Effectiveness of Unfocused vs. Focal Shock Waves Combined with Botulinum Toxin on Spasticity in Brain-Damaged Patients
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations
4. Conclusions
5. Materials and Methods
Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, E.; Lew, H.L.; Özçakar, L.; Wu, C.H. Recent Advances in the Treatment of Spasticity: Extracorporeal Shock Wave Therapy. J. Clin. Med. 2021, 10, 4723. [Google Scholar] [CrossRef] [PubMed]
- Mihai, E.E.; Dumitru, L.; Mihai, I.V.; Berteanu, M. Long-Term Efficacy of Extracorporeal Shock Wave Therapy on Lower Limb Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2020, 10, 86. [Google Scholar] [CrossRef]
- Sainz-Pelayo, M.P.; Albu, S.; Murillo, N.; Benito-Penalva, J. Spasticity in neurological pathologies. An update on the pathophysiological mechanisms, advances in diagnosis and treatment. Rev. Neurol. 2020, 70, 453–460. [Google Scholar]
- Dymarek, R.; Ptaszkowski, K.; Ptaszkowska, L.; Kowal, M.; Sopel, M.; Taradaj, J.; Rosińczuk, J. Shock Waves as a Treatment Modality for Spasticity Reduction and Recovery Improvement in Post-Stroke Adults—Current Evidence and Qualitative Systematic Review. Clin. Interv. Aging 2020, 15, 9–28. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, Y. Post-stroke Upper Limb Spasticity Incidence for Different Cerebral Infarction Site. Open Med. 2018, 13, 227–231. [Google Scholar] [CrossRef]
- Patejdl, R.; Zettl, U.K. Spasticity in multiple sclerosis: Contribution of inflammation, autoimmune mediated neuronal damage and therapeutic interventions. Autoimmun. Rev. 2017, 16, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.C.; Chen, R.; Fu, C.; Chen, Y.; Wu, Q.; Chen, R.; Lin, X.; Luo, S. Efficacy and Safety of Botulinum Toxin Type A for Limb Spasticity after Stroke: A Meta-Analysis of Randomized Controlled Trials. Biomed. Res. Int. 2019, 2019, 8329306. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Amatya, B.; Bensmail, D.; Yelnik, A. Non-pharmacological interventions for spasticity in adults: An overview of systematic reviews. Ann. Phys. Rehabil. Med. 2019, 62, 265–273. [Google Scholar] [CrossRef]
- Picelli, A.; Santamato, A.; Chemello, E.; Cinone, N.; Cisari, C.; Gandolfi, M.; Ranieri, M.; Smania, N.; Baricich, A. Adjuvant treatments associated with botulinum toxin injection for managing spasticity: An overview of the literature. Ann. Phys. Rehabil. Med. 2019, 62, 291–296. [Google Scholar] [CrossRef]
- Hsu, P.C.; Chang, K.V.; Chiu, Y.H.; Wu, W.T.; Özçakar, L. Comparative Effectiveness of Botulinum Toxin Injections and Extracorporeal Shockwave Therapy for Post-Stroke Spasticity: A Systematic Review and Network Meta-Analysis. eClinicalMedicine 2021, 43, 101222. [Google Scholar] [CrossRef]
- Witmanowski, H.; Błochowiak, K. The whole truth about botulinum toxin—A review. Adv. Dermatol. Allergol. 2020, 37, 853–861. [Google Scholar] [CrossRef]
- Bakheit, A.M. The pharmacological management of post-stroke muscle spasticity. Drugs Aging 2012, 29, 941–947. [Google Scholar] [CrossRef]
- Bethoux, F. Spasticity Management After Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 625–639. [Google Scholar] [CrossRef]
- Zhang, H.L.; Jin, R.J.; Guan, L.; Zhong, D.L.; Li, Y.X.; Liu, X.B.; Xiao, Q.W.; Xiao, X.L.; Li, J. Extracorporeal Shock Wave Therapy on Spasticity After Upper Motor Neuron Injury: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Phys. Med. Rehabil. 2022, 101, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Ma, J.; Wang, S.; Wu, D.; Tan, B.; Yin, Y.; Jia, L.; Cheng, L. Long-term Effects of Extracorporeal Shock Wave Therapy on Poststroke Spasticity: A Meta-analysis of Randomized Controlled Trials. J. Stroke Cerebrovasc. Dis. 2020, 29, 104591. [Google Scholar] [CrossRef] [PubMed]
