google Scholar] [CrossRef]
- NCBI. PubChem Bioassay Record for AID 1224878, A CellTox Green Cytotoxicity Assay to Monitor Cytotoxicity in HepG2 Cells—24 Hour. 2025. Available online: https://pubchem.ncbi.nlm.nih.gov/bioassay/1224878 (accessed on 18 December 2024).
- Siveen, K.S.; Nizamuddin, P.B.; Uddin, S.; Al-Thani, M.; Frenneaux, M.P.; Janahi, I.A.; Steinhoff, M.; Azizi, F. TRPV2: A cancer biomarker and potential therapeutic target. Dis. Markers 2020, 2020, 8892312. [Google Scholar] [CrossRef]
- Peat, T.J.; Gaikwad, S.M.; Dubois, W.; Gyabaah-Kessie, N.; Zhang, S.; Gorjifard, S.; Phyo, Z.; Andres, M.; Hughitt, V.K.; Simpson, R.M. Drug combinations identified by high-throughput screening promote cell cycle transition and upregulate Smad pathways in myeloma. Cancer Lett. 2023, 568, 216284. [Google Scholar] [CrossRef]
- Meng, S.; Alanazi, R.; Ji, D.; Bandura, J.; Luo, Z.-W.; Fleig, A.; Feng, Z.-P.; Sun, H.-S. Role of TRPM7 kinase in cancer. Cell Calcium 2021, 96, 102400. [Google Scholar] [CrossRef]
- Blackburn, S.I.; Bolch, C.J.; Haskard, K.A.; Hallegraeff, G.M. Reproductive compatibility among four global populations of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Phycologia 2001, 40, 78–87. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.B. Evaluation of the effects of dimethylsulphoxide on morphology, cellular viability, mRNA, and protein expression of stem cells culture in growth media. Biomed. Rep. 2017, 7, 291–296. [Google Scholar] [CrossRef] [PubMed]
- de Abreu Costa, L.; Henrique Fernandes Ottoni, M.; Dos Santos, M.G.; Meireles, A.B.; Gomes de Almeida, V.; de Fátima Pereira, W.; Alves de Avelar-Freitas, B.; Eustáquio Alvim Brito-Melo, G. Dimethyl sulfoxide (DMSO) decreases cell proliferation and TNF-α, IFN-γ, and IL-2 cytokines production in cultures of peripheral blood lymphocytes. Molecules 2017, 22, 1789. [Google Scholar] [CrossRef]
- Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar]
- Hernández-Melgar, A.G.; Guerrero, A.; Moreno-Ulloa, A. Chronic exposure to petroleum-derived hydrocarbons alters human skin microbiome and metabolome profiles: A pilot study. J. Proteome Res. 2024, 23, 4273–4285. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Guler, M.; Tagirdzhanov, A.; Lee, Y.-Y.; Gurevich, A.; Mohimani, H. MolDiscovery: Learning mass spectrometry fragmentation of small molecules. Nat. Commun. 2021, 12, 3718. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Honecker, F. Marine compounds and cancer: Where do we stand? Mar. Drugs 2015, 13, 5657–5665. [Google Scholar] [CrossRef] [PubMed]
- Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P.C.; Pevzner, P.A. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 2018, 9, 4035. [Google Scholar] [CrossRef]
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Tsugawa, H.; Kind, T.; Nakabayashi, R.; Yukihira, D.; Tanaka, W.; Cajka, T.; Saito, K.; Fiehn, O.; Arita, M. Hydrogen rearrangement rules: Computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 2016, 88, 7946–7958. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L. Proposed minimum reporting standards for chemical analysis: Chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Dührkop, K.; Nothias, L.-F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39, 462–471. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [PubMed]
- Barrett, T.; Dowle, M.; Srinivasan, A.; Gorecki, J.; Chirico, M.; Toby, H.; Benjamin, S. Data.table: Extension of ’Data.frame’. R Package. 2024. Available online: https://github.com/rdatatable/data.table (accessed on 18 December 2024).
- Cao, Y.; Charisi, A.; Cheng, L.-C.; Jiang, T.; Girke, T. ChemmineR: A compound mining framework for R. Bioinformatics 2008, 24, 1733–1734. [Google Scholar] [CrossRef] [PubMed]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminformatics 2016, 8, 1–20. [Google Scholar] [CrossRef]
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef]
- Ernst, M.; Kang, K.; Caraballo-Rodríguez, A.; Nothias, L.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M.; Dorrestein, P. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 2019, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Plotly Technologies Inc. Collaborative Data Science Publisher. 2025. Available online: https://plot.ly (accessed on 18 December 2024).
