Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = demulsification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5433 KB  
Review
Research Progress on Adhesion Mechanism and Testing Methods of Emulsified Asphalt–Aggregate Interface
by Hao-Yue Huang, Xiao Han, Sen Han, Xiao Ma, Jia Guo and Yao Huang
Buildings 2025, 15(15), 2611; https://doi.org/10.3390/buildings15152611 - 23 Jul 2025
Viewed by 500
Abstract
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt [...] Read more.
With the deepening of the green and low-carbon concept in the field of road engineering, the cold construction asphalt pavement technology has developed rapidly due to its advantages such as low energy consumption, low pollution, and convenient construction. The adhesion between emulsified asphalt and aggregates, as a core factor affecting the performance of cold-mixed mixtures and the lifespan of the pavement, has attracted much attention in terms of its mechanism of action and evaluation methods. However, at present, there are still many issues that need to be addressed in terms of the stability control of adhesion between emulsified asphalt and aggregates, the explanation of the microscopic mechanism, and the standardization of testing methods in complex environments. These problems restrict the further promotion and application of the cold construction technology. Based on this, this paper systematically analyzes the current development status, application scenarios, and future trends of the theory and testing methods of the adhesion between emulsified asphalt and aggregates by reviewing a large number of relevant studies. The research aims to provide theoretical support and practical references for the improvement of adhesion in the cold construction asphalt pavement technology. Research shows that in terms of the adhesion mechanism, the existing results have deeply analyzed the infiltration and demulsification adhesion process of emulsified asphalt on the surface of aggregates and clarified the key links of physical and chemical interactions, but the understanding of the microscopic interface behavior and molecular-scale mechanism is still insufficient. In terms of testing methods, although objective and subjective evaluation methods such as mechanical tensile tests, surface energy evaluation, and adhesion fatigue tests have been developed, the standardization of testing, data comparability, and practical engineering applicability still need to be optimized. Comprehensive analysis shows that the research on the adhesion between emulsified asphalt and aggregates is showing a trend from macroscopic to microscopic, from static to dynamic. There are challenges in predicting and controlling the adhesion performance under complex environments, as well as important opportunities for developing advanced characterization techniques and multiscale simulation methods. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

16 pages, 5369 KB  
Article
Multi-Physical Field Intensification Process for Shale Oil Emulsion Dehydration: Parameter Optimization and Mechanisms Exploration
by Yuejiu Liang, Qian Huang, Qing Li, Zhibiao Li, Donghai Yang, Mofan Li and Bing Liang
Processes 2025, 13(7), 2167; https://doi.org/10.3390/pr13072167 - 7 Jul 2025
Viewed by 261
Abstract
Shale oil, a major unconventional energy source with extensive global reserves, presents significant processing challenges due to the exceptional stability of its emulsions. Characterized by small droplet sizes and high interfacial film strength, these emulsions resist efficient treatment via conventional thermal-chemical or electrostatic [...] Read more.
Shale oil, a major unconventional energy source with extensive global reserves, presents significant processing challenges due to the exceptional stability of its emulsions. Characterized by small droplet sizes and high interfacial film strength, these emulsions resist efficient treatment via conventional thermal-chemical or electrostatic dehydration. To address the difficulties in separation, unclear dehydration mechanisms, and inconsistent single-field (electric) performance, this study investigates dehydration using a novel electric–magnetic–ultrasonic coupling field system. Dehydration efficiency under an electric field alone increased with electric field strength, frequency, duration, and temperature. Magnetic or ultrasonic fields alone yielded negligible effects. Coupling an electric field with ultrasound enhanced efficiency, while adding a magnetic field to electricity provided no improvement and decreased efficiency with longer exposure or higher magnetic intensity. The multi-field coupling achieved significant demulsification. Both optimal dehydration performance and minimum energy consumption operating conditions were identified, capable of reducing shale oil water content below 0.5%. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 1197 KB  
Review
Research Progress of Surfactant Demulsifier
by Longhao Tang, Tingyi Wang, Yingbiao Xu, Yongfei Li, Xinyi He, Aobo Yan, Peng Tao and Gang Chen
Processes 2025, 13(7), 2087; https://doi.org/10.3390/pr13072087 - 1 Jul 2025
Viewed by 703
Abstract
In this paper, the basic concept of surfactants as chemical additives and their diversified classification system are first expounded, laying a theoretical foundation for the subsequent study of their application in demulsification technology. Then, the specific application cases of various types of surfactants [...] Read more.
In this paper, the basic concept of surfactants as chemical additives and their diversified classification system are first expounded, laying a theoretical foundation for the subsequent study of their application in demulsification technology. Then, the specific application cases of various types of surfactants in the field of demulsification are deeply analyzed, and ways in which they achieve effective separation of emulsions through their unique physical and chemical properties are revealed. Further, the internal action mechanism of surfactant demulsifier, including how to destroy the stability of emulsion and promote the separation of oil and water phase, is systematically described. On this basis, the significant advantages of surfactant demulsifier compared with traditional methods are summarized, including high cost-effectiveness, high demulsifier efficiency, strong stability, wide adaptability, and easy operation. Finally, the development direction and challenges of surfactant demulsifier in the future are prospected. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 7568 KB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Cited by 1 | Viewed by 642
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