- Troncati, F.; Paci, M.; Myftari, T.; Lombardi, B. Extracorporeal Shock Wave Therapy reduces upper limb spasticity and improves motricity in patients with chronic hemiplegia: A case series. NeuroRehabilitation 2013, 33, 399–405. [Google Scholar] [CrossRef]
- Yoon, S.H.; Shin, M.K.; Choi, E.J.; Kang, H.J. Effective Site for the Application of Extracorporeal Shock-Wave Therapy on Spasticity in Chronic Stroke: Muscle Belly or Myotendinous Junction. Ann. Rehabil. Med. 2017, 41, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Cabanas-Valdés, R.; Serra-Llobet, P.; Rodriguez-Rubio, P.R.; López-de-Celis, C.; Llauró-Fores, M.; Calvo-Sanz, J. The effectiveness of extracorporeal shock wave therapy on upper limb spasticity and functionality in stroke patients: A systematic review and meta-analysis. Clin. Rehabil. 2020, 34, 1141–1156. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, W.; Jiang, W.; Qian, Q. Effects of extracorporeal shock wave therapy on spasticity in post-stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 2018, 50, 852–859. [Google Scholar] [CrossRef]
- Rastgoo, M.; Sarafraz, H.; Najari, H.; Hadian, M.R.; Forough, B.; Rezasoltani, A. Effects of extracorporeal shock wave therapy on muscle spasticity in post-stroke patients: An ultrasonography and clinical-base study. Phys. Treat. 2016, 6, 169–178. [Google Scholar] [CrossRef]
- Chen, P.H.; Ho, C.L.; Lee, C.H. Extracorporeal shockwave therapy on spasticity after central nervous system injury: A Systemic Review and Meta-Analysis. J. Med. Sci. 2023, 43, 258–268. [Google Scholar] [CrossRef]
- Liu, D.Y.; Zhong, D.L.; Li, J.; Jin, R.J. The effectiveness and safety of extracorporeal shock wave therapy (ESWT) on spasticity after upper motor neuron injury: A protocol of systematic review and meta-analysis. Medicine 2020, 99, e18932. [Google Scholar] [CrossRef]
- Picelli, A.; La Marchina, E.; Gajofatto, F.; Pontillo, A.; Vangelista, A.; Filippin, R.; Baricich, A.; Cisari, C.; Smania, N. Sonographic and clinical effects of botulinum toxin type A combined with extracorporeal shock wave therapy on spastic muscles of children with cerebral palsy. Devepmental. Neurorehabilit. 2017, 20, 160–164. [Google Scholar] [CrossRef]
- Kenmoku, T.; Ochiai, N.; Ohtori, S.; Saisu, T.; Sasho, T.; Nakagawa, K.; Iwakura, N.; Miyagi, M.; Ishikawa, T.; Tatsuoka, H.; et al. Degeneration and recovery of the neuromuscular junction after application of extracorporeal shockwave therapy. J. Orthop. Res. 2012, 30, 1660–1665. [Google Scholar] [CrossRef]
- Cleveland, R.O.; Chitnis, P.V.; McClure, S.R. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med. Biol. 2007, 33, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Romeo, P.; Lavanga, V.; Pagani, D.; Sansone, V. Extracorporeal shock wave therapy in musculoskeletal disorders: A review. Med. Princ. Pract. 2014, 23, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, F.; Alec, J.T.; John, G.K.; Martin, J.O. Efficacy of Unfocused Medium-Intensity Extracorporeal Shock Wave Therapy for Plantar Fasciitis. J. Foot Ankle Surg. 2021, 60, 471–476. [Google Scholar]
- Opara, J.; Taradaj, J.; Walewicz, K.; Rosińczuk, J.; Dymarek, R. The Current State of Knowledge on the Clinical and Methodological Aspects of Extracorporeal Shock Waves Therapy in the Management of Post-Stroke Spasticity-Overview of 20 Years of Experiences. J. Clin. Med. 2021, 10, 261. [Google Scholar] [CrossRef]
