Safe Coated Microneedles with Reduced Puncture Occurrence after Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Microneedles
2.2.1. Preparation of Uncoated Microneedles
2.2.2. Dip-Coating of Microneedles
2.3. Mechanical Properties of Polymer
2.4. In Vitro Penetration Test
2.5. Force–Displacement Test of Microneedles
2.6. In Vivo Puncture Performance Test of PP Microneedles
3. Results and Discussion
3.1. Geometries of Three Subgroups of Microneedles
3.2. Mechanical Properties of Material
3.3. In Vitro Puncture Performance
3.4. In Vivo Puncture Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MNs | microneedles |
API | active pharmaceutical ingredients |
u-MNs | uncoated microneedles |
c-MNs | coated microneedles |
r-MNs | microneedles with coated formulation removed |
u-L-MNs | uncoated microneedles with low aspect ratio |
u-M-MNs | uncoated microneedles with medium aspect ratio |
u-H-MNs | uncoated microneedles with high aspect ratio |
c-L-MNs | coated microneedles with low aspect ratio |
c-M-MNs | coated microneedles with medium aspect ratio |
c-H-MNs | coated microneedles with high aspect ratio |
r-L-MNs | microneedles with coated formulation removed with low aspect ratio |
r-M-MNs | microneedles with coated formulation removed with medium aspect ratio |
r-H-MNs | microneedles with coated formulation removed with high aspect ratio |
References
- Verbaan, F.; Bal, S.; Van den Berg, D.; Groenink, W.; Verpoorten, H.; Lüttge, R.; Bouwstra, J. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release 2007, 117, 238–245. [Google Scholar] [CrossRef]
- Wu, X.-M.; Todo, H.; Sugibayashi, K. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J. Control. Release 2007, 118, 189–195. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010, 17, 187–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.-H.; Allen, M.G.; Prausnitz, M.R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 2005, 104, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Tarbox, T.N.; Watts, A.B.; Cui, Z.; Williams, R.O. An update on coating/manufacturing techniques of microneedles. Drug Deliv.Transl. Res. 2018, 8, 1828–1843. [Google Scholar] [CrossRef] [PubMed]
- Larraneta, E.; Lutton, R.E.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R 2016, 104, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Park, J.H. Human studies with microneedles for evaluation of their efficacy and safety. Expert Opin. Drug Deliv. 2018, 15, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release 2007, 117, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Gill, H.S.; Prausnitz, M.R. Coating formulations for microneedles. Pharm. Res. 2007, 24, 1369–1380. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Quan, F.-S.; Compans, R.W.; Kang, S.-M.; Prausnitz, M.R. Formulation of microneedles coated with influenza virus-like particle vaccine. AAPS PharmSciTech 2010, 11, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, S.P.; Koutsonanos, D.G.; del Pilar Martin, M.; Lee, J.W.; Zarnitsyn, V.; Choi, S.-O.; Murthy, N.; Compans, R.W.; Skountzou, I.; Prausnitz, M.R. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 2010, 16, 915. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, S.O.; Felner, E.I.; Prausnitz, M.R. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small 2011, 7, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogundele, M.; Okafor, H. Transdermal drug delivery: Microneedles, their fabrication and current trends in delivery methods. J. Pharm. Res. Int. 2017, 18, 1–14. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, H.; Lu, W.; Luan, H.; Wu, Y.; Luo, J.; Wang, Y.; Pi, J.; Lim, C.Y.; Wang, H. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm. Res. 2014, 31, 3348–3360. [Google Scholar] [CrossRef]
- Leone, M.; Mönkäre, J.; Bouwstra, J.; Kersten, G. Dissolving microneedle patches for dermal vaccination. Pharm. Res. 2017, 34, 2223–2240. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.L.; Ren, J.W.; Chen, B.Z.; Jin, X.; Zhang, C.Y.; Guo, X.D. Effect of humidity on mechanical properties of dissolving microneedles for transdermal drug delivery. J. Ind. Eng. Chem. 2018, 59, 251–258. [Google Scholar] [CrossRef]