17 pages, 1753 KB  
Article
Demulsification Kinetics of Water-in-Oil Emulsions of Ecuadorian Crude Oil: Influence of Temperature and Salinity
by Jordy Sarmas-Farfan, Antonio Diaz-Barrios, Teresa E. Lehmann and Vladimir Alvarado
Energies 2025, 18(12), 3115; https://doi.org/10.3390/en18123115 - 13 Jun 2025
Viewed by 444
Abstract
This work focuses on the stability analysis of water-in-oil macroemulsions with a crude oil from the Sacha Field in Ecuador. This field is an important hydrocarbon resource in Ecuador with a typical bottom freshwater drive. The comprehensive stability analysis includes coalescence, water resolution [...] Read more.
This work focuses on the stability analysis of water-in-oil macroemulsions with a crude oil from the Sacha Field in Ecuador. This field is an important hydrocarbon resource in Ecuador with a typical bottom freshwater drive. The comprehensive stability analysis includes coalescence, water resolution or phase separation, and water–oil interfacial tension and interfacial dilatational viscoelastic modulus measurements over time. Two main parameters, due to their relevance, were controlled in these experiments: water salinity and temperature. The analysis reported here is the first focused on this important resource in Ecuador. Findings shed light on which mechanisms more likely control the stability of these water-in-oil macroemulsions. Results herein suggest that regardless of temperature, low-salinity water favors emulsion stability, likely due to the tendency of a stiffer interface formation at low-ionic strength, as interfacial viscoelasticity measurements show. This implies that the low-ionic strength water from the aquifer can enable the formation of stable emulsions. In contrast, water resolution depends significantly on temperature, possibly due to higher sedimentation rates. The implication is that if emulsions do not break up before cooling off, the emulsion can become more stable. Finally, analysis of the interface buildup rates could explain the observed increase in emulsion stability over time. Full article
Show Figures

Figure 1

15 pages, 9044 KB  
Article
Polyether Demulsifier Complexes for Efficient Demulsification of Water-in-Heavy Oil Emulsions
by Jing Li, Xiao Xia, Jinlong Gao, Hao Chen and Jun Ma
Molecules 2025, 30(12), 2550; https://doi.org/10.3390/molecules30122550 - 11 Jun 2025
Viewed by 568
Abstract
In the production process of the heavy oil industry, efficiently demulsifying water-in-heavy oil (W/HO) emulsions can effectively prevent the negative effects of emulsion corrosion on equipment, increase costs, reduce oil quality, and pollute the environment. Herein, polyether demulsifier complexes (PDC) were obtained by [...] Read more.
In the production process of the heavy oil industry, efficiently demulsifying water-in-heavy oil (W/HO) emulsions can effectively prevent the negative effects of emulsion corrosion on equipment, increase costs, reduce oil quality, and pollute the environment. Herein, polyether demulsifier complexes (PDC) were obtained by compounding fatty alcohol nonionic polyether (FAP) with perfluoropolyether (PFPEA, [CF3O(CF2CF2O)nCF3]) through a simple physical blending method. The experimental results demonstrate that PDC exhibited outstanding demulsification performance for W/HO emulsions across varying temperatures: At 60 °C and 400 ppm dosage, PDC achieved complete dehydration (100%) within just 2 min, showing significantly faster demulsification kinetics compared to FAP and PFPEA. Even at the reduced temperature of 40 °C, PDC maintained effective demulsification capability, achieving complete phase separation within 6 min. These findings collectively establish PDC’s superior demulsification efficiency for W/HO emulsions, with particularly remarkable performance under challenging low-temperature conditions. Research on the demulsification mechanism indicates that PDC achieves efficient demulsification performance due to the synergistic effect the synergistic effect of FAP and PFPEA to effectively destroy the non-covalent bonds (hydrogen and π–π stacking) of interfacially active asphaltenes (IAA) at the oil–water interface, thereby achieving demulsification of W/HO emulsion. PDC with outstanding demulsification ability exhibits significant potential for practical applications in heavy crude oil–water emulsion treatment, and this work can provide insights for developing new composite demulsifiers for petroleum production. Full article
Show Figures

