A Single-Layer PDMS Chamber for On-Chip Bacteria Culture
Abstract
:1. Introduction
2. Design
Microfluidic Device Design
3. Materials and Methods
3.1. Microfabrication
3.2. Growth and Preparation of E. coli
3.3. Experimental Setup
4. Results
4.1. Valve Performance
4.2. Heavy Metal Testing with the Microfluidic Device
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khademhosseini, A.; Langer, R.; Borenstein, J.; Vacanti, J. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 2006, 103, 2480–2487. [Google Scholar] [CrossRef] [Green Version]
- Mehling, M.; Tay, S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014, 25, 95–102. [Google Scholar] [CrossRef]
- Hung, P.J.; Lee, P.J.; Sabounchi, P.; Lin, R.; Lee, L.P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 2004, 89, 1–8. [Google Scholar] [CrossRef]
- Leclerc, E.; Sakai, Y.; Fujii, T. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Biotechnol. Prog. 2004, 20, 750–755. [Google Scholar] [CrossRef]
- Lee, P.J.; Hung, P.J.; Rao, V.M.; Lee, L.P. Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol. Bioeng. 2006, 94, 5–14. [Google Scholar] [CrossRef]
- Soen, Y.; Mori, A.; Palmer, T.D.; O Brown, P. Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol. Syst. Boil. 2006, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Sjöberg, R.; Leyrat, A.A.; Pirone, D.M.; Chen, C.S.; Quake, S.R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 2007, 79, 8557–8563. [Google Scholar] [CrossRef]
- Hsieh, H.-L.; Nath, P.; Huang, J.-H. Multistep fluidic control network toward the automated generation of organ-on-a-chip. ACS Biomater. Sci. Eng. 2019, 5, 4852–4860. [Google Scholar] [CrossRef]
- Dettinger, P.; Frank, T.; Etzrodt, M.; Ahmed, N.; Reimann, A.; Trenzinger, C.; Loeffler, D.; Kokkaliaris, K.; Schroeder, T.; Tay, S. Automated microfluidic system for dynamic stimulation and tracking of single cells. Anal. Chem. 2018, 90, 10695–10700. [Google Scholar] [CrossRef]
- Wang, C.; Tanataweethum, N.; Karnik, S.; Bhushan, A. Novel microfluidic colon with an extracellular matrix membrane. ACS Biomater. Sci. Eng. 2018, 4, 1377–1385. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Li, T.; Zhao, L.; Ma, C.; Shen, S.; Wang, J. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Anal. Chem. 2015, 87, 9752–9760. [Google Scholar] [CrossRef]
- Topiwala, H.H.; Hamer, G. Effect of wall growth in steady-state continuous cultures. Biotechnol. Bioeng. 1971, 13, 919–922. [Google Scholar] [CrossRef]
- Balagaddé, F.K.; You, L.; Hansen, C.L.; Arnold, F.H.; Quake, S.R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005, 309, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, A.; Leung, K.P.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. High-throughput nano-biofilm microarray for antifungal drug discovery. mBio 2013, 4, e00331-13. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Bae, J.; Kim, T. Long-term and programmable bacterial subculture in completely automated microchemostats. Anal. Chem. 2017, 89, 9676–9684. [Google Scholar] [CrossRef]
- Jian, X.; Guo, X.; Wang, J.; Tan, Z.L.; Xing, X.-H.; Wang, L.; Zhang, C. Microbial microdroplet culture system (MMC): An integrated platform for automated, high-throughput microbial cultivation and adaptive evolution. Biotechnol. Bioeng. 2020. [Google Scholar] [CrossRef]
- Araci, I.E.; Quake, S.R. Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves. Lab Chip 2012, 12, 2803. [Google Scholar] [CrossRef]
- Abate, A.R.; Agresti, J.J.; Weitz, D.A. Microfluidic sorting with high-speed single-layer membrane valves. Appl. Phys. Lett. 2010, 96, 203509. [Google Scholar] [CrossRef]
- Kim, D.; Berlin, A.A. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip 2005, 5, 350–354. [Google Scholar]
- Abate, A.R.; Weitz, D.A. Single-layer membrane valves for elastomeric microfluidic devices. Appl. Phys. Lett. 2008, 92, 243509. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kang, M.; Jensen, E.C.; A Mathies, R. Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. Anal. Chem. 2012, 84, 2067–2071. [Google Scholar] [CrossRef] [Green Version]
- Schudel, B.R.; Choi, C.J.; Cunningham, B.T.; Kenis, P.J.A. Microfluidic chip for combinatorial mixing and screening of assays. Lab Chip 2009, 9, 1676. [Google Scholar] [CrossRef] [PubMed]
- Harada, M. Minamata disease: Methylmercury poisoning in japan caused by environmental pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gireesh-Babu, P.; Chaudhari, A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol. Boil. Rep. 2012, 39, 11225–11229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Siddiqui, S.; Navarrete, P.M.; Yuan, J. An integrated whole-cell detection platform for heavy metal ions. IEEE Sens. J. 2020, 20, 1. [Google Scholar] [CrossRef]
- Rho, H.; Yang, Y.; Ottens, M.; Hanke, A.T.; Terstappen, L.W.; Gardeniers, H.J.G.E. Programmable v-type valve for cell and particle manipulation in microfluidic devices. Lab Chip 2016, 16, 305–311. [Google Scholar] [CrossRef]
- Duffy, D.C.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef]
- Hurdebise, Q.; Tarayre, C.; Fischer, C.; Colinet, G.; Hiligsmann, S.; Delvigne, F. Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry. Sensors 2015, 15, 8981–8999. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Lee, W.; Jang, G.; Kim, B.-G.; Yoon, Y. Modulating the sensing properties of Escherichia coli-based bioreporters for cadmium and mercury. Appl. Microbiol. Biotechnol. 2018, 102, 4863–4872. [Google Scholar] [CrossRef]
Author | Detector/Reporter | Limit of Detection | Incubation Time | Instrument Used |
---|---|---|---|---|
Our Work [25] | zntA-gfp | 44.8 ppb | 2–3 h | Custom Detection Platform |
Gireesh et al. [24] | zntR-zntA(E. coli)-gfp | 0.005 ppm | 16 h | Fluorescence Plate Reader |
Hurdebise et al. [28] | zntA-gfp | 660 ppb | 3 h | Flow cytometer |
Kang et al. [29] | zntA-gfp | 112.4 ppb | 2 h | Fluorescence microscopy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales Navarrete, P.; Yuan, J. A Single-Layer PDMS Chamber for On-Chip Bacteria Culture. Micromachines 2020, 11, 395. https://doi.org/10.3390/mi11040395
Morales Navarrete P, Yuan J. A Single-Layer PDMS Chamber for On-Chip Bacteria Culture. Micromachines. 2020; 11(4):395. https://doi.org/10.3390/mi11040395
Chicago/Turabian StyleMorales Navarrete, Pablo, and Jie Yuan. 2020. "A Single-Layer PDMS Chamber for On-Chip Bacteria Culture" Micromachines 11, no. 4: 395. https://doi.org/10.3390/mi11040395
APA StyleMorales Navarrete, P., & Yuan, J. (2020). A Single-Layer PDMS Chamber for On-Chip Bacteria Culture. Micromachines, 11(4), 395. https://doi.org/10.3390/mi11040395