Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Khandelwal, A.; Niimi, H.; Lucovsky, G.; Lamb, H.H. Low-temperature Ar/N2 remote plasma nitridation of SiO2 thin films. J. Vac. Sci. Technol. A 2002, 20, 1989–1996. [Google Scholar] [CrossRef]
- Muller, D.A.; Sorsch, T.; Moccio, S.; Baumann, F.H.; Lutterodt, K.E.; Timp, G. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 1999, 399, 758–761. [Google Scholar] [CrossRef]
- Ho, M.-Y.; Gong, H.; Wilk, G.D.; Busch, B.W.; Green, M.L.; Lin, W.H.; See, A.; Lahiri, S.K.; Loomans, M.E.; Räisänen, P.I.; et al. Suppressed crystallization of Hf-based gate dielectrics by controlled addition of Al2O3 using atomic layer deposition. Appl. Phys. Lett. 2002, 81, 4218–4220. [Google Scholar] [CrossRef]
- Copel, M.; Gribelyuk, M.; Gusev, E. Structure and stability of ultrathin zirconium oxide layers on Si(001). Appl. Phys. Lett. 2000, 76, 436–438. [Google Scholar] [CrossRef]
- Clark, R. Emerging Applications for High K Materials in VLSI Technology. Materials 2014, 7, 2913–2944. [Google Scholar] [CrossRef]
- Croizier, G.; Martins, P.; Le Baillif, M.; Aubry, R.; Bansropun, S.; Fryziel, M.; Rolland, N.; Ziaei, A. Advantages of ALD over evaporation deposition for high-k materials integration in high power capacitive RF MEMS. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1237–1240. [Google Scholar]
- Mackus, A.J.M.; Schneider, J.R.; MacIsaac, C.; Baker, J.G.; Bent, S.F. Synthesis of Doped, Ternary, and Quaternary Materials by Atomic Layer Deposition: A Review. Chem. Mater. 2019, 31, 1142–1183. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Faraz, T.; Arts, K.; Kessels, W.M.M. (Erwin) Status and prospects of plasma-assisted atomic layer deposition. J. Vac. Sci. Technol. A 2019, 37, 030902. [Google Scholar] [CrossRef]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef]
- Shim, J.H.; Choi, H.J.; Kim, Y.; Torgersen, J.; An, J.; Lee, M.H.; Prinz, F.B. Process–property relationship in high-k ALD SrTiO3 and BaTiO3: A review. J. Mater. Chem. C 2017, 5, 8000–8013. [Google Scholar] [CrossRef]
- Choi, J.S.; Park, J.G. Effect of NH3 Plasma Passivation on the Electrical Characteristics of a Nanolaminated ALD HfAlO on InGaAs MOS Capacitor. J. Korean Phys. Soc. 2015, 66, 1885–1888. [Google Scholar] [CrossRef]
- Koo, J.; Lee, J.; Kim, S.; Kim, Y.D.; Jeon, H.; Kim, D.; Kim, Y. Characteristics of Hafnium-Aluminum-Oxide Thin Films Deposited by Using Atomic Layer Deposition with Various Aluminum Compositions. J. Korean Phys. Soc. 2005, 47, 501–507. [Google Scholar]
- Park, P.K.; Kang, S. Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3. Appl. Phys. Lett. 2006, 89, 192905. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Sun, Z.; Li, G.; Zhang, L. Review and Perspective of Hf-based High-k Gate Dielectrics on Silicon Review and Perspective of Hf-based High- k Gate Dielectrics on Silicon. Crit. Rev. Solid State Mater. Sci. 2012, 37, 131–157. [Google Scholar] [CrossRef]
- Bhuyian, M.N.U.; Misra, D. Multilayered ALD HfAlOx and HfO2 for High-Quality Gate Stacks. IEEE Trans. Device Mater. Reliab. 2015, 15, 229–235. [Google Scholar] [CrossRef]
- Chiou, Y.; Chang, C.; Wang, C.; Lee, K.; Wu, T.; Kwo, R.; Hong, M. Effect of Al Incorporation in the Thermal Stability of Atomic-Layer-Deposited HfO2 for Gate Dielectric Applications. J. Electrochem. Soc. 2007, 154, G99–G102. [Google Scholar] [CrossRef]
- Yu, H.Y.; Li, M.F.; Cho, B.J.; Yeo, C.C.; Joo, M.S.; Kwong, D.-L.; Pan, J.S.; Ang, C.H.; Zheng, J.Z.; Ramanathan, S. Energy gap and band alignment for (HfO2)x(Al2O3)1−x on (100) Si. Appl. Phys. Lett. 2002, 81, 376–378. [Google Scholar] [CrossRef]
