Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles
Abstract
:1. Introduction
2. Fabrication of the Catheter Channel with Cavities
3. Clogging Prevention Experiment
3.1. Slip Effect of the Convex Air Bubble
3.2. Centrifugal Effect on the Convex Air Bubble
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ryu, E.H. Nano structure-based drug delivery technology. J. KSME 2012, 52, 43–47. [Google Scholar]
- Damiati, S.; Kompella, U.B.; Damiati, S.A.; Kodzius, R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes 2018, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Greish, K. Enhanced Permeability and Retention (ERP) Effect for Anticancer Nanomedicine Drug Targeting. Methods. Mol. Biol. 2010, 624, 25–37. [Google Scholar] [CrossRef]
- Jones, C.N.; Hoang, A.N.; Dimisko, L.; Hamza, B.; Martel, J.; Irimia, D. Microfluidic Platform for Measuring Neutrophil Chemotaxis from Unprocessed Whole Blood. J. Vis. Exp. 2014, 88. [Google Scholar] [CrossRef] [PubMed]
- Bernacka-Wojcik, I.; Lopes, P.; Vaz, A.C.; Veigas, B.; Wojcik, P.J.; Simões, P.; Barata, D.; Fortunato, E.; Baptista, P.V.; Águas, H.; et al. Bio-microfluidic Platform for Gold Nanoprobe Based DNA Detection-application to Mycobacterium tuberculosis. Biosens. Bioelectron. 2013, 48, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Young, B.; Baird, A.E.; Soper, S.A. Single-pair Fluorescence Resonance Energy Transfer Analysis of mRNA Transcripts for Highly Sensitive Gene Expression Profiling in Near Real Time. Anal. Chem. 2013, 85, 7851–7858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Valadez, A.; Zuo, P.; Nie, Z. Microfluidic 3D Cell Culture: Potential Application for Tissue-based Bioassays. Bioanalysis 2012, 4, 1509–1525. [Google Scholar] [CrossRef] [Green Version]
- Park, D.H.; Jeon, H.J.; Kim, M.J.; Nguyen, X.D.; Morten, K.; Go, J.S. Development of a Microfluidic Perfusion 3D Cell Culture System. J. Micromech. Microeng. 2018, 28, 1–9. [Google Scholar] [CrossRef]
- Harrigan, M.R.; Deveikis, J.P. Handbook of Cerebrovascular Disease and Neurointerventional Technique, 1st ed.; Harrigana, M.R., Deveikis, J.P., Eds.; Humana Press: New York, NY, USA, 2009. [Google Scholar]
- Lewis, A.L.; Adams, C.; Busby, W.; Jones, S.A.; Wolfenden, L.C.; Leppard, S.W.; Palmer, R.R.; Small, S. Comparative in vitro evaluation of microspherical embolisation agents. J. Mater. Sci. Mater. Med. 2006, 17, 1193–1204. [Google Scholar] [CrossRef]
- Dressaire, E.; Sauret, A. Clogging of microfluidic systems. Soft Matter 2017, 13, 37–48. [Google Scholar] [CrossRef]
- Sharp, K.V.; Adrian, R.J. On flow-blocking microsphere structures in microtubes. Microfluid. Nanofluid. 2005, 1, 376–380. [Google Scholar] [CrossRef]
- Agbangla, G.C.; Bacchin, P.; Climent, E. Collective Dynamics of Flowing Colloids During Pore Clogging. Soft Matter 2014, 10, 6303–6315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agbangla, G.C.; Climent, E.; Bacchin, P. Experimental Investigation of Pore Clogging by Microparticles: Evidence for a Critical Flux Density of Particle Yielding Arches and Deposits. Sep. Purif. Technol. 2012, 101, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Dersoir, B. Clogging in micro-channels: From colloidal microsphere to clog. HAL 2015, 1, 376–380. [Google Scholar]
- Dersoir, B.; de Saint Vincent, M.R.; Abkarian, M.; Tabuteau, H. Clogging of a single pore by colloidal microspheres. Microfluid. Nanofluid. 2015, 19, 953–961. [Google Scholar] [CrossRef]
