Next Issue
Volume 17, September
Previous Issue
Volume 17, July
 
 

Toxins, Volume 17, Issue 8 (August 2025) – 66 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 771 KiB  
Article
Effects of a Phytogenic Mycotoxin Detoxifier on Oxidative Status, Health, and Performance in Dairy Sheep
by Georgios I. Papakonstantinou, Christos Eliopoulos, Eleftherios Meletis, Insaf Riahi, Evangelos-Georgios Stampinas, Dimitrios Arapoglou, Dimitrios Gougoulis, Konstantina Dimoveli, Dimitrios Filippou, Alexandros Manouras, Nikolaos Tsekouras, Lampros Fotos, Polychronis Kostoulas, Georgios Christodoulopoulos and Vasileios G. Papatsiros
Toxins 2025, 17(8), 425; https://doi.org/10.3390/toxins17080425 - 21 Aug 2025
Viewed by 135
Abstract
Mycotoxins are common feed contaminants that can affect the health, immune function, and productivity of ruminants by causing oxidative stress and organ dysfunction. In this field study, the effects of a phytogenic multicomponent mycotoxin detoxifier on oxidative status, liver function, udder health, and [...] Read more.
Mycotoxins are common feed contaminants that can affect the health, immune function, and productivity of ruminants by causing oxidative stress and organ dysfunction. In this field study, the effects of a phytogenic multicomponent mycotoxin detoxifier on oxidative status, liver function, udder health, and productive parameters were investigated in dairy ewes. One hundred clinically healthy ewes were randomly assigned to either a control group or a treatment group, with the latter receiving 1.5 kg/ton of the detoxifier over a 90-day period during lactation. The detoxifying agent contained adsorptive clays as well as phytogenic ingredients such as silymarin and curcumin, which are known for their hepatoprotective and antioxidant properties. Blood, milk, and colostrum samples were collected and analyzed for oxidative stress markers (TBARS and protein carbonyl (CARBS)), total antioxidant capacity (TAC), liver enzymes (ALT, AST, and ALP), and milk quality parameters (fat, protein, and solid content). Clinical assessments included mastitis scoring, udder inflammation, and fecal consistency. The treated ewes showed a statistically significant reduction in blood plasma and milk oxidative stress markers and liver enzyme levels while at the same time improving the fat and solid content of the milk. The incidence and severity of mastitis, udder reddening, and lactation abnormalities were lower in the treatment group. Brix refractometry indicated improved colostrum quality in the treated ewes. These results suggest that the detoxifier improved the oxidative balance, liver function, and overall health and productivity of dairy ewes under field conditions, supporting its use as a practical nutritional measure. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 1880 KiB  
Article
Metabarcoding Reveals Diversity of Potentially Toxic Algae in Papeete Port (Tahiti)
by Sara Fernandez, Lucie Cartairade, Eva Garcia-Vazquez and Serge Planes
Toxins 2025, 17(8), 424; https://doi.org/10.3390/toxins17080424 - 20 Aug 2025
Viewed by 110
Abstract
Harmful algae are transported in various compartments of maritime vessels, making ports with heavy maritime traffic potential hotspots for their introduction and spread. In this study, we investigate the port of Papeete (Tahiti, French Polynesia), a key hub for numerous South Pacific shipping [...] Read more.
Harmful algae are transported in various compartments of maritime vessels, making ports with heavy maritime traffic potential hotspots for their introduction and spread. In this study, we investigate the port of Papeete (Tahiti, French Polynesia), a key hub for numerous South Pacific shipping routes. Using metabarcoding on DNA extracted from water samples (environmental DNA, eDNA) we identified 21 species of harmful algae comprising to Bacillariophyceae (4), Dinophyceae (14), and Haptophyta (3 species). Three of those species are directly associated with fish mortality events without recognized toxigenic capacity. The remaining harmful algae species are known to produce a wide range of toxins, like the ciguatoxin produced by endemic Gambierdiscus sp., domoic acid, haemolysins, yessotoxins, and others. Health risks such as ciguatera and paralytic shellfish poisoning were identified. An increase in Gambierdiscus frequency in Papeete port waters was parallel to an increase in ciguatera fish poisoning events in Tahiti, which suggests the value of eDNA analysis for early warning of harmful algae presence. Management measures, including banning fishing near the ports, could prevent public health risks associated with harmful algae blooms. Full article
Show Figures

Figure 1

21 pages, 911 KiB  
Review
Unveiling the Endocrine-Disrupting Potential of Plant-Derived Compounds: An Ecotoxicological Review
by Changgyun Park and Heung Bin Lim
Toxins 2025, 17(8), 423; https://doi.org/10.3390/toxins17080423 - 20 Aug 2025
Viewed by 213
Abstract
Secondary metabolites derived from plants, such as flavonoids, alkaloids, and terpenoids, are being increasingly utilized because of their bioactivity and ubiquitous distribution. Although their pharmacological uses and agricultural applications are well studied, their potential role as endocrine-disrupting compounds (EDCs) in non-target environmental organisms [...] Read more.
Secondary metabolites derived from plants, such as flavonoids, alkaloids, and terpenoids, are being increasingly utilized because of their bioactivity and ubiquitous distribution. Although their pharmacological uses and agricultural applications are well studied, their potential role as endocrine-disrupting compounds (EDCs) in non-target environmental organisms is largely unknown. This review aims to update our knowledge on the endocrine-disrupting effects induced by plant-derived metabolites in environmental testing models. We review guidelines and conceptual models for standardized testing approaches used to assess endocrine disruption and identify critical data gaps in the context of mammalian test systems compared to those for environmental species. We also emphasize the known endocrine mechanisms, including the regulation of estrogen and thyroid pathways and their effects on reproduction and hormonal regulation in environmental species. By integrating evidence across diverse biological systems, this work intends to provide a link between toxicological and ecological perspectives on the emerging role of plant-derived metabolites as potential EDCs in natural ecosystems. Importantly, we highlight that an extensive assessment of plant-derived metabolites is required to improve understanding of their ecological hazards and the mechanisms of their effects. Full article
(This article belongs to the Special Issue Toxic Plant-Derived Metabolites)
Show Figures

Figure 1

15 pages, 5083 KiB  
Article
A Lyophilizable Nanoparticle Vaccine Specific for a Novel Linear Neutralizing Epitope in the α2-α3 Helices of Domain 3 of Lethal Factor from Bacillus anthracis
by Jon Oscherwitz, Kemp Cease, David Milich, Thomas Braun, Fen Yu and David Whitacre
Toxins 2025, 17(8), 422; https://doi.org/10.3390/toxins17080422 - 20 Aug 2025
Viewed by 187
Abstract
Anthrax remains a serious bioterrorism threat for which new and thermostable vaccines are needed. We previously demonstrated that immunization of rabbits with multiple-antigenic-peptide (MAP) vaccines elicit antibody (Ab) against the loop-neutralizing-determinant (LND), a cryptic linear neutralizing epitope in the 2β2-2β3 loop of protective [...] Read more.
Anthrax remains a serious bioterrorism threat for which new and thermostable vaccines are needed. We previously demonstrated that immunization of rabbits with multiple-antigenic-peptide (MAP) vaccines elicit antibody (Ab) against the loop-neutralizing-determinant (LND), a cryptic linear neutralizing epitope in the 2β2-2β3 loop of protective antigen (PA) from Bacillus anthracis (B. anthracis), which mediates the complete protection of rabbits from inhalation spore challenge with B. anthracis Ames strain. Importantly, LND-specific Ab is not significantly elicited with PA-based vaccines. In the current study, we sought to identify a second unique neutralizing epitope which would also not overlap with the neutralizing specificities elicited by PA-based vaccines, and which could be combined with an LND vaccine as a prototype bivalent vaccine for anthrax. We evaluated linear peptide sequences in the α2-α3 helices of domain 3 of lethal factor (LF) in the form of virus-like particle (VLP) vaccines. Immunogenicity studies confirmed the presence of a 20-mer peptide sequence that is capable of eliciting protective levels of neutralizing Ab following two immunizations of rabbits using human-use adjuvants, and lyophilization of the VLPs did not diminish their immunogenicity. To our knowledge, this is the first demonstration that immunization with linear peptide sequences from LF can elicit protective levels of neutralizing Ab in vivo. Full article
Show Figures