- Park, T.J.; Kim, J.H.; Jang, J.H.; Lee, C.-K.; Na, K.D.; Lee, S.Y.; Jung, H.; Kim, M.; Han, S.; Hwang, C.S. Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping. Chem. Mater. 2010, 22, 4175–4184. [Google Scholar] [CrossRef]
- Ding, Y.M.; Misra, D. Oxide structure-dependent interfacial layer defects of HfAlO/SiO2/Si stack analyzed by conductance method. J. Vac. Sci. Technol. B 2015, 33, 021203. [Google Scholar] [CrossRef]
- Lu, B.; Lv, H.; Zhang, Y.; Zhang, Y.; Liu, C. Comparison of HfAlO, HfO2/Al2O3, and HfO2 on n-type GaAs using atomic layer deposition. Superlattices Microstruct. 2016, 99, 54–57. [Google Scholar] [CrossRef]
- Fleetwood, D.M. “Border Traps” in MOS Devices. IEEE Trans. Nucl. Sci. 1992, 39, 269–271. [Google Scholar] [CrossRef]
- Gan, J. Extraction of Border Trap Density in InAs Nanowire Transistors. Master’s Thesis, Lund University, Lund, Sweden, 2012. [Google Scholar]
- Fleetwood, D.M. Border traps and bias-temperature instabilities in MOS devices. Microelectron. Reliab. 2018, 80, 266–277. [Google Scholar] [CrossRef]
- Lu, H.-H.; Xu, J.-P.; Liu, L.; Lai, P.-T.; Tang, W.-M. Equivalent distributed capacitance model of oxide traps on frequency dispersion of C–V curve for MOS capacitors. Chin. Phys. B 2016, 25, 118502. [Google Scholar] [CrossRef]
- Lin, J.; Monaghan, S.; Cherkaoui, K.; Povey, I.M.; Sheehan, B.; Hurley, P.K. Examining the relationship between capacitance-voltage hysteresis and accumulation frequency dispersion in InGaAs metal-oxidesemiconductor structures based on the response to post-metal annealing. Microelectron. Eng. 2017, 178, 204–208. [Google Scholar] [CrossRef]
- Zhu, W.J.; Tamagawa, T.; Gibson, M.; Furukawa, T.; Ma, T.P. Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics. IEEE Electron Device Lett. 2002, 23, 649–651. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.; Takenaka, M.; Takagi, S. Impact of La2O3 interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al2O3/La2O3/InGaAs gate stacks deposited by atomic-layer-deposition. J. Appl. Phys. 2015, 118, 085309. [Google Scholar] [CrossRef]
- Huang, A.; Zheng, X.; Xiao, Z.; Wang, M.; Di, Z.; Chu, P.K. Interface dipole engineering in metal gate/highk stacks. Chin. Sci. Bull. 2012, 57, 2872–2878. [Google Scholar] [CrossRef]
- Fan, J.-B.; Liu, H.-X.; Ma, F.; Zhuo, Q.-Q.; Hao, Y. Influences of different oxidants on the characteristics of HfAlOx films deposited by atomic layer deposition. Chin. Phys. B 2013, 22, 027702. [Google Scholar] [CrossRef]
- Lee, C.-K.; Cho, E.; Lee, H.; Hwang, C.S.; Han, S. First-principles study on doping and phase stability of HfO2. Phys. Rev. B 2008, 78, 012102. [Google Scholar] [CrossRef]
- Zheng, L.; Cheng, X.; Yu, Y.; Xie, Y.; Li, X.; Wang, Z. Controlled direct growth of Al2O3-doped HfO2 films on graphene by H2O-based atomic layer deposition. Phys. Chem. Chem. Phys. 2015, 17, 3179–3185. [Google Scholar] [CrossRef] [PubMed]
- Hota, M.K.; Mahata, C.; Sarkar, C.K.; Maiti, C.K. High Density MIM Capacitors Using HfAlOx. ECS Trans. 2009, 25, 201–207. [Google Scholar]
- He, G.; Liu, M.; Zhu, L.Q.; Chang, M.; Fang, Q.; Zhang, L.D. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100). Surf. Sci. 2005, 576, 67–75. [Google Scholar] [CrossRef]
- Cho, M.-H.; Chang, H.S.; Moon, D.W.; Kang, S.K.; Min, B.K.; Ko, D.-H.; Kim, H.S.; McIntyre, P.C.; Lee, J.H.; Ku, J.H.; et al. Interfacial characteristics of HfO2 films grown on strained Si0.7Ge0.3 by atomic-layer deposition. Appl. Phys. Lett. 2004, 84, 1171–1173. [Google Scholar] [CrossRef]
