A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis
Abstract
1. Introduction
2. Results
2.1. Molecular Construction and Immunogenicity of VLPs Displaying LF Peptide Sequences
2.2. Optimization and Characterization of VLP148
2.3. Evaluation of the VLP148 with and Without the Protamine Domain
3. Discussion
4. Materials and Methods
4.1. Construction, Purification, and Characterization of Recombinant WHcAg LF-VLPs
4.2. Animals and Vaccinations
4.3. Enzyme-Linked Immunosorbent Assay
4.4. Toxin Neutralization Assay
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VLP | Virus-like particle |
TNA | Toxin neutralization assay |
LF | Lethal Factor |
MAP | Multiple antigenic peptide |
LeTx | Lethal toxin |
WHcAg | Woodchuck Hepatitis core antigen |
References
- Head, B.M.; Rubinstein, E.; Meyers, A.F. Alternative pre-approved and novel therapies for the treatment of anthrax. BMC Infect. Dis. 2016, 16, 621. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Georgopoulos, A.P.; James, L.M. Anthrax Vaccines in the 21st Century. Vaccines 2024, 12, 159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avril, A.; Guillier, S.; Rasetti-Escargueil, C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms 2024, 12, 2622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quinn, C.P.; Sabourin, C.L.; Niemuth, N.A.; Li, H.; Semenova, V.A.; Rudge, T.L.; Mayfield, H.J.; Schiffer, J.; Mittler, R.S.; Ibegbu, C.C.; et al. A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. Clin. Vaccine Immunol. 2012, 19, 1730–1745. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ionin, B.; Hopkins, R.J.; Pleune, B.; Sivko, G.S.; Reid, F.M.; Clement, K.H.; Rudge, T.L., Jr.; Stark, G.V.; Innes, A.; Sari, S.; et al. Evaluation of immunogenicity and efficacy of anthrax vaccine adsorbed for postexposure prophylaxis. Clin. Vaccine Immunol. 2013, 20, 1016–1026. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pitt, M.L.; Little, S.F.; Ivins, B.E.; Fellows, P.; Barth, J.; Hewetson, J.; Gibbs, P.; Dertzbaugh, M.; Friedlander, A.M. In vitro correlate of immunity in a rabbit model of inhalational anthrax. Vaccine 2001, 19, 4768–4773. [Google Scholar] [CrossRef] [PubMed]
- Little, S.F.; Ivins, B.E.; Fellows, P.F.; Friedlander, A.M. Passive protection by polyclonal antibodies against Bacillus anthracis infection in guinea pigs. Infect. Immun. 1997, 65, 5171–5175. [Google Scholar] [CrossRef] [PubMed]
- Little, S.F.; Ivins, B.E.; Fellows, P.F.; Pitt, M.L.; Norris, S.L.; Andrews, G.P. Defining a serological correlate of protection in rabbits for a recombinant anthrax vaccine. Vaccine 2004, 22, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Reuveny, S.; White, M.D.; Adar, Y.Y.; Kafri, Y.; Altboum, Z.; Gozes, Y.; Kobiler, D.; Shafferman, A.; Velan, B. Search for correlates of protective immunity conferred by anthrax vaccine. Infect. Immun. 2001, 69, 2888–2893. [Google Scholar] [CrossRef] [PubMed]
- Pitt, M.L.; Little, S.; Ivins, B.E.; Fellows, P.; Boles, J.; Barth, J.; Hewetson, J.; Friedlander, A.M. In vitro correlate of immunity in an animal model of inhalational anthrax. J. Appl. Microbiol. 1999, 87, 304. [Google Scholar] [CrossRef] [PubMed]
- Ivins, B.E.; Pitt, M.L.; Fellows, P.F.; Farchaus, J.W.; Benner, G.E.; Waag, D.M.; Little, S.F.; Anderson Jr, G.W.; Gibbs, P.H.; Friedlander, A.M. Comparative efficacy of experimental anthrax vaccine candidates against inhalation anthrax in rhesus macaques. Vaccine 1998, 16, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Fay, M.P.; Follmann, D.A.; Lynn, F.; Schiffer, J.M.; Stark, G.V.; Kohberger, R.; Quinn, C.P.; Nuzum, E.O. Anthrax vaccine-induced antibodies provide cross-species prediction of survival to aerosol challenge. Sci. Transl. Med. 2012, 4, 151ra26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhie, G.E.; Roehrl, M.H.; Mourez, M.; Collier, R.J.; Mekalanos, J.J.; Wang, J.Y. A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc. Natl. Acad. Sci. USA 2003, 100, 10925–10930. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, T.H.; Oscherwitz, J.; Schnepp, B.; Jacobs, J.; Yu, F.; Cease, K.B.; Johnson, P.R. Genetic vaccines for anthrax based on recombinant adeno-associated virus vectors. Mol. Ther. 2009, 17, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.; Liner, A.; Legutki, J.; Mateczun, A.; Barnewall, R.; Estep, J. Genetic immunization against anthrax. Vaccine 2004, 22, 1604–1608. [Google Scholar] [CrossRef] [PubMed]