Figure 1

11 pages, 4520 KiB  
Article
Kynurenine Promotes Phosphate-Induced Endothelial Calcification via Endothelial-to-Mesenchymal Transition, Osteoblastic Differentiation and AhR Activation
by Martina Molinaro, Mario Cozzolino and Paola Ciceri
Toxins 2025, 17(8), 421; https://doi.org/10.3390/toxins17080421 - 19 Aug 2025
Viewed by 192
Abstract
In end-stage renal disease (ESRD), the accumulation of solutes normally excreted by the kidneys contributes to multiple complications, including vascular calcification (VC), a key factor in the heightened cardiovascular risk seen in these patients. Among VC drivers, hyperphosphatemia and the uremic milieu are [...] Read more.
In end-stage renal disease (ESRD), the accumulation of solutes normally excreted by the kidneys contributes to multiple complications, including vascular calcification (VC), a key factor in the heightened cardiovascular risk seen in these patients. Among VC drivers, hyperphosphatemia and the uremic milieu are major contributors. Kynurenine, a tryptophan metabolite classified as a uremic toxin, may further exacerbate this process. This study investigated whether kynurenine amplifies high phosphate (Pi)-induced calcification in human aortic endothelial cells (HAEC). Cells were treated with Pi and kynurenine for up to seven days. Kynurenine increased Pi-induced calcium deposition by 36%, accompanied by enhanced endothelial-to-mesenchymal transition (EndMT) and osteoblastic differentiation. Mechanistically, kynurenine activated the aryl hydrocarbon receptor (AhR) pathway, and pharmacological inhibition of AhR partially attenuated this effect. These findings suggest that kynurenine contributes to VC in ESRD by potentiating phosphate-induced endothelial dysfunction via AhR signaling. Full article
Show Figures

Figure 1

11 pages, 269 KiB  
Article
Bioconversion of Deoxynivalenol-Contaminated Feed by Yellow Mealworm (Tenebrio molitor) Larvae in the Production of Biomass Intended for Feed Purposes
by Marcin Wróbel, Michał Dąbrowski, Michał Łuczyński, Tadeusz Bakuła, Natalia Gruchała and Łukasz Zielonka
Toxins 2025, 17(8), 420; https://doi.org/10.3390/toxins17080420 - 19 Aug 2025
Viewed by 197
Abstract
Deoxynivalenol (DON) is a prevalent mycotoxin in feed, raising concerns about its impact on animal health and feed safety. Insects such as yellow mealworm (Tenebrio molitor) may play a role in the biodegradation of DON-contaminated feed. This study presents the results [...] Read more.
Deoxynivalenol (DON) is a prevalent mycotoxin in feed, raising concerns about its impact on animal health and feed safety. Insects such as yellow mealworm (Tenebrio molitor) may play a role in the biodegradation of DON-contaminated feed. This study presents the results of a two-week rearing experiment, where 19-week-old yellow mealworm larvae were fed diets with varying concentrations of DON. The larvae were divided into three groups (C, A, and B) that differed in the amount of mycotoxin added to the feed. Larval survival, body mass, and DON accumulation in larvae and their frass were evaluated. A statistical analysis revealed no significant differences in larval survival or body mass gain between the groups. The results point to the low accumulation of DON in larvae, reaching 13.13 ± 2.06 µg/kg (A) and 32.18 ± 4.20 µg/kg (B) after two weeks of feeding. Moreover, at the end of the experiment, DON was detected in larval frass at high concentrations of 507.65 ± 15.31 µg/kg (A) and 862.61 ± 18.53 µg/kg (B), suggesting that larvae are capable of effectively excreting this mycotoxin. The analyzed mycotoxin had no significant effect on larval survival or growth. Deoxynivalenol did not accumulate in the larval biomass and was excreted with frass. These findings enhance our understanding of the interactions between DON and yellow mealworm larvae and have potential implications for using insects in feed production and mycotoxin neutralization within ecosystems. Tenebrio molitor larvae tolerate DON-contaminated feed and effectively excrete the toxin, making them potential candidates for feed detoxification systems. Full article
(This article belongs to the Section Mycotoxins)
15 pages, 324 KiB  
Article
Effect of Aflasafe TZ01® on Aflatoxin Reduction and Emerging Challenges with Fusarium Mycotoxins in Maize from Rural Tanzania
by Sambwe Fundikira, Martin Kimanya, Rashid Suleiman, Marthe De Boevre, Kokeb Tesfamariam and Sarah De Saeger
Toxins 2025, 17(8), 419; https://doi.org/10.3390/toxins17080419 - 19 Aug 2025
Viewed by 376
Abstract
Aflatoxins are carcinogenic secondary metabolites produced by Aspergillus species and are common contaminants of many crops including maize. Atoxigenic Aspergillus flavus strains, formulated as biocontrol products such as Aflasafe® TZ01, that comprises a mixture of four native atoxigenic strains, are used as [...] Read more.
Aflatoxins are carcinogenic secondary metabolites produced by Aspergillus species and are common contaminants of many crops including maize. Atoxigenic Aspergillus flavus strains, formulated as biocontrol products such as Aflasafe® TZ01, that comprises a mixture of four native atoxigenic strains, are used as pre-harvest agents to suppress toxigenic strains and reduce aflatoxin levels. This study assessed the intended and potential unintended impacts of Aflasafe® TZ01 on mycotoxin contamination in maize. A total of 158 samples 79 from treated and 79 from untreated fields were collected from Chemba and Kiteto districts in Tanzania. Multi-mycotoxin analysis was conducted using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Detected toxins included aflatoxins (AFB1, AFB2, AFG1, AFG2), trichothecenes, and fumonisins (FB1, FB2, FB3). Non-parametric paired t-test analysis showed significant reductions in AFB1 (62%, p = 0.024) in treated samples. The mean concentrations of Fusarium mycotoxins such as NIV, T2, and ZEN were higher in treated maize. However, statistical analysis showed that these differences were only numerical trends, and were not significant (p > 0.05). These findings confirm the efficacy of Aflasafe® TZ01 in reducing aflatoxins, while underscoring the importance of continued monitoring for other mycotoxins as part of integrated mycotoxin management strategies to mitigate both aflatoxins and co-occurring toxins. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
22 pages, 1940 KiB  
Systematic Review
OnabotulinumtoxinA in the Management of Pain in Adult Patients with Spasticity: A Systematic Literature Review
by Francesca Bianchi, Mariana Nelson, Jörg Wissel, Heakyung Kim, Alexandra Traut, Darshini Shah, Tiziana Musacchio and Bahman Jabbari
Toxins 2025, 17(8), 418; https://doi.org/10.3390/toxins17080418 - 18 Aug 2025
Viewed by 183
Abstract
Many patients with spasticity report pain which can be debilitating. Numerous studies have shown onabotulinumtoxinA (onabotA) is efficacious in the management of spasticity but comprehensive data on its impact on spasticity-associated pain is limited. This systematic review aimed to assess the published evidence [...] Read more.
Many patients with spasticity report pain which can be debilitating. Numerous studies have shown onabotulinumtoxinA (onabotA) is efficacious in the management of spasticity but comprehensive data on its impact on spasticity-associated pain is limited. This systematic review aimed to assess the published evidence on the efficacy of onabotA in the management of pain in adults with spasticity. Search strategies were conducted from 1990 to 2023 for journal publications and from 2020 to 2023 for congress proceedings to identify relevant studies on onabotA in adults with spasticity where pain was a reported outcome. Of 665 records identified, 31 unique studies from 33 publications were included (2740 patients). Twenty-seven studies demonstrated a reduction in pain compared to baseline following treatment with onabotA in adults with spasticity (n = 2740). Of these, 12 studies reported a statistically significant reduction in pain with onabotA versus baseline. Sixteen studies reported a clinically meaningful reduction in pain (≥30% reduction). The reduction in pain with onabotA was consistent across etiologies and a range of pain measures. There was a high level of heterogeneity in the design and quality of the studies identified, which limited statistical analysis; however, the published evidence overall shows a consistent positive trend for the use of onabotA in reducing spasticity-related pain in adults. Full article
(This article belongs to the Special Issue Botulinum Toxins: New Uses in the Treatment of Diseases (2nd Edition))
Show Figures