- Santamato, A.; Notarnicola, A.; Panza, F.; Ranieri, M.; Micello, M.F.; Manganotti, P.; Moretti, B.; Fortunato, F.; Filoni, S.; Fiore, P. SBOTE study: Extracorporeal shock wave therapy versus electrical stimulation after botulinum toxin type a injection for post-stroke spasticity-a prospective randomized trial. Ultrasound Med. Biol. 2013, 39, 283–291. [Google Scholar] [CrossRef]
- Déniz, A.; Saavedra, P.; Marrero, I.; Hernández, J. Focal shock waves increase efficacy and prolong the effect of botulinum toxin on spasticity in patients with brain injury from stroke and multiple sclerosis. Am. J. Phys. Med. Rehabil. 2025, 104, 226–230. [Google Scholar] [CrossRef]
- Junhee, L.; Seung, N.Y. Effectiveness of extracorporeal shock wave therapy after botulinum toxin injection for post-stroke upper extremity spasticity: A randomized controlled study. Toxins 2024, 16, 197. [Google Scholar] [CrossRef] [PubMed]
- Marinaro, C.; Costantino, C.; D’Esposito, O.; Barletta, M.; Indino, A.; De Scorpio, G.; Ammendolia, A. Synergic use of botulinum toxin injection and radial extracorporeal shockwave therapy in Multiple Sclerosis spasticity. Acta Biomed. 2021, 28, 92. [Google Scholar]
- Kwon, D.R.; Kwon, D.G. Botulinum Toxin A Injection Combined with Radial Extracorporeal Shock Wave Therapy in Children with Spastic Cerebral Palsy: Shear Wave Sonoelastographic Findings in the Medial Gastrocnemius Muscle, Preliminary Study. Children 2021, 8, 1059. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Chand, S.; Majumdar, R.; Sud, A. Effect of botulinum toxin type-A in spasticity and functional outcome of upper limbs in cerebral palsy. J. Clin. Orthop. Trauma 2020, 11, 208–212. [Google Scholar] [CrossRef]
- Car, H.; Bogucki, A.; Bonikowski, M.; Dec-Ćwiek, M.; Drużdż, A.; Koziorowski, D.; Rudzińska-Bar, M.; Sarzyńska-Długosz, I.; Sławek, J. Botulinum toxin type-A preparations are not the same medications—Basic science (Part 1). Neurol. Neurochir. Pol. 2021, 55, 133–140. [Google Scholar] [CrossRef]
- Kenmoku, T.; Nemoto, N.; Iwakura, N.; Ochiai, N.; Uchida, K.; Saisu, T.; Ohtori, S.; Nakagawa, K.; Sasho, T.; Takaso, M. Extracorporeal shock wave treatment can selectively destroy end plates in neuromuscular junctions. Muscle Nerve. 2018, 57, 466–472. [Google Scholar] [CrossRef]
- Yi, K.H.; Lee, H.J.; Seo, K.K.; Kim, H.J. Intramuscular neural arborization of the latissimus dorsi muscle: Application of botulinum neurotoxin injection in flap reconstruction. Toxins 2022, 14, 107. [Google Scholar] [CrossRef]
- Gracies, J.H.; Lugassy, M.; Weisz, D.J.; Vecchio, M.; Flanagan, S.; Simpson, D.M. Botulinum toxin dilution and endplate targeting in spasticity. A double-blind controlled study. Arch. Phys. Med. Rehabil. 2009, 90, 9–16.e2. [Google Scholar] [CrossRef]
- Van Campenhout, A.; Verhaegen, A.; Pans, S.; Molenaers, G. Botulinum toxin type A injections in the psoas muscle of children with cerebral palsy: Muscle atrophy after motor end plate-targeted injections. Res. Dev. Disabil. 2013, 34, 1052–1058. [Google Scholar] [CrossRef]
- Plaguesuelos, C.; Meri, V.; Guirao, C.; Moreno, A.; Pérez, M.; Sanz, C. Atlas de Puntos Clave Musculares en la Práctica Clínica; Editorial Médica Panamericana: Madrid, Spain, 2008. [Google Scholar]
- Chen, C.L.; Chen, C.Y.; Chen, H.C.; Wu, C.Y.; Lin, K.C.; Hsieh, Y.W.; Shen, I.H. Responsiveness and minimal clinically important difference of Modified Ashworth Scale in patients with stroke. Eur. J. Phys. Rehabil. Med. 2019, 55, 754–760. [Google Scholar] [CrossRef]
- Bunketorp-Käll, L.; Pekna, M.; Pekny, M.; Blomstrand, C.; Nilsson, M. Effects of horse-riding therapy and rhythm and music-based therapy on functional mobility in late phase after stroke. NeuroRehabilitation 2019, 45, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 10 May 2024).