- Cho, M.-H.; Moon, D.W.; Park, S.A.; Kim, Y.K.; Jeong, K.; Kang, S.K.; Ko, D.-H.; Doh, S.J.; Lee, J.H.; Lee, N.I. Interfacial characteristics of N-incorporated HfAlO high-k thin films. Appl. Phys. Lett. 2004, 84, 5243–5245. [Google Scholar] [CrossRef]
- He, G.; Zhang, L.D.; Meng, G.W.; Li, G.H.; Fang, Q.; Zhang, J.P. Temperature-dependent structural stability and optical properties of ultrathin Hf–Al–O films grown by facing-target reactive sputtering. J. Appl. Phys. 2007, 102, 094103. [Google Scholar] [CrossRef]
- Suri, R.; Kirkpatrick, C.J.; Lichtenwalner, D.J.; Misra, V. Energy-band alignment of Al2O3 and HfAlO gate dielectrics deposited by atomic layer deposition on 4H–SiC. Appl. Phys. Lett. 2010, 96, 042903. [Google Scholar] [CrossRef]
- Mallik, S.; Mahata, C.; Hota, M.K.; Dalapati, G.K.; Chi, D.Z.; Sarkar, C.K.; Maiti, C.K. HfAlOx high-k gate dielectric on SiGe: Interfacial reaction, energy-band alignment, and charge trapping properties. Microelectron. Eng. 2010, 87, 2234–2240. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Goetzberger, A. The Si-SiO2 Interface—Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique. Bell Syst. Tech. J. 1967, 46, 1055–1133. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, L.; Yu, B.; Shin, B.; Ahn, J.; McIntyre, P.C.; Asbeck, P.M.; Rodwell, M.J.W.; Taur, Y. A Distributed Model for Border Traps in Al2O3—InGaAs MOS Devices. IEEE Electron Device Lett. 2011, 32, 485–487. [Google Scholar] [CrossRef]
- Hou, Y.T.; Li, M.F.; Yu, H.Y.; Kwong, D.-L. Modeling of Tunneling Currents Through HfO2 and (HfO2)x(Al2O3)1-x Gate Stacks. IEEE Electron Device Lett. 2003, 24, 96–98. [Google Scholar] [CrossRef]
- Birner, S. The Nextnano Software for the Simulation of Semiconductor Heterostructures. Available online: https://www.nextnano.de/downloads/publications/abstracts/Abstract_TopologicalNanodeviceModeling_2014_Delft_Birner.pdf (accessed on 15 March 2019).
Samples ID (m,n) | Al2O3 (m) | HfO2 (n) | Number of Super Cycles (x) | Thickness (nm) | Standard Deviation (nm) |
---|---|---|---|---|---|
A (1,0) [Al2O3] | 1 | 0 | 50 | 5.867 | 0.125 |
B (1,1) | 1 | 1 | 25 | 6.715 | 0.040 |
C (1,2) | 1 | 2 | 17 | 5.825 | 0.063 |
D (1,3) | 1 | 3 | 13 | 5.722 | 0.095 |
E (1,4) | 1 | 4 | 10 | 5.626 | 0.101 |
F (1,9) | 1 | 9 | 5 | 5.170 | 0.043 |
G (2,6) | 2 | 6 | 7 | 6.710 | 0.022 |
H (3,3) | 3 | 3 | 9 | 7.363 | 0.093 |
I (0,1) [HfO2] | 0 | 1 | 50 | 5.100 | 0.089 |
Samples ID | Al-O [Al-2p] (eV) | Hf-O [4f7/2; 4f5/2] (eV) | Hf-Al-O [Al-2p; O-1s] (eV) | C-O [Al-2p; O-1s] (eV) |
---|---|---|---|---|
G (2,6) | 74.88 | 17.52; 18.9 | 74.42; 530.78 | 531.68 |
F (1,9) | 74.72 | 17.4;18.65 | 74.3; 530.68 | 531.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Kim, J.-G.; Kim, D.-H.; Kim, T.-W. Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines 2019, 10, 361. https://doi.org/10.3390/mi10060361
Rahman MM, Kim J-G, Kim D-H, Kim T-W. Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines. 2019; 10(6):361. https://doi.org/10.3390/mi10060361
Chicago/Turabian StyleRahman, Md. Mamunur, Jun-Gyu Kim, Dae-Hyun Kim, and Tae-Woo Kim. 2019. "Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition" Micromachines 10, no. 6: 361. https://doi.org/10.3390/mi10060361
APA StyleRahman, M. M., Kim, J. -G., Kim, D. -H., & Kim, T. -W. (2019). Characterization of Al Incorporation into HfO2 Dielectric by Atomic Layer Deposition. Micromachines, 10(6), 361. https://doi.org/10.3390/mi10060361