Figure 1

20 pages, 4713 KiB  
Article
X Marks the Clot: Evolutionary and Clinical Implications of Divergences in Procoagulant Australian Elapid Snake Venoms
by Holly Morecroft, Christina N. Zdenek, Abhinandan Chowdhury, Nathan Dunstan, Chris Hay and Bryan G. Fry
Toxins 2025, 17(8), 417; https://doi.org/10.3390/toxins17080417 - 18 Aug 2025
Viewed by 764
Abstract
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: [...] Read more.
Australian elapid snakes possess potent procoagulant venoms, capable of inducing severe venom-induced consumption coagulopathy (VICC) in snakebite victims through rapid activation of the coagulation cascade by converting the FVII and prothrombin zymogens into their active forms. These venoms fall into two mechanistic categories: FXa-only venoms, which hijack host factor Va, and FXa:FVa venoms, containing a complete venom-derived prothrombinase complex. While previous studies have largely focused on human plasma, the ecological and evolutionary drivers behind prey-selective venom efficacy remain understudied. Here, thromboelastography was employed to comparatively evaluate venom coagulotoxicity across prey classes (amphibian, avian, rodent) and human plasma, using a taxonomically diverse selection of Australian snakes. The amphibian-specialist species Pseudechis porphyriacus (Red-Bellied Black Snake) exhibited significantly slower effects on rodent plasma, suggesting evolutionary refinement towards ectothermic prey. In contrast, venoms from dietary generalists retained broad efficacy across all prey types. Intriguingly, notable divergence was observed within Pseudonaja textilis (Eastern Brown Snake): Queensland populations of this species, and all other Pseudonaja (brown snake) species, formed rapid but weak clots in prey and human plasma. However, the South Australian populations of P. textilis produced strong, stable clots across prey plasmas and in human plasma. This is a trait shared with Oxyuranus species (taipans) and therefore represents an evolutionary reversion towards the prothrombinase phenotype present in the Oxyuranus and Pseudonaja last common ancestor. Clinically, this distinction has implications for the pathophysiology of human envenomation, potentially influencing clinical progression, including variations in clinical coagulopathy tests, and antivenom effectiveness. Thus, this study provides critical insight into the ecological selection pressures shaping venom function, highlights intraspecific venom variation linked to geographic and phylogenetic divergence, and underscores the importance of prey-focused research for both evolutionary toxinology and improved clinical management of snakebite. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Graphical abstract

17 pages, 670 KiB  
Review
Effect of Botulinum Toxin on Sensori–Motor Integration in Movement Disorders: A Scoping Review
by Animesh Das and Mandar Jog
Toxins 2025, 17(8), 416; https://doi.org/10.3390/toxins17080416 - 16 Aug 2025
Viewed by 301
Abstract
Background: The primary effect of Botulinum toxin (BoNT) is to cause weakness in the injected muscles by inhibiting the release of acetyl choline from presynaptic nerve terminals. Its effect on sensorimotor integration (SMI) has largely been confined to small studies. The aim of [...] Read more.
Background: The primary effect of Botulinum toxin (BoNT) is to cause weakness in the injected muscles by inhibiting the release of acetyl choline from presynaptic nerve terminals. Its effect on sensorimotor integration (SMI) has largely been confined to small studies. The aim of this review is to highlight effect of BoNT on SMI in the context of Parkinson’s disease (PD), Cervical dystonia (CD), and Writer’s cramp (WC). Methods: Using keywords “Botulinum toxin” and “sensorimotor integration” or “Freezing of gait (FOG)” or ‘Tremor”or “Cervical dystonia” or “Parkinson’s disease”, or “Writer’s cramp”, PubMed database was searched for relevant articles supporting our view. The abstracts of all resultant articles (case reports, case series, randomized trials, observational studies) were reviewed to look for evidence of effects of botulinum toxin on SMI. The relevant articles were charted in excel sheet for further full text review. Results: In FOG, chronic BoNT injections may alter central motor patterns with inclusion of alternative striatal systems, cerebellum, and its connections. In tremor, the afferent proprioceptive input may be modified with reduction of intracortical facilitation and increment of intracortical inhibition. In CD, BoNT can restore disorganized cortical somatotrophy, the key pathophysiology behind cervical dystonia. Similarly, in WC, both the deficient sensory system and abnormal reorganization of the sensorimotor cortex may be altered following chronic BoNT injections. Conclusions: There is preliminary evidence that BoNT may modulate SMI in PD, CD, and WC by altering inputs from the muscle spindles in short term and modifying circuits/particular anatomic cerebral cortices in the long term. Properly conducted randomized trials comparing BoNT with placebo or prospective large-scale studies to look for effect on various surrogate markers reflective of changes in SMI should be the next step to confirm these findings. Targeting the system of afferents like spindles and golgi tendon organs in muscles may be a better way of injecting BoNT, with lower amounts of toxin needed and potential for lesser side-effects like weakness and atrophy. However, this needs to be proven in controlled trials. Full article
(This article belongs to the Special Issue Botulinum Toxins: New Uses in the Treatment of Diseases (2nd Edition))
Show Figures

Figure 1

21 pages, 2711 KiB  
Article
Development of a Polyclonal Antibody for the Immunoanalysis of Ochratoxin A (OTA) by Employing a Specially Designed Synthetic OTA Derivative as the Immunizing Hapten
by Chrysoula-Evangelia Karachaliou, Christos Zikos, Christos Liolios, Maria Pelecanou and Evangelia Livaniou
Toxins 2025, 17(8), 415; https://doi.org/10.3390/toxins17080415 - 16 Aug 2025
Viewed by 297
Abstract
We report herein the development of a polyclonal antibody against ochratoxin A (OTA) using a specially designed synthetic OTA derivative as the immunizing hapten. This OTA derivative contains a tetrapeptide linker (glycyl-glycyl-glycyl-lysine, GGGK), through which it can be linked to a carrier protein [...] Read more.
We report herein the development of a polyclonal antibody against ochratoxin A (OTA) using a specially designed synthetic OTA derivative as the immunizing hapten. This OTA derivative contains a tetrapeptide linker (glycyl-glycyl-glycyl-lysine, GGGK), through which it can be linked to a carrier protein and form an immunogenic conjugate. The OTA derivative (OTA-glycyl-glycyl-glycyl-lysine, OTA-GGGK) has been synthesized on a commercially available resin via the well-established Fmoc-based solid-phase peptide synthesis (Fmoc-SPPS) strategy; overall, this approach has allowed us to avoid tedious liquid-phase synthesis protocols, which are often characterized by multiple steps, several intermediate products and low overall yield. Subsequently, OTA-GGGK was conjugated to bovine thyroglobulin through glutaraldehyde, and the conjugate was used in an immunization protocol. The antiserum obtained was evaluated with a simple-format ELISA in terms of its titer and capability of recognizing the natural free hapten; the anti-OTA antibody, as a whole IgG fragment, was successfully applied to three different immunoanalytical systems for determining OTA in various food materials and wine samples, i.e., a multi-mycotoxin microarray bio-platform, an optical immunosensor, and a biotin–streptavidin ELISA, which has proved the analytical effectiveness and versatility of the anti-OTA antibody developed. The same approach may be followed for developing antibodies against other low-molecular-weight toxins and hazardous substances. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

33 pages, 953 KiB  
Review
Aflatoxin Exposure in Immunocompromised Patients: Current State and Future Perspectives
by Temitope R. Fagbohun, Queenta Ngum Nji, Viola O. Okechukwu, Oluwasola A. Adelusi, Lungani A. Nyathi, Patience Awong and Patrick B. Njobeh
Toxins 2025, 17(8), 414; https://doi.org/10.3390/toxins17080414 - 16 Aug 2025
Viewed by 284
Abstract
Aflatoxins (AFs), harmful secondary metabolites produced by the genus Aspergillus, particularly Aspergillus flavus and Aspergillus parasiticus, are one of the best-known potent mycotoxins, posing a significant risk to public health. The primary type, especially aflatoxin B1 (AFB1), is [...] Read more.
Aflatoxins (AFs), harmful secondary metabolites produced by the genus Aspergillus, particularly Aspergillus flavus and Aspergillus parasiticus, are one of the best-known potent mycotoxins, posing a significant risk to public health. The primary type, especially aflatoxin B1 (AFB1), is a potent carcinogen associated with liver cancer, immunosuppression, and other health problems. Environmental factors such as high temperatures, humidity, and inadequate storage conditions promote the formation of aflatoxin in staple foods such as maize, peanuts, and rice. Immunocompromised individuals, including those with HIV/AIDS, hepatitis, cancer, or diabetes, are at increased risk due to their reduced detoxification capacity and weakened immune defenses. Chronic exposure to AF in these populations exacerbates liver damage, infection rates, and disease progression, particularly in developing countries and moderate-income populations where food safety regulations are inadequate and reliance on contaminated staple foods is widespread. Biomarkers such as aflatoxin-albumin complexes, urinary aflatoxin M1, and aflatoxin (AF) DNA adducts provide valuable insights but remain underutilized in resource-limited settings. Despite the globally recognized health risk posed by AF, research focused on monitoring human exposure remains limited, particularly among immunocompromised individuals. This dynamic emphasizes the need for targeted studies and interventions to address the particular risks faced by immunocompromised individuals. This review provides an up-to-date overview of AF exposure in immunocompromised populations, including individuals with cancer, hepatitis, diabetes, malnutrition, pregnant women, and the elderly. It also highlights exposure pathways, biomarkers, and biomonitoring strategies, while emphasizing the need for targeted interventions, advanced diagnostics, and policy frameworks to mitigate health risks in these vulnerable groups. Addressing these gaps is crucial to reducing the health burden and developing public health strategies in high-risk regions. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