- Freixas, G.; Pucurull, O.; Roca, C.; Paz, C.; Garcia-Grau, E.; Bados, A. Perceived treatment satisfaction scale (CRES-4): The Spanish version. Rev. Psicoter. 2012, 23, 51–56. [Google Scholar]
- Guerrero, J.; Sainz, I.; Cristobo, P.; Sigler, I.; Avilés, A.; Soto, B. Efectiveness of the EQ-5D and CRES-4 questionnaire for assesing the impact on the quality of life of patients and the level of satisfaction after exchanging dicumarinics for edoxabán: Real-life experience based on multicentre study. Med. Clín. 2021, 157, 530–534. [Google Scholar]
- Nielsen, S.L.; Smart, D.; Isakson, R.; Worthen, V.; Gregersen, A.; Lambert, M. The consumer reports effectiveness score: What did consumers report? J. Couns. Psychol. 2004, 51, 25–37. [Google Scholar] [CrossRef]
BoNT-A + fESWT | |||
---|---|---|---|
Basal Preinjection | 5 Weeks After Inyection | 12 Weeks After Injection | 26 Semanas After Injection |
μ + σ 3.57 ± 0.57 | 1.17 ± 0.64 | 1.07 ± 0.69 | 0.86 ± 0.74 |
BoNT-A + uESWT | |||
μ + σ 3.66 ± 0.42 | 1 ± 0.77 | 1.01 ± 0.85 | 1.28 ± 0.88 |
Characteristic | Value * | |
---|---|---|
Age (years) | 57.8 (52.3; 67.7) | |
Male | 12 (50.0) | |
Female | 12 (50.0) | |
Shock waves | fESWT uESWT | 13 (54.2) |
11 (45.8) | ||
Toxin | Xeomin® Dysport® | 11 (45.8) |
13 (54.2) | ||
Pathologies | Multiple sclerosis | 11 (45.8) |
Stroke | 13 (54.2) |
Week | Treatment | Observation |
---|---|---|
0 | BoNT-A | Predose |
1 | 1st session fESWT/uESWT | |
2 | 2nd session fESWT/uESWT | Effect 1st session |
3 | 3rd session fESWT/uESWT | Effect 2nd session |
5 | - | Effect 3rd session |
13 | - | Effect 3rd session |
25 | - | Effect 3rd session |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Déniz, A.; Saavedra, P.; Marrero, I.; Barrera, S.; Domínguez, R.; Mendoza, R.; Rodríguez, J. Effectiveness of Unfocused vs. Focal Shock Waves Combined with Botulinum Toxin on Spasticity in Brain-Damaged Patients. Toxins 2025, 17, 209. https://doi.org/10.3390/toxins17050209
Déniz A, Saavedra P, Marrero I, Barrera S, Domínguez R, Mendoza R, Rodríguez J. Effectiveness of Unfocused vs. Focal Shock Waves Combined with Botulinum Toxin on Spasticity in Brain-Damaged Patients. Toxins. 2025; 17(5):209. https://doi.org/10.3390/toxins17050209
Chicago/Turabian StyleDéniz, Antonio, Pedro Saavedra, Isabel Marrero, Samuel Barrera, Raúl Domínguez, Raúl Mendoza, and Jorge Rodríguez. 2025. "Effectiveness of Unfocused vs. Focal Shock Waves Combined with Botulinum Toxin on Spasticity in Brain-Damaged Patients" Toxins 17, no. 5: 209. https://doi.org/10.3390/toxins17050209
APA StyleDéniz, A., Saavedra, P., Marrero, I., Barrera, S., Domínguez, R., Mendoza, R., & Rodríguez, J. (2025). Effectiveness of Unfocused vs. Focal Shock Waves Combined with Botulinum Toxin on Spasticity in Brain-Damaged Patients. Toxins, 17(5), 209. https://doi.org/10.3390/toxins17050209