Improved Electrophoretic Deposition of Vertical Single Wall Carbon Nanotubes with Nanoscopic Electrostatic Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Fabrication and Packaging
2.2. Preparation of SWCNT Suspensions
2.3. EPD Experiment
2.4. IV Measurement
3. Results and Discussion
3.1. Zeta Potential
3.2. Electrophoretic Deposition
3.3. IV Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franklin, A.D.; Sayer, R.A.; Sands, T.D.; Janes, D.B.; Fisher, T.S. Vertical carbon nanotube devices with nanoscale lengths controlled without lithography. IEEE Trans. Nanotechnol. 2009, 8, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.P.; Duesberg, G.S.; Hoenlein, W.; Kreupl, F.; Liebau, M.; Martin, R.; Rajasekharan, B.; Pamler, W.; Seidel, R.; Steinhoegl, W.; et al. How do carbon nanotubes fit into the semiconductor roadmap? Appl. Phys. A Mater. Sci. Process. 2005, 80, 1141–1151. [Google Scholar] [CrossRef]
- Kanwal, A.; Lakshmanan, S.; Bendiganavale, A.; Bot, C.T.; Patlolla, A.; Raj, R.; Prodan, C.; Iqbal, Z.; Thomas, G.A.; Farrow, R.C. Scalable nano-bioprobes with sub-cellular resolution for cell detection. Biosens. Bioelectron. 2013, 45, 267–273. [Google Scholar] [CrossRef]
- Thomas, G.A.; Prodan, C.; Farrow, R.; Kanwal, A.; Bayconi, N.; Bendiganavale, A. Dynamic, nano-probe measurement of complex impedance near single yeast cells. Biophys. J. 2013, 104 (Suppl. 1), 529a. [Google Scholar] [CrossRef] [Green Version]
- Claussen, J.C.; Franklin, A.D.; ul Haque, A.; Porterfield, D.M.; Fisher, T.S. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano 2009, 3, 37–44. [Google Scholar] [CrossRef]
- Kanwal, A.; Wang, S.C.; Ying, Y.; Cohen, R.; Lakshmanan, S.; Patlolla, A.; Iqbal, Z.; Thomas, G.A.; Farrow, R.C. Substantial power density from a discrete nano-scalable biofuel cell. Electrochem. Commun. 2014, 39, 37–40. [Google Scholar] [CrossRef]
- Amrollahi, P.; Krasinski, J.S.; Vaidyanathan, R.; Tayebi, L.; Vashaee, D. Electrophoretic deposition (EPD): Fundamentals and applications from nano- to microscale structures. In Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques; Aliofkhazraei, M., Makhlouf, A.S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 561–591. [Google Scholar]
- Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress Mater. Sci. 2007, 52, 1–61. [Google Scholar] [CrossRef]
- Maschmann, M.R.; Franklin, A.D.; Amama, P.B.; Zakharov, D.N.; Stach, E.A.; Sands, T.D.; Fisher, T.S. Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates. Nanotechnology 2006, 17, 3925–3929. [Google Scholar] [CrossRef] [Green Version]
- Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D. Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 2003, 12, 205–216. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, H.; Tanaka, H.; Weiss, P.S. Vertical alignment of single-walled carbon nanotube films formed by electrophoretic deposition. Langmuir 2008, 24, 12936–12942. [Google Scholar] [CrossRef]
- Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 2007, 7, 1556–1560. [Google Scholar] [CrossRef] [PubMed]
- Goyal, A.; Liu, S.; Iqbal, Z.; Fetter, L.A.; Farrow, R.C. Directed self-assembly of individual vertically aligned carbon nanotubes. J. Vac. Sci. Technol. B 2008, 26, 2524–2528. [Google Scholar] [CrossRef]
- Makaram, P.; Selvarasah, S.; Xiong, X.; Chen, C.-L.; Busnaina, A.; Khanduja, N.; Dokmeci, M.R. Three-dimensional assembly of single-walled carbon nanotube interconnects using dielectrophoresis. Nanotechnology 2007, 18, 395204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.B.; Jin, Y.W.; Kim, H.Y.; Lee, S.J.; Yun, M.J.; Kang, J.H.; Choi, Y.S.; Park, N.S.; Lee, N.S.; Kim, J.M. Electrophoresis deposition of carbon nanotubes for triode-type field emission display. Appl. Phys. Lett. 2001, 78, 1547–1549. [Google Scholar] [CrossRef]
- Travis, J.C.; Smith, M.V.; Rasberry, S.D.; Kramer, G.W. Technical Specifications for Certification of Spectrophotometric NTRMs. Natl. Inst. Stand. Technol. Spec. Publ. 2000, 260, 140. [Google Scholar]
- Bai, P.; Li, E.; Lam, K.T.; Kurniawan, O.; Koh, W.S. Carbon nanotube Schottky diode: An atomic perspective. Nanotechnology 2008, 19, 115203. [Google Scholar] [CrossRef]
- Krompiewski, S. Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts. Nanotechnology 2007, 18, 485708. [Google Scholar] [CrossRef] [Green Version]