19 pages, 2298 KiB  
Article
The Emerging Mycotoxin 2-Amino-14, 16-Dimethyloctadecan-3-ol (AOD) Alters Transcriptional Regulation and Sphingolipid Metabolism and Undergoes N-Acylation by HepG2 Cells
by Shenlong Mo, Zhenying Hu, Huaiyi Zhu, Boming Yu, Xiaoyan Chen, Yu Chen, Alfred H. Merrill, Jr. and Jingjing Duan
Toxins 2025, 17(8), 413; https://doi.org/10.3390/toxins17080413 - 15 Aug 2025
Viewed by 331
Abstract
2-Amino-14,16-dimethyloctadecan-3-ol (AOD) is commonly found in foods contaminated with Fusarium avenaceum, particularly cereals or fruits, and is structurally related to Fusarium mycotoxins (fumonisins) and mammalian sphingoid bases, especially 1-deoxysphinganine (m18:0); therefore, it might enter systemic circulation and tissues upon dietary intake. Knowledge [...] Read more.
2-Amino-14,16-dimethyloctadecan-3-ol (AOD) is commonly found in foods contaminated with Fusarium avenaceum, particularly cereals or fruits, and is structurally related to Fusarium mycotoxins (fumonisins) and mammalian sphingoid bases, especially 1-deoxysphinganine (m18:0); therefore, it might enter systemic circulation and tissues upon dietary intake. Knowledge about what happens when cells are exposed to AOD is limited, but it has been reported to be cytotoxic and to induce vacuolization in HepG2 cells. We also found that AOD is cytotoxic for HepG2 cells, but even at a concentration where cell viability remained above 85% (5 μM), it altered 24 differentially expressed genes based on RNA sequencing-based transcriptomic profiling. Among these genes, 13 were shared with cells treated with m18:0. These overlapping differentially expressed genes were primarily enriched in activated stress response pathways of cells, including the upregulation of specific genes in the hypoxia-inducible factor 1α (HIF-1α) signaling pathway, such as hexokinase 1 (HK1) and egl-9 family hypoxia-inducible factor 3 (EGLN3), the activation of key components in the p53 signaling pathway, and the induction of cellular senescence-associated transcriptional programs involving serpin family E member 1 (SERPINE1). Transcriptional analysis of genes related to sphingolipid metabolism showed that treatment with AOD increased the mRNA expression of ceramide synthase 4 (CerS4), sphingosine-1-phosphate phosphatase 1 (SGPP1), and UDP-glucosylceramide glucosyltransferase (UGCG), while decreasing the expression of dihydroceramide desaturase 1 (DEGS1) and fatty acid desaturase 3 (FADS3), a pattern of gene expression changes that mirrored the alterations observed with m18:0 treatment. Lipidomic analyses revealed that AOD significantly perturbed the sphingolipid composition of HepG2 cells, specifically increasing hexosylceramide content while decreasing ceramide and sphingomyelin levels. Moreover, AOD was found to undergo intracellular metabolism to N-acyl-AODs, perhaps by ceramide synthase(s), since this acylation was inhibited by fumonisin B1 (FB1). These findings demonstrate that AOD or possibly its N-acyl metabolites can alter cellular sphingolipid metabolism and affect the expression of genes involved in cell stress. These new insights call for more studies of the impact of this food contaminant on cells and the implications for human health. Full article
(This article belongs to the Special Issue Molecular Response of Hosts to Fungal Toxins)
Show Figures

Graphical abstract

10 pages, 260 KiB  
Article
Video Urodynamic Predictors of Outcomes After Urethral Sphincter Botulinum Toxin A Injection in Spinal Cord-Injured Patients with Detrusor Sphincter Dyssynergia
by Cheng-Ling Lee and Hann-Chorng Kuo
Toxins 2025, 17(8), 412; https://doi.org/10.3390/toxins17080412 - 15 Aug 2025
Viewed by 305
Abstract
Purpose: Detrusor sphincter dyssynergia (DSD), a common lower urinary tract condition in patients with suprasacral spinal cord injury (SCI), can lead to urological complications and reduced quality of life. Urethral sphincter botulinum toxin A (BoNT-A) injection has been used to promote spontaneous voiding, [...] Read more.
Purpose: Detrusor sphincter dyssynergia (DSD), a common lower urinary tract condition in patients with suprasacral spinal cord injury (SCI), can lead to urological complications and reduced quality of life. Urethral sphincter botulinum toxin A (BoNT-A) injection has been used to promote spontaneous voiding, albeit with limited success. This study aimed to identify predictive factors for treatment success. Methods: This retrospective analysis included 207 patients (157 males and 50 females) with chronic SCI and varying DSD grades treated with urethral sphincter BoNT-A injection. Each received 100 U of onabotulinumtoxinA via transurethral sphincter injection. The primary outcome was voiding efficiency (VE) and symptom improvement, assessed via global response evaluation 3 months post-treatment. Baseline videourodynamic parameters were used to predict success. Results: Successful outcomes were observed in 33.8% of patients. These patients were older and had higher voiding pressure, maximum flow rate (Qmax), voided volume, bladder contractility index, and VE, as well as lower post-void residual (PVR) volume and bladder outlet obstruction index. Patients with SCI and DSD grade 1 had the highest success rate (65.7%) compared to those with DSD grade 2 (14.3%) or 3 (7.1%). Patients with DSD grade 3 had the highest failure rate (55.8%). Multivariate analysis showed that higher Qmax and lower PVR significantly predicted success, consistent with lower DSD grades. Conclusion: Grade 1 DSD, higher Qmax, and lower PVR were associated with higher success after urethral BoNT-A injection, whereas grade 3 DSD predicted failure. Thus, careful patient selection is essential for effective DSD treatment with urethral BoNT-A injection. Full article
23 pages, 2745 KiB  
Article
Pioneering Comparative Proteomic and Enzymatic Profiling of Amazonian Scorpion Venoms Enables the Isolation of Their First α-Ktx, Metalloprotease, and Phospholipase A2
by Karla C. F. Bordon, Gabrielle C. Santos, Jonas G. Martins, Gisele A. Wiezel, Fernanda G. Amorim, Thomas Crasset, Damien Redureau, Loïc Quinton, Rudi E. L. Procópio and Eliane C. Arantes
Toxins 2025, 17(8), 411; https://doi.org/10.3390/toxins17080411 - 15 Aug 2025
Viewed by 565
Abstract
Scorpionism is a growing public health concern in Brazil, with the Amazon region presenting the highest mortality rates but remaining understudied, especially regarding local scorpion venoms composition. This study presents the first comprehensive biochemical characterization of venoms from three Amazonian species—Tityus metuendus [...] Read more.
Scorpionism is a growing public health concern in Brazil, with the Amazon region presenting the highest mortality rates but remaining understudied, especially regarding local scorpion venoms composition. This study presents the first comprehensive biochemical characterization of venoms from three Amazonian species—Tityus metuendus (TmetuV), Tityus silvestris (TsilvV), and Brotheas amazonicus (BamazV)—using an integrated approach combining Multi-Enzymatic Limited Digestion (MELD)-based bottom-up proteomics, high-resolution LC-MS/MS, chromatography, zymography, and enzymatic assays. Tityus serrulatus venom was included as a reference. Significant biochemical differences were observed: TsilvV was rich in 20–30 kDa proteins and showed strong metalloprotease activity; BamazV exhibited high molecular weight proteins and potent phospholipase A2 (PLA2) activity but lacked proteolytic and fibrinogenolytic activities; TmetuV showed the highest hyaluronidase activity and abundance of α-KTx neurotoxins. Zymography revealed a conserved ~45 kDa hyaluronidase in all species. Three novel components were partially characterized: BamazPLA2 (Group III PLA2), Tmetu1 (37-residue α-KTx), and TsilvMP_A (a metalloprotease homologous to antarease). This is the first application of MELD-based proteomics to Amazonian scorpion venoms, revealing molecular diversity and functional divergence within Tityus and Brotheas, emphasizing the need for region-specific antivenoms. These findings provide a foundation for future pharmacological studies and the discovery of bioactive peptides with therapeutic potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Graphical abstract