Graphical abstract

21 pages, 30222 KB  
Article
Stability Analysis of Polymer Flooding-Produced Liquid in Oilfields Based on Molecular Dynamics Simulation
by Qian Huang, Mingming Shen, Lingyan Mu, Yuan Tian, Huirong Huang and Xueyuan Long
Materials 2025, 18(10), 2349; https://doi.org/10.3390/ma18102349 - 18 May 2025
Viewed by 573
Abstract
The S oilfield has adopted polymer flooding technology, specifically using partially hydrolyzed polyacrylamide (HPAM), to enhance oil recovery. During the production process, the S oilfield has generated a substantial amount of stable polymer flooding-produced liquid, in which oil droplets are difficult to effectively [...] Read more.
The S oilfield has adopted polymer flooding technology, specifically using partially hydrolyzed polyacrylamide (HPAM), to enhance oil recovery. During the production process, the S oilfield has generated a substantial amount of stable polymer flooding-produced liquid, in which oil droplets are difficult to effectively coalesce, presenting significant challenges in demulsification. This article focuses on the produced fluids from S Oilfield as the research subject, developing a molecular dynamics model for the stability analysis of production liquid, including the molecular dynamics model of an oil–pure water system, an oil–mineralized water system and an oil–polymer–mineralized water system, using the principle of molecular dynamics and combining it with the basic molecular model for analyzing the stability of polymer flooding-production liquid. Through the molecular dynamics simulation of the stability analysis of the extracted liquid, the changing rules of the molecular diffusion coefficient, radial distribution function (RDF), interfacial interaction energy, and interfacial tension under the action of ions as well as polymers in water were investigated. The simulation results demonstrate that the presence of all three inorganic salt ions (Na+, Ca2+, and Mg2+) reduces the interfacial tension between oil and water and stabilizes the interface. Following the addition of polymer, the interfacial tension of the system decreases and the interfacial interaction energy increases significantly, indicating that the stability of the system is significantly enhanced by HPAM. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

12 pages, 2326 KB  
Article
Study of Specific Problems Arising in the Blending Processes of Crude Oils (Based on the Examples of Azerbaijan Oils)
by Xiuyu Wang, Gafar Ismayilov, Elman Iskandarov, Elnur Alizade and Fidan Ismayilova
Processes 2025, 13(5), 1500; https://doi.org/10.3390/pr13051500 - 13 May 2025
Viewed by 485
Abstract
Experiences in the production, transportation and preparation of crude oil for transportation have shown that specific problems arise related to their mixing, including water contamination. In recent years, interest in studying these problems has significantly increased, mainly due to the development of extraction [...] Read more.
Experiences in the production, transportation and preparation of crude oil for transportation have shown that specific problems arise related to their mixing, including water contamination. In recent years, interest in studying these problems has significantly increased, mainly due to the development of extraction technologies for heavy oil samples and bitumen. Along with various difficulties encountered during the pipeline transportation of complex rheological crude oil blended with each other and with light oil, including condensate (such as sedimentation, etc.), imbalances are also observed during storage, as well as in the processes of delivery and reception. During the dehydration of oil mixtures, a synergistic effect is observed in the consumption of demulsifier. The article investigates, in accordance with international standards and based on laboratory tests, how the physico-chemical properties (density, viscosity, freezing point, saturated vapor pressure, chemical composition) of mixtures formed by blending various grades and compositions of Azerbaijani oil examples with each other and with condensate change and how the efficiency of dehydration of oil mixtures is affected by the mixing ratio of the oil involved. It was found that the quality indicators (physico-chemical parameters) of oil mixtures differ non-additively from the initial parameters of the blended products and in some cases, this difference is even observed with anomalies. Moreover, depending on the mixing ratio of the oil, variations in the consumption of demulsifier were also identified. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