- Lee, H.S.; Ryu, H.R.; Roh, J.Y.; Park, J.-H. Bleomycin-coated microneedles for treatment of warts. Pharm. Res. 2017, 34, 101–112. [Google Scholar] [CrossRef]
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharm. 2019, 109, 1249–1258. [Google Scholar] [CrossRef]
- Lee, K.J.; Jeong, S.S.; Roh, D.H.; Kim, D.Y.; Choi, H.-K.; Lee, E.H. A practical guide to the development of microneedle systems–In clinical trials or on the market. Int. J. Pharm. 2020, 573, 118778. [Google Scholar] [CrossRef]
- Luangveera, W.; Jiruedee, S.; Mama, W.; Chiaranairungroj, M.; Pimpin, A.; Palaga, T.; Srituravanich, W. Fabrication and characterization of novel microneedles made of a polystyrene solution. J. Mech. Behav. Biomed. Mater. 2015, 50, 77–81. [Google Scholar] [CrossRef]
- Haj-Ahmad, R.; Khan, H.; Arshad, M.S.; Rasekh, M.; Hussain, A.; Walsh, S.; Li, X.; Chang, M.-W.; Ahmad, Z. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics 2015, 7, 486–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearton, M.; Kang, S.-M.; Song, J.-M.; Kim, Y.-C.; Quan, F.-S.; Anstey, A.; Ivory, M.; Prausnitz, M.R.; Compans, R.W.; Birchall, J.C. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 2010, 28, 6104–6113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, G.J.; Hickling, J.; Flores, C.M.J.; Griffin, P.; Anderson, C.D.; Skinner, S.R.; Davies, C.; Witham, K.; Pryor, M.; Bodle, J. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 2018, 36, 3779–3788. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.-R.; Park, S.; Park, J.-H.; Bae, J.-Y.; Kim, G.; Baek, S.-K.; Park, M.-S.; Park, J.-H. Preparation of H1N1 microneedles by a low-temperature process without a stabilizer. Eur. J. Pharm. Biopharm. 2019, 143, 1–7. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Choi, J.; Kim, J.S.; Park, H.; Yang, E.; Lee, W.J.; Baek, S.-K.; Song, M.; Park, J.-H. Skin immunization with third-generation hepatitis B surface antigen using microneedles. Vaccine 2019, 37, 5954–5961. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Singh, T.R.R.; Tunney, M.M.; Morrow, D.I.; McCarron, P.A.; O’Mahony, C.; Woolfson, A.D. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm. Res. 2009, 26, 2513–2522. [Google Scholar] [CrossRef] [Green Version]
- McCrudden, M.T.; Alkilani, A.Z.; Courtenay, A.J.; McCrudden, C.M.; McCloskey, B.; Walker, C.; Alshraiedeh, N.; Lutton, R.E.; Gilmore, B.F.; Woolfson, A.D. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv.Transl. Res. 2015, 5, 3–14. [Google Scholar] [CrossRef]
- Gittard, S.D.; Chen, B.; Xu, H.; Ovsianikov, A.; Chichkov, B.N.; Monteiro-Riviere, N.A.; Narayan, R.J. The effects of geometry on skin penetration and failure of polymer microneedles. J. Adhes. Sci. Technol. 2013, 27, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B. Optimal Microneedle Design for Drug Delivery Based on Insertion Force Experiments with Variable Geometry. Int. J. Control Autom. Syst. 2020, 18, 143–149. [Google Scholar] [CrossRef]
- Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res. 2011, 28, 41–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, L.; Xu, C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip 2017, 17, 1373–1387. [Google Scholar] [CrossRef]
- Juster, H.; van der Aar, B.; de Brouwer, H. A review on microfabrication of thermoplastic polymer-based microneedle arrays. Polym. Eng. Sci. 2019, 59, 877–890. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Prausnitz, M.R. Analysis of mechanical failure of polymer microneedles by axial force. J. Korean Phys. Soc. 2010, 56, 1223. [Google Scholar] [CrossRef]
- Uddin, M.J.; Scoutaris, N.; Klepetsanis, P.; Chowdhry, B.; Prausnitz, M.R.; Douroumis, D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int. J. Pharm. 2015, 494, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.K.; Thakur, M.K. Handbook of Polymers for Pharmaceutical Technologies, Processing and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 2. [Google Scholar]
- Matweb. Tensile Property Testing of Plastics. Available online: http://www.matweb.com/reference/tensilestrength.aspx (accessed on 20 May 2020).