22 pages, 804 KiB  
Article
Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia
by Marwa Hassine, Khouloud Ben Hassouna, Salma Tissaoui, Mokhtar Baraket, Amine Slim, Olfa Ayed Slama, Hajer Slim Amara, Ahmed Al-Amiery, Noelia Pallarés, Houda Berrada, Samir Abbès and Jalila Ben Salah-Abbès
Toxins 2025, 17(8), 410; https://doi.org/10.3390/toxins17080410 - 14 Aug 2025
Viewed by 344
Abstract
Mycotoxin contamination in wheat, a staple food critical to human nutrition, poses significant public health concerns. This study investigated the natural occurrence of 17 mycotoxins in Tunisian durum wheat, assessed the influence of soil tillage practices on mycotoxin contamination, and performed an associated [...] Read more.
Mycotoxin contamination in wheat, a staple food critical to human nutrition, poses significant public health concerns. This study investigated the natural occurrence of 17 mycotoxins in Tunisian durum wheat, assessed the influence of soil tillage practices on mycotoxin contamination, and performed an associated exposure risk assessment. A total of 167 wheat samples were randomly collected over two years (2021 and 2022) from fields managed under conventional tillage (CT) and no-tillage (NT) systems during both pre- and post-harvest periods. Mycotoxins were extracted using the QuEChERS method and quantified via UHPLC-MS/MS. The results demonstrated contamination by ZEN, DON, OTA, ENA1, ENB, and ENB1. Among regulated mycotoxins, OTA was the most prevalent, detected in 68 out of 167 samples with a mean concentration of 1.85 µg/kg. ZEN was the most abundant, detected in 65 samples with a mean concentration of 26.85 µg/kg, while DON was less frequently detected in 62 samples with a mean concentration of 0.68 µg/kg. Regarding emerging mycotoxins, ENB was the most prevalent and abundant, found in 51 samples with a mean concentration of 10.13 µg/kg; ENB1 and ENA1 were detected in 20 and 10 samples, with mean concentrations of 3.38 µg/kg and 1.69 µg/kg, respectively. Furthermore, mycotoxin concentrations varied according to agricultural practices. DON, ZEN, ENA1, ENB, and ENB1 showed higher frequencies and concentrations (ranging from 0.08 to 210.11 µg/kg) in samples collected during the 2021 pre-harvest period from NT fields. In contrast, OTA exhibited greater prevalence and higher concentrations (ranging from 2.33 to 9.78 µ/kg) in samples collected during the 2022 post-harvest period from CT fields. The Estimated Daily Intake (EDI) of mycotoxins by Tunisian adults was calculated based on contamination levels in raw durum wheat from fields under NT and CT practices, resulting in the following values (ng/kg bw/day), with the first value corresponding to NT samples and the second to CT samples: OTA (17.3; 20.8), ZEN (466.3; 194.0), DON (8.0; 7.56), ENA1 (4.30; 18.85), ENB (105.17; 121.08), and ENB1 (49.91; 40.91). Both the Margin of Exposure (MOE) values for OTA and the Hazard Quotients (HQ) for ZEN and DON exceeded established safety thresholds, indicating potential health risks for Tunisian adults. These findings highlight the urgent need to implement stricter mycotoxin regulations in Tunisia and enhance surveillance systems. Further research is warranted to elucidate the mechanisms by which soil tillage practices influence mycotoxin contamination and to develop targeted mitigation strategies to ensure food safety. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Graphical abstract

16 pages, 1262 KiB  
Article
Effect of Dietary Difructose Anhydride III Supplementation on the Metabolic Profile of Japanese Black Breeding Herds with Low-Level Chronic Exposure to Zearalenone in the Dietary Feed
by Topas Wicaksono Priyo, Jr., Naoya Sasazaki, Katsuki Toda, Hiroshi Hasunuma, Daisaku Matsumoto, Emiko Kokushi, Seiichi Uno, Osamu Yamato, Takeshi Obi, Urara Shinya, Oky Setyo Widodo, Yasuho Taura, Tetsushi Ono, Masayasu Taniguchi and Mitsuhiro Takagi
Toxins 2025, 17(8), 409; https://doi.org/10.3390/toxins17080409 - 14 Aug 2025
Viewed by 216
Abstract
Mycotoxin contamination in animal feed can cause acute or chronic adverse effects on growth, productivity, and immune function in livestock. This study aimed to evaluate the impact of difructose anhydride III (DFA III) supplementation on serum biochemical parameters and intestinal environment in Japanese [...] Read more.
Mycotoxin contamination in animal feed can cause acute or chronic adverse effects on growth, productivity, and immune function in livestock. This study aimed to evaluate the impact of difructose anhydride III (DFA III) supplementation on serum biochemical parameters and intestinal environment in Japanese Black (JB) breeding cows under low-level chronic dietary exposure to zearalenone (ZEN). Using urinary ZEN concentration as an indicator of exposure, 25 JB cows were selected from a breeding farm with confirmed natural feed contamination. Blood samples were collected before DFA III supplementation (day 0), and on days 20 and 40 post-supplementation. Serum biochemical parameters and short-chain fatty acid concentrations were measured. During the studies, dietary ZEN concentration increased, yet improvements were observed in liver function, nutritional status, immune response, and inflammatory markers. Notably, serum butyrate concentration significantly increased following DFA III administration. These findings suggest that DFA III may positively influence intestinal microflora and enhance intestinal barrier function, which could contribute to improved health and nutritional status in cattle exposed to low-level chronic dietary ZEN contamination. DFA III supplementation may represent a promising strategy for mitigating the effects of low-level mycotoxin exposure in livestock production systems. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

23 pages, 13623 KiB  
Article
Comprehensive Transcriptomic and m6A Epitranscriptomic Analysis Reveals Colchicine-Induced Kidney Toxicity via DNA Damage and Autophagy in HK2 Cells
by Kun Tian, Jiaxin Wen, Dongcheng Zhang, Jiaxuan Lin, Lixiang Weng, Lele Yang, Wei Zhao, Chutao Li and An Zhu
Toxins 2025, 17(8), 408; https://doi.org/10.3390/toxins17080408 - 14 Aug 2025
Viewed by 264
Abstract
Colchicine is commonly prescribed for inflammation and gout, but its nephrotoxicity and underlying mechanisms remain incompletely understood. The objective of this research was to clarify the association between m6A methylation modifications and nephrotoxicity caused by colchicine. A significant decrease in HK2 cell viability [...] Read more.
Colchicine is commonly prescribed for inflammation and gout, but its nephrotoxicity and underlying mechanisms remain incompletely understood. The objective of this research was to clarify the association between m6A methylation modifications and nephrotoxicity caused by colchicine. A significant decrease in HK2 cell viability was observed following colchicine treatment, and mRNA sequencing (mRNA-seq) revealed the differential expression of genes associated with DNA damage and autophagy. Further methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis revealed an association between N6-methyladenosine (m6A) modifications and the expression of genes involved in DNA damage and autophagy after colchicine exposure. Molecular docking and a molecular dynamics (MD) analysis identified ZC3H13 as a potential regulator of colchicine-induced cytotoxicity in HK2. Experimental validation confirmed that colchicine induces DNA damage and autophagy in HK2 cells, with ZC3H13 playing a significant role in these processes. In conclusion, the findings suggested that colchicine-induced damage in HK2 cells is associated with changes in m6A methylation levels in target genes and the altered expression of m6A regulator. Full article
Show Figures

