Editorial for the Special Issue on Microfluidics for Soft Matter and Mechanobiology
- Droplet generation and its application: Sánchez et al. [1] reviewed recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology. Zeng et al. [2] presented a simple way to predict droplet generation speed in microfluidics device. Chung et al. [3] utilized multilayer parallelized microfluidics geometry for the scalable production of microspheres. Nasser et al. [4] demonstrated a PMMA-based microfluidics device for cost-effective PCR applications. Kim et al. [5] made homogenous amino-functionalized hydrogel microbeads for on-bead bioassay.
- Viscoelasticity-based handling of particles/cells: Cho et al. [6] found the effect of ionic strength on lateral particle migration in shear-thinning fluids. Lim et al. [7] and Nam et al. [8] utilized viscoelasticity to enrich circulating tumor cell [7] and C. albicans [8] in sheathless flow conditions.
- Paper-based assays: Kim et al. [9] reviewed recent advances of fluidic manipulation technologies in paper-based microfluidic assays.
- Flexible devices: Lee et al. [10] demonstrated direct patterning of a carbon nanotube thin layer on a stretchable substrate.
- Mimic of in-vivo microenvironments: Yue et al. [11] engineered vascular-like microstructures by microfluidic construction of multilayered hydrogel microtubes.
- Mechanobiology research: Feng et al. [12] discussed the recent advance and the need for future toolbox development in mechanobiology research of intracellular organelles.
Conflicts of Interest
References
- Sanchez Barea, J.; Lee, J.; Kang, D.K. Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology. Micromachines (Basel) 2019, 10, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, W.; Xiang, D.; Fu, H. Prediction of Droplet Production Speed by Measuring the Droplet Spacing Fluctuations in a Flow-Focusing Microdroplet Generator. Micromachines (Basel) 2019, 10, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.H.Y.; Cui, B.; Song, R.; Liu, X.; Xu, X.; Yao, S. Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels. Micromachines (Basel) 2019, 10, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasser, G.A.; Fath El-Bab, A.M.R.; Abdel-Mawgood, A.L.; Mohamed, H.; Saleh, A.M. CO2 Laser Fabrication of PMMA Microfluidic Double T-Junction Device with Modified Inlet-Angle for Cost-Effective PCR Application. Micromachines (Basel) 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Lee, S.M.; Lee, S.S.; Shin, D.S. Microfluidic Generation of Amino-Functionalized Hydrogel Microbeads Capable of On-Bead Bioassay. Micromachines (Basel) 2019, 10, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.; Hong, S.O.; Lee, S.H.; Hyun, K.; Kim, J.M. Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions. Micromachines (Basel) 2019, 10, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, H.; Back, S.M.; Hwang, M.H.; Lee, D.H.; Choi, H.; Nam, J. Sheathless High-Throughput Circulating Tumor Cell Separation Using Viscoelastic non-Newtonian Fluid. Micromachines (Basel) 2019, 10, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, J.; Jee, H.; Jang, W.S.; Yoon, J.; Park, B.G.; Lee, S.J.; Lim, C.S. Sheathless Shape-Based Separation of Candida Albicans Using a Viscoelastic Non-Newtonian Fluid. Micromachines (Basel) 2019, 10, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Hahn, Y.K.; Kim, M.S. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. Micromachines (Basel) 2020, 11, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.; Kim, H.J.; Park, Y.; Lee, S.; Lee, S.Y.; Ha, T.; Shin, H.J.; Kim, Y.; Kim, J. Direct Patterning of a Carbon Nanotube Thin Layer on a Stretchable Substrate. Micromachines (Basel) 2019, 10, 530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, T.; Liu, N.; Liu, Y.; Peng, Y.; Xie, S.; Luo, J.; Huang, Q.; Takeuchi, M.; Fukuda, T. On-Chip Construction of Multilayered Hydrogel Microtubes for Engineered Vascular-Like Microstructures. Micromachines (Basel) 2019, 10, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.; Lee, S.S.; Kornmann, B. A Toolbox for Organelle Mechanobiology Research-Current Needs and Challenges. Micromachines (Basel) 2019, 10, 538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.S. Editorial for the Special Issue on Microfluidics for Soft Matter and Mechanobiology. Micromachines 2020, 11, 372. https://doi.org/10.3390/mi11040372
Lee SS. Editorial for the Special Issue on Microfluidics for Soft Matter and Mechanobiology. Micromachines. 2020; 11(4):372. https://doi.org/10.3390/mi11040372
Chicago/Turabian StyleLee, Sung Sik. 2020. "Editorial for the Special Issue on Microfluidics for Soft Matter and Mechanobiology" Micromachines 11, no. 4: 372. https://doi.org/10.3390/mi11040372
APA StyleLee, S. S. (2020). Editorial for the Special Issue on Microfluidics for Soft Matter and Mechanobiology. Micromachines, 11(4), 372. https://doi.org/10.3390/mi11040372