- Franklin, A.D.; Farmer, D.B.; Haensch, W. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 2014, 8, 7333–7339. [Google Scholar] [CrossRef]
- Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.-M.; Avouris, P. The role of metal−nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 2005, 5, 1497–1502. [Google Scholar] [CrossRef] [Green Version]
- Xiomara, C.-C.; Huaizhi, G.; Bo, G.; Lei, A.; Guohua, C.; Otto, Z. A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 2009, 20, 325707. [Google Scholar]
- Bo, G.; Yue, G.; Yue, Q.; Cheng, Y.; Shimoda, H.; Fleming, L.; Zhou, O. Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition. Adv. Mater. 2001, 13, 1770–1773. [Google Scholar]
- Arnold, M.S.; Green, A.A.; Hulvat, J.F.; Stupp, S.I.; Hersam, M.C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Joriob, A.; Filho, A.G.S.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061. [Google Scholar] [CrossRef]
- Fagan, J.A.; Becker, M.L.; Chun, J.; Hobbie, E.K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613. [Google Scholar] [CrossRef]
- Fagan, J.A.; Lin, N.J.; Zeisler, R.; Walker, A.R.H. Effects of gamma irradiation for sterilization on aqueous dispersions of length sorted carbon nanotubes. Nano Res. 2011, 4, 393–404. [Google Scholar] [CrossRef]
- Kesecioglu, J.; Schultz, M.J.; Haitsma, J.J.; den Heetenz, G.J.; Lachmann, B. Iodixanol inhibits exogenous surfactant therapy in rats with acute respiratory distress syndrome. Eur. Respir. J. 2002, 19, 820–826. [Google Scholar] [CrossRef]
- White, B.; Banerjee, S.; O’Brien, S.; Turro, N.J.; Herman, I.P. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J. Phys. Chem C 2007, 111, 13684–13690. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Cho, J.; Roether, J.A.; Thomas, B.J.C.; Minay, E.J.; Shaffer, M.S.P. Electrophoretic deposition of carbon nanotubes. Carbon 2006, 44, 3149–3160. [Google Scholar] [CrossRef]
- Morgan, H.; Green, N.G. AC Electrokinetics: Colloid and Nanoparticles; Microtechnologies and Microsystems Series; Research Studies Press Ltd: Baldock, UK, 2003. [Google Scholar]
- O’Brien, R.W.; Ward, D.N. The electrophoresis of a spheroid with a thin double layer. J. Colloid Interface Sci. 1988, 121, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.V. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol. 1910, 40, iv–vii. [Google Scholar]
- Sze, S.M. Metal-semiconductor contacts. In Physics of Semiconducctor Devices; Sze, S.M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1981; pp. 245–311. [Google Scholar]
SWCNT Type | Diameter (nm) | Length (nm) | SWCNT (mg/mL) | Suspension |
---|---|---|---|---|
Type-I (m-SWCNT) | 1.2–1.7 | 742 ± 222 | 0.01 | 1% mass/volume with one part SDS to four parts SC |
Type-I (s-SWCNT) | 1.2–1.7 | 613 ± 273 | 0.01 | 1% mass/volume with one part SDS to four parts SC |
Type-II (Short) | 1.2 | 83 ± 26 | 0.01 | 0.07% mass/volume SDC and 0.4–0.47% mass/volume IS |
SWCNT Type | ζ (mV) | FWHM (mV) |
---|---|---|
m-SWCNT | −50 | 19 |
s-SWCNT | −19 | 16 |
Short (1) | −103 | 10 |
Short (2) | −72 | 9 |
Short (3) | −46 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmanan, S.; Kanwal, A.; Liu, S.; Patlolla, A.; Iqbal, Z.; Mitra, S.; Thomas, G.A.; Fagan, J.A.; Farrow, R.C. Improved Electrophoretic Deposition of Vertical Single Wall Carbon Nanotubes with Nanoscopic Electrostatic Lenses. Micromachines 2020, 11, 324. https://doi.org/10.3390/mi11030324
Lakshmanan S, Kanwal A, Liu S, Patlolla A, Iqbal Z, Mitra S, Thomas GA, Fagan JA, Farrow RC. Improved Electrophoretic Deposition of Vertical Single Wall Carbon Nanotubes with Nanoscopic Electrostatic Lenses. Micromachines. 2020; 11(3):324. https://doi.org/10.3390/mi11030324
Chicago/Turabian StyleLakshmanan, Shanmugamurthy, Alokik Kanwal, Sheng Liu, Anitha Patlolla, Zafar Iqbal, Somenath Mitra, Gordon A. Thomas, Jeffrey A. Fagan, and Reginald C. Farrow. 2020. "Improved Electrophoretic Deposition of Vertical Single Wall Carbon Nanotubes with Nanoscopic Electrostatic Lenses" Micromachines 11, no. 3: 324. https://doi.org/10.3390/mi11030324
APA StyleLakshmanan, S., Kanwal, A., Liu, S., Patlolla, A., Iqbal, Z., Mitra, S., Thomas, G. A., Fagan, J. A., & Farrow, R. C. (2020). Improved Electrophoretic Deposition of Vertical Single Wall Carbon Nanotubes with Nanoscopic Electrostatic Lenses. Micromachines, 11(3), 324. https://doi.org/10.3390/mi11030324