Graphical abstract

9 pages, 271 KiB  
Article
Electrophysiological Evidence of Contralateral Neuromuscular Effects Following Long-Term Botulinum Toxin Therapy in Hemifacial Spasm
by Tehran Aliyeva, Mehmet Fevzi Oztekin, Yasemin Eren and Zeynep Nese Oztekin
Toxins 2025, 17(8), 407; https://doi.org/10.3390/toxins17080407 - 14 Aug 2025
Viewed by 309
Abstract
Hemifacial spasm (HFS) is a cranial nerve disorder characterized by involuntary contractions of muscles innervated by the facial nerve. Botulinum toxin type A (BoNT-A) is widely used for symptom control. Although local diffusion is well established, the extent and clinical relevance of BoNT-A [...] Read more.
Hemifacial spasm (HFS) is a cranial nerve disorder characterized by involuntary contractions of muscles innervated by the facial nerve. Botulinum toxin type A (BoNT-A) is widely used for symptom control. Although local diffusion is well established, the extent and clinical relevance of BoNT-A spread to contralateral muscles remain unclear. This study aimed to investigate the contralateral neuromuscular effects of BoNT-A in patients undergoing long-term treatment with BoNT-A. This retrospective cross-sectional study included 39 patients with HFS (mean age, 58.6 ± 8.5 years). Bilateral compound muscle action potentials (CMAPs) were recorded before and four weeks after the BoNT-A injection. Single-fiber electromyography (SFEMG) jitter and mean consecutive difference (MCD) were evaluated contralaterally using concentric needle electrodes. Patients were categorized as first-time (n = 10) or long-term (n = 29; treatment duration: 1–20 years) BoNT-A recipients. Contralateral CMAP amplitudes decreased by 21.1% post-injection (p < 0.001). MCD increased from 33.2 ± 5.6 to 37.0 ± 5.3 µs (p < 0.001), and jitter rose by 81%, from 7.9 ± 6.2 to 14.3 ± 8.1 µs (p < 0.001). The percentage increase in MCD was significantly higher in long-term versus first-time patients (12.7% vs. 7.5%; p = 0.039), suggesting a cumulative neuromuscular effect. Spontaneous myokymia or fasciculations were clinically observed in four long-term patients. These findings provide electrophysiological evidence that unilateral BoNT-A injections may induce neuromuscular transmission abnormalities in the contralateral facial muscles. This effect appears more pronounced in chronically treated individuals, highlighting the need for awareness of potential bilateral spread when planning long-term therapy. Full article
(This article belongs to the Special Issue Advances in the Treatment of Movement Disorders with Botulinum Toxins)
16 pages, 1703 KiB  
Article
Analysis of the Proteome and Biochemistry of Venom from Tityus confluens, a Scorpion That Can Be Involved in Severe Envenomation Cases in Brazil
by Laís Corrêa Lima, Henrique Ranieri Covali-Pontes, Ohanna Gabriely Souza Leite, Renata Trentin Perdomo, Luiz Filipe Ramalho Nunes de Moraes, Ludovico Migliolo, Mauricio Nogueira Moyses, Natália Gabrielly Pereira dos Santos, Daniel Carvalho Pimenta, Mariana Soares Rodrigues, Karen Morais-Zani, Guilherme Rabelo Coelho and Malson Neilson Lucena
Toxins 2025, 17(8), 406; https://doi.org/10.3390/toxins17080406 - 14 Aug 2025
Viewed by 374
Abstract
In Brazil, the annual scorpion sting cases surpass those of other neglected tropical diseases, highlighting a significant public health issue. The severity of scorpion envenomation relates to the venom’s rapid action, complex composition, species identification challenges, and limited antivenom availability. This work aimed [...] Read more.
In Brazil, the annual scorpion sting cases surpass those of other neglected tropical diseases, highlighting a significant public health issue. The severity of scorpion envenomation relates to the venom’s rapid action, complex composition, species identification challenges, and limited antivenom availability. This work aimed to characterize the venom of Tityus confluens through proteomic, enzymatic, and biological analyses while also assessing its reactivity to anti-scorpion antivenom. The electrophoretic analysis revealed seven protein bands, with the most prominent bands at 30, 15, and 10 kDa. The C18-RP-HPLC analysis isolated sixteen primary fractions. The proteomic analysis identified various toxins, including potassium channel toxins, sodium channel toxins, and antimicrobial peptides, as well as other proteins such as hypotensin and metalloproteinases. Antigenic components were identified in the T. confluens venom, which displayed dose-dependent but time-independent amylolytic activity. The ATPase activity significantly increased with 1–10 μg of venom. No cytotoxic effects were observed on carcinoma or non-tumoral cell lines. The T. confluens venom features a complex protein composition rich in toxins that target ion channels and enzymes. It exhibits active enzymatic and antigenic properties, and displays low cytotoxicity. This is the first proteomic research on the composition of T. confluens venom and may provide valuable insights into understanding the clinical manifestations of scorpion stings. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

19 pages, 1559 KiB  
Article
Functional and Proteomic Characterization of Acanthophis antarcticus Venom: Evidence of Fibrinogenolytic and Serine Peptidase Inhibitory Activities
by Monica V. Falla, Enzo P. Sousa, Karen de Morais-Zani, Rodrigo Valladão, Natalia G. Santos, Nathalia C. Galizio, Mariana S. Rodrigues, Heloisa F. Almeida, Adriana R. Lopes, Mauricio N. Moises, Ivo Lebrun, Patrick J. Spencer, Daniel C. Pimenta and Guilherme R. Coelho
Toxins 2025, 17(8), 405; https://doi.org/10.3390/toxins17080405 - 13 Aug 2025
Viewed by 361
Abstract
Acanthophis antarcticus, commonly known as the death adder, is a venomous Australian snake and a member of the Elapidae family. Due to its robust body and triangular head, it was historically misclassified as a viper. Its venom is known for neurotoxic, hemorrhagic, [...] Read more.
Acanthophis antarcticus, commonly known as the death adder, is a venomous Australian snake and a member of the Elapidae family. Due to its robust body and triangular head, it was historically misclassified as a viper. Its venom is known for neurotoxic, hemorrhagic, and hemolytic effects but displays low anticoagulant activity. Although key toxins such as three-finger toxins (3FTxs) and phospholipase A2 (PLA2) have been previously described, no study has integrated proteomic and functional analyses to date. In this study, we conducted a comprehensive characterization of A. antarcticus venom. Reverse-phase high-performance liquid chromatography (RP-HPLC) followed by LC-MS/MS enabled the identification of nine toxin families, with 3FTxs and PLA2 as the most abundant. Less abundant but functionally relevant toxins included Kunitz-type inhibitors, CRISP, SVMP, LAAO, NGF, natriuretic peptides, and nucleotidases, the latter being reported here for the first time based on proteomic evidence. Hydrophilic interaction chromatography (HILIC) coupled with MALDI-TOF was used to analyze polar, non-retained venom components, revealing the presence of low-molecular-weight peptides (2–4 kDa). Functional assays confirmed the enzymatic activity of HYAL, PLA2, and LAAO and, for the first time, demonstrated inhibitory activity on serine peptidases and fibrinogenolytic activity in the venom of this species. These findings expand our understanding of the biochemical and functional diversity of this venom. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Graphical abstract

18 pages, 1147 KiB  
Article
Geographic Variation in Venom Proteome and Toxicity Profiles of Chinese Naja atra: Implications for Antivenom Optimization
by Jianqi Zhao, Xiao Shi, Guangyao Liu, Yang Yang and Chunhong Huang
Toxins 2025, 17(8), 404; https://doi.org/10.3390/toxins17080404 - 12 Aug 2025
Viewed by 385
Abstract
Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. Naja atra envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. [...] Read more.
Differences in venom within snake species can affect the efficacy of antivenom, but how this variation manifests across broad geographical scales remains poorly understood. Naja atra envenoming causes severe morbidity in China, yet whether intraspecific venom variation exists across mainland regions is unknown. We collected venom samples from seven biogeographical regions (spanning > 2000 km latitude). Venom lethality, systemic toxicity (organ damage biomarkers and coagulopathy), and histopathology of major organs were assessed. Neutralization by antivenom and label-free quantitative proteomics (LC-MS/MS) were also performed. The results revealed a non-uniform LD50, with venom from Yunnan exhibiting the highest lethality (2.1-fold higher than venom from Zhejiang, p < 0.001). Commercial antivenom showed lower neutralization efficacy against the venom from the Yunnan, Guangxi, and Guangdong regions. Regarding organ damage and coagulopathy, venom from Yunnan caused severe liver damage, while venom from the Zhejiang region induced significant coagulopathy. Finally, proteomic profiles identified 175 proteins: venom from Yunnan was dominated by phospholipases, contrasting with eastern regions (Anhui/Zhejiang: cytotoxins CTXs > 30%). Venom from Guangdong contained higher levels of the weak neurotoxin NNAM2 (5.2%). Collectively, significant geographical divergence exists in Chinese Cobra venom composition, systemic toxicity, and antivenom susceptibility, driven by differential expression of key toxins. Our study provides a molecular basis for precision management of snakebites, and we call for optimized antivenom production tailored to regional variations. Full article
(This article belongs to the Special Issue Animal Venoms: Unraveling the Molecular Complexity (2nd Edition))
Show Figures