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.-F.; Reher, R.; Kang, K.B.; Van Der Hooft, J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NPClassifier: A deep neural network-based structural classification tool for natural products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef]
- Myers, O.D.; Sumner, S.J.; Li, S.; Barnes, S.; Du, X. One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: New algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Anal. Chem. 2017, 89, 8696–8703. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rainer, J.; Vicini, A.; Salzer, L.; Stanstrup, J.; Badia, J.M.; Neumann, S.; Stravs, M.A.; Verri Hernandes, V.; Gatto, L.; Gibb, S. A modular and expandable ecosystem for metabolomics data annotation in R. Metabolites 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.; Zielesny, A.; Steinbeck, C. STOUT: SMILES to IUPAC names using neural machine translation. J. Cheminformatics 2021, 13, 34. [Google Scholar] [CrossRef]
- Schmid, R.; Heuckeroth, S.; Korf, A.; Smirnov, A.; Myers, O.; Dyrlund, T.S.; Bushuiev, R.; Murray, K.J.; Hoffmann, N.; Lu, M. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 2023, 41, 447–449. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. 2020. Available online: https://dplyr.tidyverse.org/ (accessed on 17 December 2024).
Cell Line | Methanolic Extract | |||
---|---|---|---|---|
AeSQ172 | AeSQ177 | AeSQ181 | ||
Breast | MCF-7 | 1.20 | 1.28 | 1.35 |
T47D | 1.27 | 1.41 | 1.42 | |
MDA-MB-231 | 1.63 | 1.71 | 1.27 | |
Lung | A549 | 1.24 | 1.28 | 1.35 |
H661 | 1.30 | 1.28 | 1.37 | |
H1437 | 1.32 | 1.36 | 1.30 | |
H1563 | 1.39 | 1.49 | 1.66 |
Fractions | SI MDA-MB-231 | SI H1563 |
---|---|---|
FNP-1 | 0.84 | 0.79 |
FNP-2 | 1.25 | 1.14 |
FNP-3 | 0.84 | 0.81 |
FNP-4 | 0.85 | 0.75 |
FNP-5 | 1.63 | 1.93 |
FNP-6 | 1.29 | 1.87 |
FNP-7 | 0.84 | 0.57 |
FNP-8 | 0.84 | 0.81 |
FNP-9 | 1.08 | 0.95 |
FNP-10 | 1.16 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio-Ramírez, M.d.C.; Hernández-Melgar, A.G.; Cembella, A.D.; Maskrey, B.H.; Díaz-Rubio, L.J.; Córdova-Guerrero, I.; Bernáldez-Sarabia, J.; González-Maya, L.; Esquivel-Rodríguez, B.; Bustos-Brito, C.; et al. Untargeted Metabolomic Analysis and Cytotoxicity of Extracts of the Marine Dinoflagellate Amphidinium eilatiense Against Human Cancer Cell Lines. Toxins 2025, 17, 150. https://doi.org/10.3390/toxins17040150
Osorio-Ramírez MdC, Hernández-Melgar AG, Cembella AD, Maskrey BH, Díaz-Rubio LJ, Córdova-Guerrero I, Bernáldez-Sarabia J, González-Maya L, Esquivel-Rodríguez B, Bustos-Brito C, et al. Untargeted Metabolomic Analysis and Cytotoxicity of Extracts of the Marine Dinoflagellate Amphidinium eilatiense Against Human Cancer Cell Lines. Toxins. 2025; 17(4):150. https://doi.org/10.3390/toxins17040150
Chicago/Turabian StyleOsorio-Ramírez, María del Carmen, Alan Gerardo Hernández-Melgar, Allan D. Cembella, Benjamin H. Maskrey, Laura Janeth Díaz-Rubio, Iván Córdova-Guerrero, Johanna Bernáldez-Sarabia, Leticia González-Maya, Baldomero Esquivel-Rodríguez, Celia Bustos-Brito, and et al. 2025. "Untargeted Metabolomic Analysis and Cytotoxicity of Extracts of the Marine Dinoflagellate Amphidinium eilatiense Against Human Cancer Cell Lines" Toxins 17, no. 4: 150. https://doi.org/10.3390/toxins17040150
APA StyleOsorio-Ramírez, M. d. C., Hernández-Melgar, A. G., Cembella, A. D., Maskrey, B. H., Díaz-Rubio, L. J., Córdova-Guerrero, I., Bernáldez-Sarabia, J., González-Maya, L., Esquivel-Rodríguez, B., Bustos-Brito, C., Licea-Navarro, A. F., & Durán-Riveroll, L. M. (2025). Untargeted Metabolomic Analysis and Cytotoxicity of Extracts of the Marine Dinoflagellate Amphidinium eilatiense Against Human Cancer Cell Lines. Toxins, 17(4), 150. https://doi.org/10.3390/toxins17040150