Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. C. elegans Strains, Maintenance, Synchronization, and Chemical Exposure
2.3. Experimental Setup and Device Design
2.4. Experimental Methodology
2.5. Data Analysis
2.5.1. Quantification of Neuron Degeneration
2.5.2. Statistical Analysis
3. Results and Discussion
3.1. -syn Aggregation Effect on C. elegans’ Electrotaxis
3.2. Chemical Screening Using a PD-Related Neurotoxin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Microfluidic Chip Fabrication
Appendix B. Numerical Simulation of the Electric Field
Appendix C. Comparison of Multi-Worm and Single Worm Electrotaxis Assay
References
- Kinser, H.E.; Pincus, Z. High-throughput screening in the C. elegans nervous system. Mol. Cell. Neurosci. 2017, 80, 192–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.K.; Wang, Y.; Malany, S.; Deonarine, A.; Nguyen, K.; Vasile, S.; Choe, K.P. An ultra high-throughput, whole-animal screen for small molecule modulators of a specific genetic pathway in Caenorhabditis elegans. PLoS ONE 2013, 8, e62166. [Google Scholar]
- O’Reilly, L.P.; Luke, C.J.; Perlmutter, D.H.; Silverman, G.A.; Pak, S.C. C. elegans in high-throughput drug discovery. Adv. Drug Deliv. Rev. 2014, 69, 247–253. [Google Scholar]
- Youssef, K.; Tandon, A.; Rezai, P. Studying Parkinson’s disease using Caenorhabditis elegans models in microfluidic devices. Integr. Biol. 2019, 11, 186–207. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Kumar, N.; Velagala, V.; Zartman, J.J. Tools to reverse-engineer multicellular systems: Case studies using the fruit fly. J. Biol. Eng. 2019, 13, 33. [Google Scholar] [CrossRef]
- Zabihihesari, A.; Hilliker, A.J.; Rezai, P. Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies. Integr. Biol. 2019, 11, 425–443. [Google Scholar] [CrossRef]
- Khalili, A.; Rezai, P. Microfluidic devices for embryonic and larval zebrafish studies. Brief. Funct. Genom. 2019. [Google Scholar] [CrossRef]
- Youssef, K.; Bayat, P.; Peimani, A.R.; Dibaji, S.; Rezai, P. Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. In Environmental, Chemical and Medical Sensors; Springer: Singapore, 2018; pp. 199–225. [Google Scholar]
- Gupta, B.P.; Rezai, P. Microfluidic approaches for manipulating, imaging, and screening C. elegans. Micromachines 2016, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Le, W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp. Neurol. 2013, 250, 94–103. [Google Scholar] [CrossRef]
- Wolozin, B.; Gabel, C.; Ferree, A.; Guillily, M.; Ebata, A. Watching worms whither: Modeling neurodegeneration in C. elegans. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 100, pp. 499–514. [Google Scholar]
- Markaki, M.; Tavernarakis, N. Modeling human diseases in Caenorhabditis elegans. Biotechnol. J. 2010, 5, 1261–1276. [Google Scholar] [CrossRef]
- Chen, X.; Barclay, J.W.; Burgoyne, R.D.; Morgan, A. Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem. Cent. J. 2015, 9, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giráldez-Pérez, R.M.; Antolín-Vallespín, M.; Muñoz, M.D.; Sánchez-Capelo, A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol. Commun. 2014, 2, 176. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Dawson, V.L.; Dawson, T.M. Animal models of Parkinson’s disease: Vertebrate genetics. Cold Spring Harb. Perspect. Med. 2012, 2, a009324. [Google Scholar] [CrossRef] [PubMed]
- Harrington, A.J.; Hamamichi, S.; Caldwell, G.A.; Caldwell, K.A. C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2010, 239, 1282–1295. [Google Scholar]
- Visanji, N.P.; Brotchie, J.M.; Kalia, L.V.; Koprich, J.B.; Tandon, A.; Watts, J.C.; Lang, A.E. α-Synuclein-based animal models of Parkinson’s disease: Challenges and opportunities in a new era. Trends Neurosci. 2016, 39, 750–762. [Google Scholar] [CrossRef]
- Alexander, A.G.; Marfil, V.; Li, C. Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front. Genet. 2014, 5, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.F.; Van Raamsdonk, J.M. Modeling Parkinson’s Disease in C. elegans. J. Park. Dis. 2018, 8, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Jiang, L.; Shi, W.; Qin, J.; Lin, B. A programmable microvalve-based microfluidic array for characterization of neurotoxin-induced responses of individual C. elegans. Biomicrofluidics 2009, 3, 044114. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wen, H.; Lu, Y.; Shi, Y.; Lin, B.; Qin, J. Droplet microfluidics for characterizing the neurotoxin-induced responses in individual Caenorhabditis elegans. Lab A Chip 2010, 10, 2855–2863. [Google Scholar] [CrossRef]