Figure 1

16 pages, 574 KiB  
Article
In Vitro Evaluation of Aflatoxin B1 Detoxification by Lactobacillus, Pediococcus, and Bacillus Strains
by Sarra Rafai, Ana Moreno, Alessandra Cimbalo, Pilar Vila-Donat, Lara Manyes and Giuseppe Meca
Toxins 2025, 17(8), 403; https://doi.org/10.3390/toxins17080403 - 11 Aug 2025
Viewed by 357
Abstract
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in [...] Read more.
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in the human body once ingested. In this study, the detoxification potential of bacterial strains belonging to the genera Lactobacillus/Pediococcus (n = 10) and Bacillus (n = 10) was evaluated using extracts from naturally contaminated corn flour. Detoxification was assessed after incubation for 12, 24, and 48 h in specific culture media. AFB1 quantification and metabolite profiling were performed at each time point using Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS). The highest detoxification rates were observed with Lactobacillus curvatus 14 (L. curvatus 14) (41.1 ± 19.3%) and Pediococcus pentosaceus 4 (P. pentosaceus 4) (25.4 ± 11.3%) after 48 h, and Bacillus firmus 6 (B. firmus 6) (25.1 ± 12.9%) after 24 h. An in vitro digestion model was also applied to assess detoxification under gastrointestinal conditions. Results showed substantial AFB1 reduction at the colonic stage, reaching 72.26 ± 7.54% for P. pentosaceus 4 and 69.67 ± 9.70% for L. curvatus 14. These findings underscore the potential application of Lactobacillus, Pediococcus, and Bacillus strains in biological detoxification strategies to reduce dietary exposure to AFB1. Full article
(This article belongs to the Special Issue Aflatoxins: Contamination, Analysis and Control)
Show Figures

Figure 1

21 pages, 3230 KiB  
Article
Phytochemistry, Mode of Action Predictions, and Synergistic Potential of Hypenia irregularis Essential Oil Mixtures for Controlling Aedes aegypti
by Luis O. Viteri Jumbo, Wellington S. Moura, Richard D. Possel, Osmany M. Herrera, Rodrigo R. Fidelis, Bruno S. Andrade, Guy Smagghe, Gil R. Santos, Eugênio E. Oliveira and Raimundo W. S. Aguiar
Toxins 2025, 17(8), 402; https://doi.org/10.3390/toxins17080402 - 11 Aug 2025
Viewed by 407
Abstract
Aedes aegypti, also known as the yellow fever mosquito, presents a major public health challenge, highlighting the need for effective biorational agents for mosquito control. Here, we investigated the synergistic effects of essential oil mixtures derived from Hypenia irregularis that is a [...] Read more.
Aedes aegypti, also known as the yellow fever mosquito, presents a major public health challenge, highlighting the need for effective biorational agents for mosquito control. Here, we investigated the synergistic effects of essential oil mixtures derived from Hypenia irregularis that is a mint-family shrub native to Brazil’s Cerrado biome, known as “alecrim do Cerrado”, in combination with essential oils from noni (Morinda citrifolia), Brazilian mint (“salva-do-Marajó”, Hyptis crenata), and lemongrass (Cymbopogon citratus) against Ae. aegypti. We conducted phytochemical analyses and assessed larvicidal, repellent, and oviposition deterrent activities. Using in silico methods, we predicted molecular interactions between key essential oil components and physiological targets involved in repellent action (odorant-binding protein AeagOBP1 and olfactory receptor Or31) and larvicidal activity (GABA and octopamine receptors, TRP channels, and acetylcholinesterase [AChE]). Major compounds identified included octanoic acid (23%; Hipe. irregularis × M. citrifolia), 2,5-dimethoxy-p-cymene (21.9%; Hipe. irregularis × Hypt. crenata), and citral (23.0%; Hipe. irregularis × C. citratus). Although individual oils showed strong larvicidal activity (Hipe. irregularis LC50 = 2.35 µL/mL; Hypt. crenata = 2.37 µL/mL; M. citrifolia and C. citratus = 2.71 µL/mL), their mixtures did not display synergistic effects. Similarly, repellency and oviposition deterrence were comparable to DEET for individual oils but were not enhanced in mixtures. Notably, the Hipe. irregularis × C. citratus essential oil blend reduced oviposition deterrence. Molecular docking confirmed strong binding of major oil components to AeagOBP1 and Or31, supporting their role in repellency. For larvicidal effects, AChE showed the highest predicted binding affinity. Overall, our findings suggest that H. irregularis, Hypt. crenata, C. citratus, and M. citrifolia (alone or in 1:1 mixture) are promising, sustainable agents for A. aegypti control. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Graphical abstract

20 pages, 345 KiB  
Review
Botulinum Toxin for the Treatment of Tremors
by Steven Bellows and Joseph Jankovic
Toxins 2025, 17(8), 401; https://doi.org/10.3390/toxins17080401 - 11 Aug 2025
Viewed by 499
Abstract
Tremor, an oscillatory movement disorder, is commonly encountered in clinical practice in the setting of a variety of etiologies, such as essential tremor and Parkinson’s disease. Despite its high prevalence, treatment options are somewhat limited. Oral medications are often ineffective or limited by [...] Read more.
Tremor, an oscillatory movement disorder, is commonly encountered in clinical practice in the setting of a variety of etiologies, such as essential tremor and Parkinson’s disease. Despite its high prevalence, treatment options are somewhat limited. Oral medications are often ineffective or limited by side effects, and other treatments, such as deep brain stimulation, are more invasive and costly. Botulinum toxin (BoNT) injections are a well-established therapy in the treatment of dystonia, but its use in the treatment of tremors has not been fully explored. In this review, we discuss the available randomized controlled trials and open-label evidence for the use of BoNT in various tremor etiologies, as well as its injection techniques. While essential tremor is the most studied condition, other tremor etiologies and tremor types such as Parkinson’s disease, head tremor, voice tremor, proximal tremor, and tremor due to dystonia and multiple sclerosis have been studied as well. Botulinum toxin injections have provided evidence of significant benefit in outcomes in several trials among these indications, but transient weakness remains a common adverse effect. There is a paucity of well-designed trials as many published studies have relatively small cohorts and results are additionally limited by heterogenous outcome measures, dosages, muscle selection techniques and methods of injection. Full article
(This article belongs to the Special Issue Biological and Pharmacological Properties of Botulinum Neurotoxins)
14 pages, 3876 KiB  
Article
Ricin Toxicity to Intestinal Cells Leads to Multiple Cell Death Pathways Mediated by Oxidative Stress
by Francesco Biscotti, Massimo Bortolotti, Federica Falà, Antimo Di Maro, Andrea Bolognesi and Letizia Polito
Toxins 2025, 17(8), 400; https://doi.org/10.3390/toxins17080400 - 9 Aug 2025
Viewed by 328
Abstract
Ricin, a type 2 ribosome-inactivating protein, is a lethal toxin found in castor bean seeds. Although the systemic toxicity of ricin has been extensively studied, its localized effect on the gastrointestinal tract remains a critical concern, particularly in the case of oral ingestion. [...] Read more.
Ricin, a type 2 ribosome-inactivating protein, is a lethal toxin found in castor bean seeds. Although the systemic toxicity of ricin has been extensively studied, its localized effect on the gastrointestinal tract remains a critical concern, particularly in the case of oral ingestion. This study investigates the cytotoxic effects of ricin on human intestinal epithelial cell lines and its impact on epithelial barrier integrity. Ricin cytotoxicity was assessed on the intestinal-derived HT29 and Caco-2 cell lines using dose– and time–response assays, while the epithelial integrity was evaluated via Trans-Epithelial Electrical Resistance (TEER) measurements in Caco-2 monolayers. Cell death was determined through flow cytometry analysis, and the protective effects of cell death inhibitors and antioxidant scavengers were investigated on ricin-intoxicated cells. Ricin showed high cytotoxicity on HT29 and Caco-2 cells, with EC50 values in the nM range after 24–72 h of intoxication. Moreover, ricin strongly reduced TEER values in Caco-2 cells at 0.1–1 nM after 24 h of treatment. At a 1 nM concentration, ricin cytotoxicity can be significantly prevented by pre-incubating cells with the cell death inhibitors Z-VAD or necrostatin-1 and the antioxidant scavenger catalase, butylated hydroxyanisole or sodium pyruvate, demonstrating the involvement of apoptosis/necroptosis and oxidative stress in ricin cell death pathways and mechanisms. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
Show Figures