14 pages, 5372 KB  
Article
Self-Crosslinking Waterborne Acrylate Modified Emulsified Asphalt via DAAM-ADH: A Dual-Enhanced Solution for Pavement Performance
by Jianhui Xu, Zhaoyi He, Haiying Li, Shutong Tang, Jie Wang, Jing Dang and Yuanyuan Li
Coatings 2025, 15(4), 420; https://doi.org/10.3390/coatings15040420 - 1 Apr 2025
Viewed by 461
Abstract
Emulsified asphalt is widely used for pavement maintenance due to its ease of application. However, its use is limited by poor high-temperature stability and low bonding strength. This study attempted to prepare a self-crosslinking waterborne acrylate (SWA)-type admixture using a diacetone acrylamide (DAAM)-adipic [...] Read more.
Emulsified asphalt is widely used for pavement maintenance due to its ease of application. However, its use is limited by poor high-temperature stability and low bonding strength. This study attempted to prepare a self-crosslinking waterborne acrylate (SWA)-type admixture using a diacetone acrylamide (DAAM)-adipic dihydrazide (ADH) crosslinking system and applied it to emulsified asphalt to ultimately obtain self-crosslinking waterborne acrylate-modified emulsified asphalt (AMEA). The research explored the effects of SWA on the fundamental properties, rheological characteristics, microscopic morphology, and bonding performance of AMEA. Results indicated that SWA undergoes self-crosslinking reactions during the demulsification process, forming a continuous and stable network structure that significantly enhances the strength of emulsified asphalt while improving softening point and high-temperature stability. Rheological analysis revealed that within the 10–15 phr dosage range, the influence of frequency on emulsified asphalt was minimized, with notable improvements in high-temperature elastic recovery and deformation resistance. Particularly when the dosage exceeds 10 phr, the material demonstrates adaptability to high-traffic environments. Pull-off tests demonstrated that SWA can increase the interlayer bonding strength of emulsified asphalt by over 50%. However, SWA exhibits some negative impact on the low-temperature ductility of emulsified asphalt, necessitating cautious dosage control during application. This novel self-crosslinking waterborne acrylate-modified emulsified asphalt, with its excellent bonding performance and superior high-temperature stability, emerges as a crucial material choice for pavement preventive maintenance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

9 pages, 4227 KB  
Article
Ionic Liquid Capsules as Flame-Retardant Additives for Emulsion Paint Systems
by Rong Ma, Bingqian Wu and Qingsheng Wang
Polymers 2025, 17(5), 626; https://doi.org/10.3390/polym17050626 - 26 Feb 2025
Viewed by 796
Abstract
To develop a highly efficient and environmentally friendly flame-retardant system, ionic liquids (ILs) have recently emerged as promising candidates. However, the addition of ILs into emulsion paint disrupts emulsion stability, leading to rapid demulsification due to electrostatic effects. Herein, IL–silica capsules were developed [...] Read more.
To develop a highly efficient and environmentally friendly flame-retardant system, ionic liquids (ILs) have recently emerged as promising candidates. However, the addition of ILs into emulsion paint disrupts emulsion stability, leading to rapid demulsification due to electrostatic effects. Herein, IL–silica capsules were developed using a soft-template method. These capsules can be directly added to an acrylic emulsion paint system as flame-retardant additives. Incorporating 5 wt% IL–silica capsules into the system and coating it on fabric reduced flammability by 53% compared to untreated fabric. This work provides a novel and practical approach to enhance flame retardancy in emulsion paint systems without compromising their stability. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 7033 KB  
Article
Study on Demulsification via Vacuum Filtration with Superamphiphilic Diatomite/G-C3N4/Rice Husk Charcoal Composite Filter Layer
by Yue Wang, Tianxin Chen, Yu Jia, Feng Qin, Junhui Gao, Xingyang Zhang, Jiahong He and Jian He
Nanomaterials 2025, 15(5), 344; https://doi.org/10.3390/nano15050344 - 22 Feb 2025
Viewed by 1074
Abstract
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To [...] Read more.
The primary extraction way for unconventional oil/gas resources is hydraulic fracturing to alter the reservoir for commercial production. However, hydraulic fracturing technology consumes a large amount of water, and the flowback water can easily be mixed with hydrocarbon substances to form emulsions. To achieve the recycling of water, it is necessary to develop an efficient continuous demulsification method for treating the flowback fluid. In this study, a composite filtration layer with superhydrophilic and superoleophilic properties was successfully prepared using water-based polyurethane as a binder. The g-C3N4 was used to improve the affinity of the filtration layer to water and oil. The diatomite and rice husk carbon were used as an adsorbent and a filter aid, respectively. The contact angles (CA) of both oil and water on the surface of the filtration layer were measured to be 0°. During the demulsification process, vacuum filtration was employed to increase the pressure difference across the filtration layer, thereby improving the treatment flux of flowback fluid. The experimental results showed that the filtration flux with the addition of rice husk charcoal increased from 160.58 L∙m−2∙h−1 to 174.68 L∙m−2∙h−1 compared to the filter layer without rice husk charcoal. Based on the composite filtration layer, the apparent demulsification efficiency exceeded 90.6% for various types of emulsion. The mechanism of demulsification was investigated by the molecular dynamics method. The results showed that the adsorption layer density of water molecules reached 1.5 g/cm3, and the adsorption layer density of oil molecules exceeded 2.5 g/cm3. The porous structure wall has a strong adsorption effect on both oil and water molecules, resulting in deformation and destruction of the oil–water interface, so that the dispersed phase is adsorbed and aggregated by the filter layer at the same time and permeates from the filter layer after reaching saturation, thus separating the two phases. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