- Dersoira, B.; Schofieldb, A.B.; de Saint Vincenta, M.R.; Tabuteaua, H. Dynamics of pore fouling by colloidal microspheres at the microsphere level. J. Membr. Sci. 2019, 573, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Sriphutkiat, Y.; Zhou, Y. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW). Sensors 2017, 17, 106. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Lin, S.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef] [Green Version]
- Destgeer, G.; Lee, K.H.; Jung, J.H.; Alazzam, A.; Sung, H.J. Continuous Separation of Particles in a PDMS Microfluidic Channel via Travelling Surface Acoustic Waves (TSAW). Lab Chip. 2013, 13, 4210–4216. [Google Scholar] [CrossRef]
- Ding, X.; Peng, Z.; Lin, S.-C.S.; Geri, M.; Li, S.; Li, P.; Chen, Y.; Dao, M.; Suresh, S.; Huang, T.J. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA 2014, 111, 12992–12997. [Google Scholar] [CrossRef] [Green Version]
- Sardella, E.; Detomaso, L.; Gristina, R.; Senesi, G.S.; Agheli, H.; Sutherland, D.S.; d’Agostino, R.; Favia, P. Nano-Structured Cell-Adhesive and Cell-Repulsive Plasma-Deposited Coating: Chemical and Topographical Effects on Keratinocyte Adhesion. Plasma Processes Polym. 2008, 5, 540–551. [Google Scholar] [CrossRef]
- Kwon, B.H. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles. Exp. Fluids 2014, 55, 1722. [Google Scholar] [CrossRef]
- Tesař, V. What can be done with microbubbles generated by a fluidic oscillator? (survey). EPJ Web Conf. 2017, 143, 2129. [Google Scholar] [CrossRef] [Green Version]
- Doucet, J.; Kiri, L.; O’Connell, K.; Kehoe, S.; Lewandowski, R.J.; Liu, D.; Abraham, R.J.; Boyd, D. Advances in Degradable Embolic Microspheres: A State of the Art Review. J. Funct. Biomater. 2018, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sensu, Y.; Sekiguchi, A.; Kono, Y. Modeling of Cross-linking Reactions for Negative-type Thick film Resists. J. Photopolym. Sci. Technol. 2006, 19, 51–56. [Google Scholar] [CrossRef]
- Caine, M.; Carugo, D.; Zhang, X.; Hill, M.; Dreher, M.R.; Lewis, A.L. Review of the Development of Methods for Characterization of Microspheres for Use in Embolotherapy: Translating Bench to Cathlab. Adv. Health Mater. 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Kashaninejad, N. A New Form of Velocity Distribution in Rectangular Microchannels with Finite Aspect Ratios. Preprints 2019. [Google Scholar] [CrossRef]
- Zheng, X.; Silber-Li, Z. Measurement of velocity profiles in a rectangular microchannel with aspect ratio α = 0.35. Exp. Fluids 2008, 44, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977–1026. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.H.; Jung, Y.J.; Steve Jeo Kins, S.J.K.; Kim, Y.D.; Go, J.S. Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles. Micromachines 2020, 11, 1040. https://doi.org/10.3390/mi11121040
Park DH, Jung YJ, Steve Jeo Kins SJK, Kim YD, Go JS. Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles. Micromachines. 2020; 11(12):1040. https://doi.org/10.3390/mi11121040
Chicago/Turabian StylePark, Dong Hyeok, Yeun Jung Jung, Sandoz John Kinson Steve Jeo Kins, Young Deok Kim, and Jeung Sang Go. 2020. "Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles" Micromachines 11, no. 12: 1040. https://doi.org/10.3390/mi11121040
APA StylePark, D. H., Jung, Y. J., Steve Jeo Kins, S. J. K., Kim, Y. D., & Go, J. S. (2020). Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles. Micromachines, 11(12), 1040. https://doi.org/10.3390/mi11121040