Figure 1

12 pages, 399 KiB  
Article
Aflatoxin M1 Levels in Milk and Urine Samples of Nursing Mothers in Bangladesh: Exposure Assessment of Infants
by Humaira Rashid Tuba, Sohel Rana, Khandaker Atkia Fariha, Gisela H. Degen and Nurshad Ali
Toxins 2025, 17(8), 399; https://doi.org/10.3390/toxins17080399 - 8 Aug 2025
Viewed by 255
Abstract
Breast milk is the ideal source of nutrition for infant growth and development. However, when nursing mothers consume aflatoxin B1 (AFB1)-contaminated food, the hydroxylated form aflatoxin M1 (AFM1) is transferred to breast milk and urine. AFB1 [...] Read more.
Breast milk is the ideal source of nutrition for infant growth and development. However, when nursing mothers consume aflatoxin B1 (AFB1)-contaminated food, the hydroxylated form aflatoxin M1 (AFM1) is transferred to breast milk and urine. AFB1 and its metabolite AFM1 are potent carcinogens and can pose significant risks to food safety and public health worldwide. This study determined the prevalence of AFM1 in the breast milk and urine of nursing mothers in Bangladesh and estimated infant exposure to this toxin. Breast milk and urine samples (72 each), collected from nursing mothers in three different regions of the country, were analyzed for AFM1 occurrence via a sensitive enzyme-linked immunosorbent assay (ELISA). AFM1 was present in 88.9% of urine samples, with a mean concentration of 109.9 ± 52.8 pg/mL, ranging from 40.0 to 223.8 pg/mL. AFM1 was also detected in 50% of the breast milk samples, with a mean concentration of 4.6 ± 0.7 pg/mL, ranging from 4.0 to 6.1 pg/mL. A strong correlation (r = 0.72) was observed between milk and urinary AFM1 levels, indicating these as suitable biomarkers of AFB1 exposure. Yet, no significant correlations were identified between AFM1 levels in either milk or urine and the food items typically consumed by nursing mothers. The average estimated daily intake (EDI) for AFM1 with breast milk was 0.59 ng/kg bw/day, with no significant difference between infants (0.57 ng/kg bw/day) and toddlers (0.65 ng/kg bw/day). A comparison of computed EDI ranges for AFM1 with a proposed tolerable daily intake value resulted in Hazard Indices below 1 for all exposure scenarios. This indicates that the AFM1 concentrations in breast milk from three regions of Bangladesh raise no concern. Also, the measured levels were far lower than the maximal levels set in the EU regulations for AFM1 in dairy milk and infant formula (50 ng/kg and 25 ng/kg, respectively). Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

15 pages, 2398 KiB  
Article
Heating up the Blunts: Prothrombin Activation, with Factor Va as an Obligate Cofactor, Is the Dominant Procoagulant Mechanism of Blunt-Nosed Viper Venoms (Macrovipera Species)
by Patrick S. Champagne, Lorenzo Seneci and Bryan G. Fry
Toxins 2025, 17(8), 398; https://doi.org/10.3390/toxins17080398 - 8 Aug 2025
Viewed by 1374
Abstract
Venoms of the Palearctic vipers in the Macrovipera genus cause severe procoagulant clinical effects, yet the precise molecular targets remain incompletely defined. To fill this toxicological knowledge gap, we tested five Macrovipera venoms—M. lebetina cernovi, M. l. obtusa, M. l. [...] Read more.
Venoms of the Palearctic vipers in the Macrovipera genus cause severe procoagulant clinical effects, yet the precise molecular targets remain incompletely defined. To fill this toxicological knowledge gap, we tested five Macrovipera venoms—M. lebetina cernovi, M. l. obtusa, M. l. turanica (Turkmenistan and Uzbekistan localities), and M. schweizeri—using plasma clotting assays, Factors VII, X, XI, and XII and prothrombin zymogen activation assays, and SDS-PAGE to visualise Factor V (FV) cleavage. All venoms induced extremely rapid clot formation (10.5–12.5 s) compared with the negative control (spontaneous clotting) of 334.6 ± 3.6 s) and the positive control (kaolin trigger) of 55.8 ± 1.9 s. Activation of FVII or FXI was negligible, whereas consistent FX activation and species-variable FXII activation, both moderate, were observed. Prothrombin remained inert in the absence of cofactors, but the presence of FV or FVa elicited potent thrombin generation. SDS-PAGE confirmed proteolytic conversion of the 330 kDa FV zymogen into the ~105 kDa heavy and ~80 kDa light chains of FVa by the venoms of all species. This data demonstrates that Macrovipera venoms rely on a dual enzyme strategy: (i) activation of FV to FVa by serine proteases and (ii) FVa-dependent prothrombin activation by metalloproteases. These results reveal that prothrombin activation is the dominant procoagulant pathway and overshadows the historically emphasised FX activation. This mechanism mirrors, yet is evolutionarily independent from, the FXa:FVa prothrombinase formation seen in Australian elapid venoms, highlighting convergent evolution of cofactor-hijacking strategies among snakes. The discovery of potent FVa-mediated prothrombin activation in Macrovipera challenges existing paradigms of viperid venom action, prompts re-evaluation of related genera (e.g., Daboia), and underpins the design of targeted antivenom and therapeutic interventions. Full article
(This article belongs to the Special Issue Toxins from Venoms and Poisons)
Show Figures

Graphical abstract

16 pages, 1518 KiB  
Article
T-2 Toxin-Induced Hepatotoxicity in HepG2 Cells Involves the Inflammatory and Nrf2/HO-1 Pathways
by Mercedes Taroncher, Felipe Franco-Campos, Yelko Rodríguez-Carrasco and María-José Ruiz
Toxins 2025, 17(8), 397; https://doi.org/10.3390/toxins17080397 - 8 Aug 2025
Viewed by 368
Abstract
The T-2 toxin is one of the most toxic mycotoxins, to which the population is exposed through the diet. T-2 toxins are especially found in cereals and cereal-based products. To deepen our understanding of the mechanisms of T-2 toxin action, the morphological changes, [...] Read more.
The T-2 toxin is one of the most toxic mycotoxins, to which the population is exposed through the diet. T-2 toxins are especially found in cereals and cereal-based products. To deepen our understanding of the mechanisms of T-2 toxin action, the morphological changes, oxidative stress, and inflammatory response of this mycotoxin have been evaluated in HepG2 cells. The mRNA and protein expression levels of inflammatory cytokines such as IL-1β, IL-6, and TNF-α and proteins such as Nrf2 and HO-1 were analyzed after T-2 exposure (7.5, 15, and 30 nM) by qPCR and Western blot assays. Firstly, changes in the morphology of HepG2 cells after T-2 exposure from circular to elongated shape were observed in a concentration-dependent manner by indirect immunofluorescence. These alterations may reflect early signs of cell stress. The results revealed an upregulation of the mRNA of IL-1β, IL-6, and TNF-α after T-2 exposure, with the highest increase in TNF-α after 30 nM T-2, suggesting a proinflammatory effect. Regarding the oxidative response, HO-1 at the lowest T-2 concentration was upregulated. However, the Nrf2 at all T-2 concentrations tested was downregulated. These findings were corroborated by Western blot analysis. These results confirm that T-2 hepatotoxicity produces an increase in key inflammatory cytokines, modulates the Nrf2/HO-1 pathway, and produces morphological changes in HepG2 cells. The next step would be to test whether a co-exposure of natural antioxidants with T-2 exerts a cytoprotective effect. Full article
Show Figures

Figure 1

14 pages, 510 KiB  
Article
Is There a “Non-Motor Effect” of Botulinum Toxin Treatment in Cervical Dystonia in Addition to Its Effects on Motor Symptoms?
by Małgorzata Dudzic, Anna Pieczyńska, Artur Drużdż, Anna Rajewska and Katarzyna Hojan
Toxins 2025, 17(8), 396; https://doi.org/10.3390/toxins17080396 - 6 Aug 2025
Viewed by 322
Abstract
The efficacy of botulinum toxin A (BoNT) in alleviating motor symptoms of cervical dystonia (CD) has been well established, and it is the treatment of choice in this disease. Lately, the effect of BoNT on non-motor symptoms (NMS) such as cognitive function, depression, [...] Read more.
The efficacy of botulinum toxin A (BoNT) in alleviating motor symptoms of cervical dystonia (CD) has been well established, and it is the treatment of choice in this disease. Lately, the effect of BoNT on non-motor symptoms (NMS) such as cognitive function, depression, anxiety, pain, and sleep disturbance has been observed in patients with CD. A comprehensive clinical and functional assessment of motor (dystonia severity, gait) and non-motor symptoms (cognitive functions, depression, anxiety, sleep, and pain) has been performed in a total of 34 adult patients with cervical dystonia before and after BoNT treatment. Results have also been compared to a control group. Significant improvements in the scales assessing dystonia severity have been observed, which is in line with previous studies on the effect of BoNT on motor symptoms in dystonia. Interestingly, the results also clearly indicate that BoNT has a positive effect on NMS. Among the studied non-motor domains, depression and cognitive functions improved the most after the treatment procedure. The study highlights the potential of BoNT to positively influence non-motor symptoms in patients with cervical dystonia, although its effect on various NMS is not equal. Full article
(This article belongs to the Special Issue Advances in the Treatment of Movement Disorders with Botulinum Toxins)
Show Figures

Figure 1

Previous Issue
Back to TopTop