Elaboration of the Demulsification Process of W/O Emulsion with Three-Dimensional Electric Spiral Plate-Type Microchannel
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Experimental Setup
2.3. Preparation of the W/O Emulsion
2.4. Demulsification Experiment
2.4.1. Three-Dimensional Electric Spiral Plate-Type Microchannel (3D-ESPM) Demulsification Experiment
2.4.2. The Control Experiment
3. Results and Discussion
3.1. Contrasts between the Gravity Settling and the 3D-ESPM
3.2. Influence of the Flow Rate and Plate Number
3.3. Induction Period
3.4. Influence of the Residence Time
3.5. Droplet size Distributions of Emulsions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Symbol
Symbol | Physical Significance |
J | The stability of emulsions |
Vemulsion | the volume of static residual emulsion |
Vtotal | the total volume of the collected emulsion before the settlement |
Vwater | the volume of the separated water in the emulsion |
η | the emulsion of the demulsification rate |
φ | the rate of water content in the emulsion |
Vkerosenel | the volume of separated kerosene in the oil phase |
Vtotal′ | the total volume of the collected liquid |
Vwater′ | the volume of separated water after demulsification |
De | Dean number |
dc | the spiral diameter |
di | the hydraulic equivalent diameter of the microchannel |
Re | the Reynolds number |
ρ | the density of emulsions |
v | the flow rate of emulsions |
µ | the dynamic viscosity of emulsions |
D(4,3) | the mean volume diameter of emulsions |
References
- Muto, A.; Hiraguchi, Y.; Kinugawa, K.; Matsumoto, T.; Mizoguchi, Y.; Tokumoto, H. Effects of organic solvent and ionic strength on continuous demulsification using an alternating electric field. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 228–233. [Google Scholar] [CrossRef]
- Eow, J.S.; Ghadiri, M.; Sharif, A.O. Electro-hydrodynamic separation of aqueous drops from flowing viscous oil. J. Pet. Sci. Eng. 2007, 55, 146–155. [Google Scholar] [CrossRef]
- Cambiella, A.; Benito, J.M.; Pazos, C.; Coca, J. Centrifugal separation efficiency in the treatment of waste emulsified oils. Chem. Eng. Res. Des. 2006, 84, 69–76. [Google Scholar] [CrossRef]
- Krebs, T.; Schroën, C.G.P.H.; Boom, R.M. Separation kinetics of an oil-in-water emulsion under enhanced gravity. Chem. Eng. Sci. 2012, 71, 118–125. [Google Scholar] [CrossRef]
- Eow, J.S.; Ghadiri, M.; Sharif, A.O.; Williams, T.J. Electrostatic enhancement of coalescence of water droplets in oil: A review of the current understanding. Chem. Eng. J. 2001, 84, 173–192. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Ghadiri, M.; Buckley, M. Electro-coalescence of water drops in oils under pulsatile electric fields. Chem. Eng. Sci. 2014, 120, 130–142. [Google Scholar] [CrossRef]
- Peng, K.; Xiong, Y.; Lu, L.; Liu, J.; Huang, X. Recyclable functional magnetic nanoparticles for fast demulsification of waste metalworking emulsions driven by electrostatic interactions. ACS Sustain. Chem. Eng. 2018, 6, 9682–9690. [Google Scholar] [CrossRef]
- Martínez-Palou, R.; Cerón-Camacho, R.; Chávez, B.; Vallejo, A.A.; Villanueva-Negrete, D.; Castellanos, J.; Karamath, J.; Reyes, J.; Aburto, J. Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel 2013, 113, 407–414. [Google Scholar] [CrossRef]
- Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S.; Dressler, V.L.; Flores, E.M.M. Feasibility of low frequency ultrasound for water removal from crude oil emulsions. Ultrason. Sonochem. 2015, 25, 70–75. [Google Scholar] [CrossRef]
- Atehortúa, C.M.G.; Pérez, N.; Andrade, M.A.B.; Adamowski, J.C.; Pereira, L.O.V. Design and implementation of the frequency control in an ultrasonic break water-in-oil emulsion chamber. Phys. Procedia 2015, 70, 42–45. [Google Scholar] [CrossRef]
- Zheng, S.; Song, Y.; Li, Y.; Sun, L.; Hu, B.; An, M.; Zhou, Y. Broadening of appropriate demulsifier dosage range for latex-containing wastewater by sulfate addition. Front. Environ. Sci. Eng. 2018, 12, 4. [Google Scholar] [CrossRef]