- Migone, T.S.; Subramanian, G.M.; Zhong, J.; Healey, L.M.; Corey, A.; Devalaraja, M.; Lo, L.; Ullrich, S.; Zimmerman, J.; Chen, A.; et al. Raxibacumab for the treatment of inhalational anthrax. N. Engl. J. Med. 2009, 361, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Bower, W.A.; Schiffer, J.; Atmar, R.L.; Keitel, W.A.; Friedlander, A.M.; Liu, L.; Yu, Y.; Stephens, D.S.; Quinn, C.P.; Hendricks, K. Use of Anthrax Vaccine in the United States: Recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm. Rep. 2019, 68, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rynkiewicz, D.; Rathkopf, M.; Sim, I.; Waytes, A.T.; Hopkins, R.J.; Giri, L.; DeMuria, D.; Ransom, J.; Quinn, J.; Nabors, G.S.; et al. Marked enhancement of the immune response to BioThrax(R) (Anthrax Vaccine Adsorbed) by the TLR9 agonist CPG 7909 in healthy volunteers. Vaccine 2011, 29, 6313–6320. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, A.M.; Little, S.F. Advances in the development of next-generation anthrax vaccines. Vaccine 2009, 27 (Suppl. S4), D28–D32. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Burns, D.L. Improving the stability of recombinant anthrax protective antigen vaccine. Vaccine 2018, 36, 6379–6382. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Ngundi, M.M.; Burns, D.L. Mechanistic Analysis of the Effect of Deamidation on the Immunogenicity of Anthrax Protective Antigen. Clin. Vaccine Immunol. 2016, 23, 396–402. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, B.S.; Enama, J.T.; Ribot, W.J.; Webster, W.; Little, S.; Hoover, T.; Adamovicz, J.J.; Andrews, G.P. Multiple asparagine deamidation of Bacillus anthracis protective antigen causes charge isoforms whose complexity correlates with reduced biological activity. Proteins 2007, 68, 458–479. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.J.; Mar, K.D.; Huang, J.; Majumdar, S.; Ford, B.M.; Dyas, B.; Ulrich, R.G.; Sullivan, V.J. Rapid deamidation of recombinant protective antigen when adsorbed on aluminum hydroxide gel correlates with reduced potency of vaccine. J. Pharm. Sci. 2013, 102, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Garman, L.; Norris, K.; Muther, J.; Duke, A.; Engler, R.J.; Nelson, M.R.; Collins, L.C.; Spooner, C.; Guthridge, C.; et al. Insufficient Anthrax Lethal Toxin Neutralization Is Associated with Antibody Subclass and Domain Specificity in the Plasma of Anthrax-Vaccinated Individuals. Microorganisms 2021, 9, 1204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oscherwitz, J.; Yu, F.; Cease, K.B. A synthetic peptide vaccine directed against the 2β2-2β3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax. J. Immunol. 2010, 185, 3661–3668. [Google Scholar] [CrossRef] [PubMed]
- Oscherwitz, J.; Yu, F.; Jacobs, J.L.; Cease, K.B. Recombinant vaccine displaying the loop-neutralizing determinant from protective antigen completely protects rabbits from experimental inhalation anthrax. Clin. Vaccine Immunol. 2013, 20, 341–349. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oscherwitz, J.; Feldman, D.; Yu, F.; Cease, K.B. Epitope-focused peptide immunogens in human use adjuvants protect rabbits from experimental inhalation anthrax. Vaccine 2015, 33, 430–436. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collier, R.J.; Young, J.A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 2003, 19, 45–70. [Google Scholar] [CrossRef] [PubMed]