17 pages, 2836 KB  
Article
The Optimization of Demulsification Using Composite Fatty Acids in Aqueous Enzymatic Extraction and the Changes of the Emulsion Stability During Demulsification
by Zhihua Shao, Xiangrui Kong, Hanxiang Yang, Yiyang Zhang, Chenxian Yang, Fusheng Chen, Zikun Wang, Jiaxun Chen, Tingwei Zhu, Ying Xin and Yu Chen
Foods 2025, 14(5), 749; https://doi.org/10.3390/foods14050749 - 22 Feb 2025
Cited by 2 | Viewed by 940
Abstract
Aqueous enzymatic extraction (AEE) can simultaneously separate oil and protein. However, a stable O/W emulsion is present in the AEE process, which is not favorable for extracting oils. This study optimized the use of heptanoic and octanoic acids for demulsification in aqueous enzymatic [...] Read more.
Aqueous enzymatic extraction (AEE) can simultaneously separate oil and protein. However, a stable O/W emulsion is present in the AEE process, which is not favorable for extracting oils. This study optimized the use of heptanoic and octanoic acids for demulsification in aqueous enzymatic extraction. The optimal condition for demulsification, including a fatty acid ratio of 1:3 (heptanoic acid to octanoic acid) with 1.00% addition, a reaction time of 40 min, a temperature of 70 °C, and a solid-to-liquid ratio of 1:5, resulted in a demulsification rate of 97.95% ± 0.03%. After demulsification, the particle size of the peanut emulsion increased, while the absolute potential value and conductivity decreased. The type and content of proteins decreased, and the tertiary structure also changed, with tryptophan residues buried within the proteins, shifting the system from a polar to nonpolar environment. The microstructure of the emulsion changed and the emulsion transformed into W/O. To summarize, composite fatty acid had a significant effect on the demulsification of emulsion. Full article
Show Figures

Figure 1

33 pages, 7087 KB  
Article
Demulsification of Water-in-Oil Emulsion with Carbon Quantum Dot (CQD)-Enhanced Demulsifier
by Jhon F. Gallego, Oscar E. Medina, Jose A. Tengono, Camilo Mazo, Andres F. Maya, Cristina Caro, Farid B. Cortés and Camilo A. Franco
Processes 2025, 13(2), 575; https://doi.org/10.3390/pr13020575 - 18 Feb 2025
Cited by 2 | Viewed by 1962
Abstract
This study aims to optimize the demulsification performance of a carbon quantum dot (CQD)-enhanced chemical demulsifier in industrial emulsions under thermal, mechanical, and thermomechanical effects. Experiments were conducted to assess treatments like organic treatment (OT), zeta potential modifier aqueous solution (ZPMAS), and acid [...] Read more.
This study aims to optimize the demulsification performance of a carbon quantum dot (CQD)-enhanced chemical demulsifier in industrial emulsions under thermal, mechanical, and thermomechanical effects. Experiments were conducted to assess treatments like organic treatment (OT), zeta potential modifier aqueous solution (ZPMAS), and acid treatment (9.25 wt.% HCl) at varying dosages, along with CQD–chemical mixtures optimized through a simplex-centroid mixture design (SCMD) to minimize basic sediment and water (BSW). Under the thermomechanical scenario, a system with 500 mg∙L−1 CQDs and OT achieves 0.5% BSW and a droplet size of 63 nm, while an SCMD-optimized system (500 mg∙L−1 CQDs + 380 mg∙L−1 OT + 120 mg∙L−1 ZPMAS) achieves 0% BSW and larger droplets (>70 nm). CQDs enhance demulsifiers by destabilizing water-in-oil (W/O) Pickering emulsions, leveraging their nanometric size, high surface area, thermal conductivity, and amphiphilicity, thanks to their hydrophobic core and surface hydrophilic groups (-OH, NH2, -COOH). This research enhances the understanding of demulsification by employing green demulsifiers based on CQDs and provides a promising cost-efficient solution for breaking stable emulsions in the petroleum industry. It minimizes the use of complex and expensive active ingredients, achieving BSW values below 0.5%, the standard required for crude oil transport and sale, while also reducing separation equipment operation times, and improving overall process efficiency. Full article
Show Figures