- Abdurahman, N.H.; Yunus, R.M.; Azhari, N.H.; Said, N.; Hassan, Z. The potential of microwave heating in separating water-in-oil (w/o) emulsions. Energy Procedia 2017, 138, 1023–1028. [Google Scholar] [CrossRef]
- Assenheimer, T.; Barros, A.; Kashefi, K.; Pinto, J.C.; Tavares, F.W.; Nele, M. Evaluation of microwave and conventional heating for electrostatic treatment of a water-in-oil model emulsion in a pilot plant. Energy Fuels 2017, 31, 6587–6597. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, X.; Liu, J.; Lu, L.; Peng, K. Preparation of magnetically responsive bacterial demulsifier with special surface properties for efficient demulsification of water/oil emulsion. Renew. Energy 2018, 129, 786–793. [Google Scholar] [CrossRef]
- Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 2016, 170, 377–407. [Google Scholar] [CrossRef]
- Pu, Y.; Ruan, D.; Hamiti, D.; Zhao, Z.; Chen, X. Demulsification of W/O emulsion with three-dimensional electric spiral plate-type microchannel. CIESC J. 2017, 68, 2790–2797. [Google Scholar] [CrossRef]
- Okubo, Y.; Toma, M.; Ueda, H.; Maki, T.; Mae, K. Microchannel devices for the coalescence of dispersed droplets produced for use in rapid extraction processes. Chem. Eng. J. 2004, 101, 39–48. [Google Scholar] [CrossRef]
- Kolehmainen, E.; Turunen, I. Micro-scale liquid–liquid separation in a plate-type coalescer. Chem. Eng. Process. Process. Intensif. 2007, 46, 834–839. [Google Scholar] [CrossRef]
- Chen, X.; Lu, H.; Jiang, W.; Chu, L.-Y.; Liang, B. De-emulsification of kerosene/water emulsions with plate-type microchannels. Ind. Eng. Chem. Res. 2010, 49, 9279–9288. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Farokhi, H.; Farajpour, A. Chaotic oscillations of viscoelastic microtubes conveying pulsatile fluid. Microfluid. Nanofluidics 2018, 22. [Google Scholar] [CrossRef]
- Ameur, D.; Galliéro, G. Slippage of binary fluid mixtures in a nanopore. Microfluid. Nanofluidics 2013, 15, 183–189. [Google Scholar] [CrossRef]
- Ortiz-Pérez, A.S.; García-Ángel, V.; Acuña-Ramírez, A.; Vargas-Osuna, L.E.; Pérez-Barrera, J.; Cuevas, S. Magnetohydrodynamic flow with slippage in an annular duct for microfluidic applications. Microfluid. Nanofluidics 2017, 21. [Google Scholar] [CrossRef]
- Xu, B.; Nguyen, N.-T.; Neng Wong, T. Droplet coalescence in microfluidic systems. Micro Nanosyst. 2011, 3, 131–136. [Google Scholar] [CrossRef]
- Shang, L.; Cheng, Y.; Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Seo, D.; Lee, C.; Shin, S. Droplet coalescence on water repellant surfaces. Soft Matter 2015, 11, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Kavehpour, H.P. Coalescence of drops. Annu. Rev. Fluid Mech. 2015, 47, 245–268. [Google Scholar] [CrossRef]
- Akartuna, I.; Aubrecht, D.M.; Kodger, T.E.; Weitz, D.A. Chemically induced coalescence in droplet-based microfluidics. Lab Chip 2015, 15, 1140–1144. [Google Scholar] [CrossRef]
- Nowbahar, A.; Whitaker, K.A.; Schmitt, A.K.; Kuo, T.-C. Mechanistic study of water droplet coalescence and flocculation in diluted bitumen emulsions with additives using microfluidics. Energy Fuels 2017, 31, 10555–10565. [Google Scholar] [CrossRef]
- Thurgood, P.; Suarez, S.A.; Chen, S.; Gilliam, C.; Pirogova, E.; Jex, A.R.; Baratchi, S.; Khoshmanesh, K. Self-sufficient, low-cost microfluidic pumps utilising reinforced balloons. Lab Chip 2019, 19, 2885–2896. [Google Scholar] [CrossRef]
- Nguyen, N.; Thurgood, P.; Arash, A.; Pirogova, E.; Baratchi, S.; Khoshmanesh, K. Inertial microfluidics with integrated vortex generators using liquid metal droplets as fugitive ink. Adv. Funct. Mater. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Bithi, S.S.; Vanapalli, S.A. Behavior of a train of droplets in a fluidic network with hydrodynamic traps. Biomicrofluidics 2010, 4, 44110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrot, V.; Schindler, M.; Guillot, P.; Colin, A.; Joanicot, M. Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks. Biomicrofluidics 2009, 3, 12804. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.A.; Srijanto, B.; Collier, C.P.; Retterer, S.T.; Sarles, S.A. Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays. Lab Chip 2016, 16, 3576–3588. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Hamiti, D.; Ma, Z.D.; Pu, Y.D.; Chen, X. Demulsification of kerosene/water emulsion in the transparent asymmetric plate-type micro-channel. Micromachines 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed]