- Duesbery, N.S.; Webb, C.P.; Leppla, S.H.; Gordon, V.M.; Klimpel, K.R.; Copeland, T.D.; Ahn, N.G.; Oskarsson, M.K.; Fukasawa, K.; Paull, K.D.; et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 1998, 280, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Leppla, S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 1982, 79, 3162–3166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, Y.; Khanna, H.; Chopra, A.P.; Mehra, V. A dominant negative mutant of Bacillus anthracis protective antigen inhibits anthrax toxin action in vivo. J. Biol. Chem. 2001, 276, 22090–22094. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Klimpel, K.R.; Arora, N.; Sharma, M.; Leppla, S.H. The chymotrypsin-sensitive site, FFD315, in anthrax toxin protective antigen is required for translocation of lethal factor. J. Biol. Chem. 1994, 269, 29039–29046. [Google Scholar] [CrossRef] [PubMed]
- Rosovitz, M.J.; Schuck, P.; Varughese, M.; Chopra, A.P.; Mehra, V.; Singh, Y.; McGinnis, L.M.; Leppla, S.H. Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J. Biol. Chem. 2003, 278, 30936–30944. [Google Scholar] [CrossRef] [PubMed]
- Oscherwitz, J.; Quinn, C.P.; Cease, K.B. Anthrax vaccine recipients lack antibody against the loop neutralizing determinant: A protective neutralizing epitope from Bacillus anthracis protective antigen. Vaccine 2015, 33, 2342–2346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oscherwitz, J.; Yu, F.; Jacobs, J.L.; Liu, T.H.; Johnson, P.R.; Cease, K.B. Synthetic peptide vaccine targeting a cryptic neutralizing epitope in domain 2 of Bacillus anthracis protective antigen. Infect. Immun. 2009, 77, 3380–3388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schickli, J.H.; Whitacre, D.C.; Tang, R.S.; Kaur, J.; Lawlor, H.; Peters, C.J.; Jones, J.E.; Peterson, D.L.; McCarthy, M.P.; Van Nest, G.; et al. Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J. Clin. Investig. 2015, 125, 1637–1647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whitacre, D.C.; Lee, B.O.; Milich, D.R. Use of hepadnavirus core proteins as vaccine platforms. Expert Rev. Vaccines 2009, 8, 1565–1573. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petosa, C.; Collier, R.J.; Klimpel, K.R.; Leppla, S.H.; Liddington, R.C. Crystal structure of the anthrax toxin protective antigen. Nature 1997, 385, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Lacy, D.B.; Wigelsworth, D.J.; Melnyk, R.A.; Harrison, S.C.; Collier, R.J. Structure of heptameric protective antigen bound to an anthrax toxin receptor: A role for receptor in pH-dependent pore formation. Proc. Natl. Acad. Sci. USA 2004, 101, 13147–13151. [Google Scholar] [CrossRef] [PubMed]
- Lim, N.K.; Kim, J.H.; Oh, M.S.; Lee, S.; Kim, S.Y.; Kim, K.S.; Kang, H.J.; Hong, H.J.; Inn, K.S. An anthrax lethal factor-neutralizing monoclonal antibody protects rats before and after challenge with anthrax toxin. Infect. Immun. 2005, 73, 6547–6551. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.L.; Crowe, S.R.; Kurella, S.; Teryzan, S.; Cao, B.; Ballard, J.D.; James, J.A.; Farris, A.D. Sequential B-cell epitopes of Bacillus anthracis lethal factor bind lethal toxin-neutralizing antibodies. Infect. Immun. 2009, 77, 162–169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gregson, A.L.; Oliveira, G.; Othoro, C.; Calvo-Calle, J.M.; Thorton, G.B.; Nardin, E.; Edelman, R. Phase I trial of an alhydrogel adjuvanted hepatitis B core virus-like particle containing epitopes of Plasmodium falciparum circumsporozoite protein. PLoS ONE 2008, 3, e1556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, B.O.; Tucker, A.; Frelin, L.; Sallberg, M.; Jones, J.; Peters, C.; Hughes, J.; Whitacre, D.; Darsow, B.; Peterson, D.L.; et al. Interaction of the hepatitis B core antigen and the innate immune system. J. Immunol. 2009, 182, 6670–6681. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, A.; Wolfe, D.N. Current State of Anthrax Vaccines and Key R&D Gaps Moving Forward. Microorganisms 2020, 8, 651. [Google Scholar] [CrossRef]