- Mondal, S.; Hegarty, E.; Martin, C.; Gökce, S.K.; Ghorashian, N.; Ben-Yakar, A. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model. Nat. Commun. 2016, 7, 1–11. [Google Scholar] [CrossRef]
- Youssef, K.; Archonta, D.; Kubiseski, T.J.; Tandon, A.; Rezai, P. Semi-mobile C. elegans electrotaxis assay for movement screening and neural monitoring of Parkinson’s disease models. Sens. Actuators B Chem. 2020, 316, 128064. [Google Scholar] [CrossRef]
- Gabel, C.V.; Gabel, H.; Pavlichin, D.; Kao, A.; Clark, D.A.; Samuel, A.D. Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J. Neurosci. 2007, 27, 7586–7596. [Google Scholar] [CrossRef] [PubMed]
- Manière, X.; Lebois, F.; Matic, I.; Ladoux, B.; Di Meglio, J.M.; Hersen, P. Running worms: C. elegans self-sorting by electrotaxis. PLoS ONE 2011, 6, e16637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, B.; Kim, D.; Ko, U.H.; Shin, J.H. A sorting strategy for C. elegans based on size-dependent motility and electrotaxis in a micro-structured channel. Lab Chip 2012, 12, 4128–4134. [Google Scholar] [CrossRef] [PubMed]
- Salam, S.; Ansari, A.; Amon, S.; Rezai, P.; Selvaganapathy, P.R.; Mishra, R.K.; Gupta, B.P. A Microfluidic Phenotype Analysis System Reveals Function of Sensory and Dopaminergic Neuron Signaling in C. elegans Electrotactic Swimming Behavior. In Worm; Taylor & Francis: Abingdon, UK, 2013; Volume 2, p. e24558. [Google Scholar]
- Rezai, P.; Siddiqui, A.; Selvaganapathy, P.R.; Gupta, B.P. Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab A Chip 2010, 10, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Gupta, B.; Selvaganapathy, P.R. An automated microfluidic system for screening Caenorhabditis elegans behaviors using electrotaxis. Biomicrofluidics 2016, 10, 014117. [Google Scholar] [CrossRef] [Green Version]
- Porta-de-la Riva, M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans methods: Synchronization and observation. JoVE J. Vis. Exp. 2012, e4019. [Google Scholar] [CrossRef] [Green Version]
- Van Ham, T.J.; Thijssen, K.L.; Breitling, R.; Hofstra, R.M.; Plasterk, R.H.; Nollen, E.A. C. elegans model identifies genetic modifiers of α-synuclein inclusion formation during aging. PLoS Genet. 2008, 4, e1000027. [Google Scholar] [CrossRef]
- Pu, P.; Le, W. Dopamine neuron degeneration induced by MPP+ is independent of CED-4 pathway in Caenorhabditis elegans. Cell Res. 2008, 18, 978–981. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Rezai, P.; Wu, W.; Selvaganapathy, P. Microfabrication of polymers for bioMEMS. In Mems for Biomedical Applications; Woodhead Publishing: Cambridge, UK, 2012; pp. 3–45. [Google Scholar]
- Hulme, S.E.; Shevkoplyas, S.S.; Apfeld, J.; Fontana, W.; Whitesides, G.M. A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab A Chip 2007, 7, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab A Chip 2012, 12, 515–545. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitulano, S.; Di Ruberto, C.; Nappi, M. Biomedical image processing human perception modeling. In Proceedings of the Third International Conference on Electronics Circuits, and Systems, Rodos, Greece, 13–16 October 1996; Volume 2, pp. 1116–1119. [Google Scholar]
- Kavallaris, M.; Ng, D.; Byrne, F. Cytoskeleton and Human Disease; Humana Press: Totowa, NJ, USA, 2012. [Google Scholar]
- Bodhicharla, R.; Nagarajan, A.; Winter, J.; Adenle, A.; Nazir, A.; Brady, D.; Vere, K.; Richens, J.; O’Shea, P.; R Bell, D.; et al. Effects of α-synuclein overexpression in transgenic Caenorhabditis elegans strains. CNS Neurol. Disord.-Drug Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord. 2012, 11, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Offenburger, S.L.; Ho, X.Y.; Tachie-Menson, T.; Coakley, S.; Hilliard, M.A.; Gartner, A. 6-OHDA-induced dopaminergic neurodegeneration in Caenorhabditis elegans is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33. PLoS Genet. 2018, 14, e1007125. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, K.; Archonta, D.; Kubiseski, T.; Tandon, A.; Rezai, P. Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans. Micromachines 2020, 11, 756. https://doi.org/10.3390/mi11080756
Youssef K, Archonta D, Kubiseski T, Tandon A, Rezai P. Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans. Micromachines. 2020; 11(8):756. https://doi.org/10.3390/mi11080756
Chicago/Turabian StyleYoussef, Khaled, Daphne Archonta, Terrance Kubiseski, Anurag Tandon, and Pouya Rezai. 2020. "Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans" Micromachines 11, no. 8: 756. https://doi.org/10.3390/mi11080756
APA StyleYoussef, K., Archonta, D., Kubiseski, T., Tandon, A., & Rezai, P. (2020). Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans. Micromachines, 11(8), 756. https://doi.org/10.3390/mi11080756