- Llamas, S.; Santini, E.; Liggieri, L.; Salerni, F.; Orsi, D.; Cristofolini, L.; Ravera, F. Adsorption of sodium dodecyl sulfate at water-dodecane interface in relation to the oil in water emulsion properties. Langmuir 2018, 34, 5978–5989. [Google Scholar] [CrossRef]
- Lü, L.; Wu, K.; Tang, Y.; Tang, S.; Liang, B. De-emulsification of 2-ethyl-1-hexanol/water emulsion using oil-wet narrow channel combined with low-speed rotation. Chin. J. Chem. Eng. 2018, 26, 2048–2054. [Google Scholar] [CrossRef]
- Kuntaegowdanahalli, S.S.; Bhagat, A.A.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 2009, 9, 2973–2980. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, S.; Tallapragada, P. Particle slip velocity influences inertial focusing of particles in curved microchannels. Sci. Rep. 2018, 8, 11852. [Google Scholar] [CrossRef]
- Sadeghi, H.M.; Sadri, B.; Kazemi, M.A.; Jafari, M. Coalescence of charged droplets in outer fluids. J. Colloid Interface Sci. 2018, 532, 363–374. [Google Scholar] [CrossRef]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef]
- You, L.; Suthers, P.F.; Yin, J. Effects of escherichia coli physiology on growth of phage T7 In Vivo and In Silico. J. Bacteriol. 2002, 184, 1888–1894. [Google Scholar] [CrossRef] [PubMed]
- Bremond, N.; Domejean, H.; Bibette, J. Propagation of drop coalescence in a two-dimensional emulsion: A route towards phase inversion. Phys. Rev. Lett. 2011, 106, 214502. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Karthick, S.; Jayaprakash, K.S.; Sen, A.K. Droplet demulsification using ultralow voltage-based electrocoalescence. Langmuir 2018, 34, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cardinaels, R.; Moldenaers, P. Effect of confinement on droplet coalescence in shear flow. Langmuir 2009, 25, 12885–12893. [Google Scholar] [CrossRef]
- Di Carlo, D. Inertial microfluidics. Lab Chip 2009, 9, 3038–3046. [Google Scholar] [CrossRef]
- Javaid, M.U.; Cheema, T.A.; Park, C.W. Analysis of passive mixing in a serpentine microchannel with sinusoidal side walls. Micromachines 2018, 9, 8. [Google Scholar] [CrossRef]
- Bhaskar, K.U.; Murthy, Y.R.; Raju, M.R.; Tiwari, S.; Srivastava, J.K.; Ramakrishnan, N. CFD simulation and experimental validation studies on hydrocyclone. Miner. Eng. 2007, 20, 60–71. [Google Scholar] [CrossRef]
- Chu, L.; Chen, W.; Lee, X. Effect of structural modification on hydrocyclone performance. Sep. Purif. Technol. 2000, 21, 71–86. [Google Scholar] [CrossRef]
v/(mL/min) | Inflection Point/s | Intercept/s |
---|---|---|
2 | 3.12 | 0.50 |
4 | 2.15 | 0.39 |
6 | 1.67 | 0.46 |
8 | 1.43 | 0.50 |
10 | 1.33 | 0.58 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Pu, Y.; Hamiti, D.; Wei, M.; Chen, X. Elaboration of the Demulsification Process of W/O Emulsion with Three-Dimensional Electric Spiral Plate-Type Microchannel. Micromachines 2019, 10, 751. https://doi.org/10.3390/mi10110751
Ma Z, Pu Y, Hamiti D, Wei M, Chen X. Elaboration of the Demulsification Process of W/O Emulsion with Three-Dimensional Electric Spiral Plate-Type Microchannel. Micromachines. 2019; 10(11):751. https://doi.org/10.3390/mi10110751
Chicago/Turabian StyleMa, Zhengdong, Yadong Pu, Diliyaer Hamiti, Meixiu Wei, and Xiao Chen. 2019. "Elaboration of the Demulsification Process of W/O Emulsion with Three-Dimensional Electric Spiral Plate-Type Microchannel" Micromachines 10, no. 11: 751. https://doi.org/10.3390/mi10110751
APA StyleMa, Z., Pu, Y., Hamiti, D., Wei, M., & Chen, X. (2019). Elaboration of the Demulsification Process of W/O Emulsion with Three-Dimensional Electric Spiral Plate-Type Microchannel. Micromachines, 10(11), 751. https://doi.org/10.3390/mi10110751