Microfluidic Devices for Biomedical Applications: Biomedical Microfluidic Devices 2019
Conflicts of Interest
References
- Oh, K.W. Multidisciplinary Role of Microfluidics for Biomedical and Diagnostic Applications: Biomedical Microfluidic Devices. Micromachines 2017, 8, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Wu, L.; Qiao, Y.; Tu, J.; Lu, Z. Microfluidic Systems Applied in Solid-State Nanopore Sensors. Micromachines 2020, 11, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, S.; Farré-Lladós, J.; Mir, E.; Escolar, G.; Casals-Terré, J. Hemostasis-On-a-Chip: Impedance Spectroscopy Meets Microfluidics for Hemostasis Evaluation. Micromachines 2019, 10, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.-Y.; Lo, Y.-J.; Lei, U. Measurement of the Imaginary Part of the Clausius-Mossotti Factor of Particle/Cell via Dual Frequency Electrorotation. Micromachines 2020, 11, 329. [Google Scholar] [CrossRef] [Green Version]
- Tewari Kumar, P.; Decrop, D.; Safdar, S.; Passaris, I.; Kokalj, T.; Puers, R.; Aertsen, A.; Spasic, D.; Lammertyn, J. Digital Microfluidics for Single Bacteria Capture and Selective Retrieval Using Optical Tweezers. Micromachines 2020, 11, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suwannaphan, T.; Srituravanich, W.; Sailasuta, A.; Piyaviriyakul, P.; Bhanpattanakul, S.; Jeamsaksiri, W.; Sripumkhai, W.; Pimpin, A. Investigation of Leukocyte Viability and Damage in Spiral Microchannel and Contraction-Expansion Array. Micromachines 2019, 10, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baydoun, M.; Treizeibré, A.; Follet, J.; Vanneste, S.B.; Creusy, C.; Dercourt, L.; Delaire, B.; Mouray, A.; Viscogliosi, E.; Certad, G.; et al. An Interphase Microfluidic Culture System for the Study of Ex Vivo Intestinal Tissue. Micromachines 2020, 11, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Zhao, J.; He, C.; Lu, Z.; Lu, X. Miniaturized Platform for Individual Coral Polyps Culture and Monitoring. Micromachines 2020, 11, 127. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.J.; Lee, N.K.; Mylott, J.A.; Mazzola, N.; Ahmed, A.; Abhyankar, V.V. A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. Micromachines 2019, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Koh, D.; Schneider, P.; Breloff, E.; Oh, K.W. A Compact, Syringe-Assisted, Vacuum-Driven Micropumping Device. Micromachines 2019, 10, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.W. Microfluidic Devices for Biomedical Applications: Biomedical Microfluidic Devices 2019. Micromachines 2020, 11, 370. https://doi.org/10.3390/mi11040370
Oh KW. Microfluidic Devices for Biomedical Applications: Biomedical Microfluidic Devices 2019. Micromachines. 2020; 11(4):370. https://doi.org/10.3390/mi11040370
Chicago/Turabian StyleOh, Kwang W. 2020. "Microfluidic Devices for Biomedical Applications: Biomedical Microfluidic Devices 2019" Micromachines 11, no. 4: 370. https://doi.org/10.3390/mi11040370
APA StyleOh, K. W. (2020). Microfluidic Devices for Biomedical Applications: Biomedical Microfluidic Devices 2019. Micromachines, 11(4), 370. https://doi.org/10.3390/mi11040370