Graphical abstract

16 pages, 2888 KB  
Article
Rheological Properties of Crude Oil and Produced Emulsion from CO2 Flooding
by Mingzheng Qiao, Fan Zhang and Weiqi Li
Energies 2025, 18(3), 739; https://doi.org/10.3390/en18030739 - 6 Feb 2025
Cited by 2 | Viewed by 869
Abstract
Carbon Capture, Utilization and Storage (CCUS) technology is recognized as a pivotal strategy to mitigate global climate change. The CO2 storage and enhanced oil recovery (CCUS-EOR) technology not only enhances oil recovery rates but also contributes to significant reductions in CO2 [...] Read more.
Carbon Capture, Utilization and Storage (CCUS) technology is recognized as a pivotal strategy to mitigate global climate change. The CO2 storage and enhanced oil recovery (CCUS-EOR) technology not only enhances oil recovery rates but also contributes to significant reductions in CO2 emissions, with significant social and economic benefits. This paper examines the application of CO2-EOR technology in both enhancing oil recovery and facilitating geological CO2 storage, and analyzes its implementation status and differences in the United States and China. Through experimental investigations conducted in a specific oilfield, we analyze the effects of dissolved CO2 on the viscosity–temperature characteristics, yield value under pressure, stability, and rheological properties of crude oil and produced fluids. Additionally, we assess the demulsification effectiveness of various demulsifiers. Our findings indicate that both dissolved CO2 in crude oil and emulsions exhibit non-Newtonian fluid behavior characterized by shear thinning, and the viscosity decreases with the increase in temperature and pressure. Furthermore, the presence of dissolved CO2 exacerbates the oil–water separation phenomenon in produced fluids, thereby diminishing emulsion stability. The increase in emulsion concentration and the increase in emulsification temperature are both conducive to improving the emulsification rate. These research results provide critical insights for pipeline design and pump selection in oilfield production processes. Full article
(This article belongs to the Special Issue Low Carbon Energy Generation and Utilization Technologies)
Show Figures

Figure 1

12 pages, 10239 KB  
Article
Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers
by Chunhua Zhao, Xiujun Wang, Jian Zhang, Yigang Liu, Changlong Liu, Bo Huang and Yang Yang
Polymers 2024, 16(22), 3148; https://doi.org/10.3390/polym16223148 - 12 Nov 2024
Cited by 3 | Viewed by 1854
Abstract
High-internal-phase water-in-oil (W/O) emulsions generated in situ have garnered considerable attention as novel profile control systems. However, conventional emulsifiers are unreactive and poorly dispersed in water, necessitating large dosages and resulting in poor injectivity. In this study, we synthesized amphiphilic nanoparticles (SiO2 [...] Read more.
High-internal-phase water-in-oil (W/O) emulsions generated in situ have garnered considerable attention as novel profile control systems. However, conventional emulsifiers are unreactive and poorly dispersed in water, necessitating large dosages and resulting in poor injectivity. In this study, we synthesized amphiphilic nanoparticles (SiO2–NH2–DAC NPs) containing amine and long-chain alkyl groups using a one-pot method and investigated the stabilized emulsion properties. Our results indicated that W/O emulsions with a water-to-oil ratio (WOR) of 7:3 to 8:2 could be prepared with just 0.1 wt% of SiO2–NH2–DAC NPs under neutral and basic conditions, with demulsification occurring under acidic conditions (pH = 2.1), demonstrating the pH-responsiveness of the W/O emulsions. The emulsion viscosity increased from 150 to 2555 mPa·s at different WORs. An additional 18.7% oil recovery was achieved using SiO2–NH2–DAC NPs in a heterogeneous core, highlighting their potential as a promising profile control candidate. Full article
(This article belongs to the Special Issue New Advances in Polymer-Based Surfactants)
Show Figures

Graphical abstract

Back to TopTop