- Modi, T.; Gervais, D.; Smith, S.; Miller, J.; Subramaniam, S.; Thalassinos, K.; Shepherd, A. Characterization of the UK anthrax vaccine and human immunogenicity. Hum. Vaccines Immunother. 2021, 17, 747–758. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dumas, E.K.; Garman, L.; Cuthbertson, H.; Charlton, S.; Hallis, B.; Engler, R.J.; Choudhari, S.; Picking, W.D.; James, J.A.; Farris, A.D. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated. Vaccine 2017, 35, 3416–3422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Price, B.M.; Liner, A.L.; Park, S.; Leppla, S.H.; Mateczun, A.; Galloway, D.R. Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect. Immun. 2001, 69, 4509–4515. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, G.; Whitlow, V.; Parker, S.; Tonsky, K.; Rusalov, D.; Ferrari, M.; Lalor, P.; Komai, M.; Mere, R.; Bell, M.; et al. A cationic lipid-formulated plasmid DNA vaccine confers sustained antibody-mediated protection against aerosolized anthrax spores. Proc. Natl. Acad. Sci. USA 2004, 101, 13601–13606. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.T.; Li, H.; Williamson, E.D.; LeButt, C.S.; Flick-Smith, H.C.; Quinn, C.P.; Westra, H.; Galloway, D.; Mateczun, A.; Goldman, S.; et al. Human monoclonal antibodies against anthrax lethal factor and protective antigen act independently to protect against Bacillus anthracis infection and enhance endogenous immunity to anthrax. Infect. Immun. 2007, 75, 5425–5433. [Google Scholar] [CrossRef] [PubMed]
- Milich, D.R.; McLachlan, A.; Moriarty, A.; Thornton, G.B. Immune response to hepatitis B virus core antigen (HBcAg): Localization of T cell recognition sites within HBcAg/HBeAg. J. Immunol. 1987, 139, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Thomas, D.; Marlett, J.; Manchester, M.; Young, J.A. Efficient neutralization of antibody-resistant forms of anthrax toxin by a soluble receptor decoy inhibitor. Antimicrob. Agents Chemother. 2009, 53, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Billaud, J.N.; Peterson, D.; Barr, M.; Chen, A.; Sallberg, M.; Garduno, F.; Goldstein, P.; McDowell, W.; Hughes, J.; Jones, J.; et al. Combinatorial approach to hepadnavirus-like particle vaccine design. J. Virol. 2005, 79, 13656–13666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schödel, F.; Moriarty, A.M.; Peterson, D.L.; Zheng, J.A.; Hughes, J.L.; Will, H.; Leturcq, D.J.; McGee, J.S.; Milich, D.R. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol. 1992, 66, 106–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tello, D.; Rodríguez-Rodríguez, M.; Ortega, S.; Lombana, L.; Yélamos, B.; Gómez-Gutiérrez, J.; Peterson, D.L.; Gavilanes, F. Fusogenic properties of the ectodomains of hepatitis C virus envelope proteins. FEBS J. 2014, 281, 2558–2569. [Google Scholar] [CrossRef] [PubMed]
- Oscherwitz, J.; Yu, F.; Cease, K.B. A heterologous helper T-cell epitope enhances the immunogenicity of a multiple-antigenic-peptide vaccine targeting the cryptic loop-neutralizing determinant of Bacillus anthracis protective antigen. Infect. Immun. 2009, 77, 5509–5518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hering, D.; Thompson, W.; Hewetson, J.; Little, S.; Norris, S.; Pace-Templeton, J. Validation of the anthrax lethal toxin neutralization assay. Biologicals 2004, 32, 17–27. [Google Scholar] [CrossRef] [PubMed]
VLP Construct | Amino Acids | Sequence |
---|---|---|
VLP147 | 332-366 | TEEKEFLKKLQIDIRDSLSEEEKELLNRIQVDSSN |
VLP148 | 342-361 | QIDIRDSLSEEEKELLNRIQ |
VLP Construct | Amino Acids | Sequence |
---|---|---|
VLP147 | 332-366 | TEEKEFLKKLQIDIRDSLSEEEKELLNRIQVDSSN |
VLP148 | 342-361 | QIDIRDSLSEEEKELLNRIQ |
VLP237 | 342-366 | QIDIRDSLSEEEKELLNRIQVDSSN |
VLP244 | 338-366 | LKKLQIDIRDSLSEEEKELLNRIQ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oscherwitz, J.; Cease, K.; Milich, D.; Braun, T.; Yu, F.; Whitacre, D. A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis. Toxins 2025, 17, 422. https://doi.org/10.3390/toxins17080422
Oscherwitz J, Cease K, Milich D, Braun T, Yu F, Whitacre D. A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis. Toxins. 2025; 17(8):422. https://doi.org/10.3390/toxins17080422
Chicago/Turabian StyleOscherwitz, Jon, Kemp Cease, David Milich, Thomas Braun, Fen Yu, and David Whitacre. 2025. "A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis" Toxins 17, no. 8: 422. https://doi.org/10.3390/toxins17080422
APA StyleOscherwitz, J., Cease, K., Milich, D., Braun, T., Yu, F., & Whitacre, D. (2025). A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis. Toxins, 17(8), 422. https://doi.org/10.3390/toxins17080422