- Song, X.; Chen, Y.; Xu, Y.; Wang, C. Study on tough blends of polylactide and acrylic impact modifier. Bioresources 2014, 9, 1939–1952. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.J.; Arya, J.M.; McClain, M.A.; Frew, P.M.; Meltzer, M.I.; Prausnitz, M.R. Microneedle patches: Usability and acceptability for self-vaccination against influenza. Vaccine 2014, 32, 1856–1862. [Google Scholar] [CrossRef] [Green Version]
- Arya, J.; Henry, S.; Kalluri, H.; McAllister, D.V.; Pewin, W.P.; Prausnitz, M.R. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials 2017, 128, 1–7. [Google Scholar] [CrossRef]
- Vicente-Pérez, E.M.; Quinn, H.L.; McAlister, E.; O’Neill, S.; Hanna, L.-A.; Barry, J.G.; Donnelly, R.F. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo. Pharm. Res. 2016, 33, 3072–3080. [Google Scholar] [CrossRef] [Green Version]
- Ripolin, A.; Quinn, J.; Larrañeta, E.; Vicente-Perez, E.M.; Barry, J.; Donnelly, R.F. Successful application of large microneedle patches by human volunteers. Int. J. Pharm. 2017, 521, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017, 390, 649–658. [Google Scholar] [CrossRef]
Aspect Ratio | PE | PP | nylon | PLA |
---|---|---|---|---|
L (2.2/1.3:(u-coated/coated)) | u-L-PE | u-L-PP | u-L-N | u-L-PLA |
c-L-PE | c-L-PP | c-L-N | c-L-PLA | |
r-L-PE | r-L-PP | r-L-N | r-L-PLA | |
M (2.5/1.4:(u/c)) | u-M-PE | u-M-PP | u-M-N | u-M-PLA |
c-M-PE | c-M-PP | c-M-N | c-M-PLA | |
r-M-PE | r-M-PP | r-M-N | r-M-PLA | |
H (3.0/1.6:(u/c)) | u-H-PE | u-H-PP | u-H–N | u-H-PLA |
c-H-PE | c-H-PP | c-H–N | c-H-PLA | |
r-H-PE | r-H-PP | r-H–N | r-H-PLA |
MNs | WM (μm) | HM (μm) | Aspect Ratio (HM/WM) | Angle θ (°) | Figure 1 |
---|---|---|---|---|---|
(1) u-L (uncoated-low aspect ratio) | 135 | 300 | 2.2 | 77 | (a) |
(2) u-M (uncoated-medium aspect ratio) | 118 | 300 | 2.5 | 79 | (b) |
(3) u-H (uncoated-low aspect ratio) | 100 | 300 | 3.0 | 81 | (c) |
(4) c-L (coated u-L) | 225 | 300 | 1.3 | 69 | (a’) |
(5) c-M (coated u-M) | 214 | 300 | 1.4 | 70 | (b’) |
(6) c-H (coated u-H) | 188 | 300 | 1.6 | 73 | (c’) |
Mechanical Property | PE | PP | Nylon | PLA |
---|---|---|---|---|
Tensile modulus | 1100 | 1000 | 1200 | 2100 |
Flexural strength | 22 | 31 | 45 | 85 |
Elongation ratio (%) | 500 [35] | 100 [36] | 90 [36] | 4.3 [37] |
MNs | Aspect Ratio | PE | PP | N | PLA |
---|---|---|---|---|---|
u-MN | u-L (2.2) | 0.0525 | 0.155 | 0.195 | 0.35 |
u-M (2.5) | 0.085 | 0.14 | 0.145 | 0.2875 | |
u-H (3.0) | 0.02 | 0.07 | 0.0775 | 0.1525 | |
c-MN | c-L (1.3) | 0.1625 | 0.2525 | 0.255 | 0.4875 |
c-M (1.4) | 0.1175 | 0.2125 | 0.25 | 0.325 | |
c-H (1.6) | 0.1025 | 0.1075 | 0.145 | 0.3 |
MNs | Aspect Ratio | PE | PP | N | PLA |
---|---|---|---|---|---|
u-MN | 2.2 | 50 ± 13 | 99 ± 2 | 97 ± 5 | 100 |
2.5 | 56 ± 18 | 95 ± 4 | 99 ± 2 | 100 | |
3.0 | 8 ± 3 | 53 ± 1 | 90 ± 3 | 97 ± 3 | |
c-MN | 1.3 | 95 ± 2 | 99 ± 2 | 100 | 100 |
1.4 | 91 ± 5 | 99 ± 1 | 99 ±2 | 100 | |
1.6 | 82 ± 4 | 95 ± 1 | 97 ± 2 | 99 ± 1 | |
r-MN | 2.2 | 15 ± 2 | 75 ± 8 | 77 ± 8 | 100 |
2.5 | 9 ± 1 | 17 ± 5 | 38 ± 3 | 98 ± 3 | |
3.0 | 6 ± 5 | 17 ± 2 | 13 ± 2 | 93 ± 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.-R.; Jun, H.; Cha, H.-R.; Lee, J.M.; Park, J.-H. Safe Coated Microneedles with Reduced Puncture Occurrence after Administration. Micromachines 2020, 11, 710. https://doi.org/10.3390/mi11080710
Jeong H-R, Jun H, Cha H-R, Lee JM, Park J-H. Safe Coated Microneedles with Reduced Puncture Occurrence after Administration. Micromachines. 2020; 11(8):710. https://doi.org/10.3390/mi11080710
Chicago/Turabian StyleJeong, Hye-Rin, Hyesun Jun, Hye-Ran Cha, Jae Myun Lee, and Jung-Hwan Park. 2020. "Safe Coated Microneedles with Reduced Puncture Occurrence after Administration" Micromachines 11, no. 8: 710. https://doi.org/10.3390/mi11080710
APA StyleJeong, H. -R., Jun, H., Cha, H. -R., Lee, J. M., & Park, J. -H. (2020). Safe Coated Microneedles with Reduced Puncture Occurrence after Administration. Micromachines, 11(8), 710. https://doi.org/10.3390/mi11080710