Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review
Abstract
:1. Introduction
2. Miniaturization
2.1. Scale-Down Concept
2.2. Miniature Bioreactors
2.3. Fluid Dynamics
2.4. Parallelization
2.5. Sensor Capabilities
3. Facets of 3D Printing
3.1. 3D Printing—Additive Manufacturing
3.2. 3D Printed Bioreactors
3.3. Biocompatibility
3.4. Evaluation of Fabrication Techniques
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bareither, R.; Pollard, D. A review of advanced small-scale parallel bioreactor technology for accelerated process development: Current state and future need. Biotechnol. Prog. 2010, 27, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Kurzrock, T.; Kress, K. Downscale Upscale—Elasticity of Scales—An Approach to Forecast Future Requirements in Biotechnology. JSM Biotechnol. Biomed. Eng. 2014, 2, 1030. [Google Scholar]
- Li, F.; Hashimura, Y.; Pendleton, R.; Harms, J.; Collins, E.; Lee, B. A Systematic Approach for Scale-Down Model Development and Characterization of Commercial Cell Culture Processes. Biotechnol. Prog. 2006, 22, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Powell, J. Reactor Scale-down for Pilot Plant, Bench Scale, and Multi-Throughput Units. In Proceedings of the 2006 Annual Meeting, St Lucia, Australia, 12–18 August 2006. [Google Scholar]
- Van’t Riet, K.; Tramper, J. Basic Bioreactor Design; CRC Press: Wageningen, The Netherlands, 1911. [Google Scholar]
- Bouallagui, H.; Touhami, Y.; Cheikh, R.B.; Hamdi, M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 2005, 40, 989–995. [Google Scholar] [CrossRef]
- De Silva, D.; Urbain, V.; Abeysinghe, D.; Rittmann, B. Advanced analysis of membrane-bioreactor performance with aerobic-anoxic cycling. Water Sci. Technol. 1998, 38, 505–512. [Google Scholar] [CrossRef]
- Lübbert, A.; Jørgensen, S. Bioreactor performance: A more scientific approach for practice. J. Biotechnol. 2001, 85, 187–212. [Google Scholar] [CrossRef]
- Doran, P.M. Bioprocess Engineering Principles; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Klöckner, W.; Büchs, J. Advances in shaking technologies. Trends Biotechnol. 2012, 30, 307–314. [Google Scholar] [CrossRef]
- Merchuk, J.; Contreras, A.; García-Camacho, F.; Molina, E. Studies of mixing in a concentric tube airlift bioreactor with different spargers. Chem. Eng. Sci. 1998, 53, 709–719. [Google Scholar] [CrossRef]
- Manyika, J.; Chui, M.; Bughin, J.; Dobbs, R.; Bisson, P.; Marrs, A. Disruptive Technologies: Advances that Will Transform Life, Business, and the Global Economy; McKinsey Global Institute: San Francisco, CA, USA, 2013; Volume 180. [Google Scholar]
- Berman, B. 3-D printing: The new industrial revolution. Bus. Horizons 2012, 55, 155–162. [Google Scholar] [CrossRef]
- Lattermann, C.; Büchs, J. Design and Operation of Microbioreactor Systems for Screening and Process Development; Bioreactors: Design, Operation and Novel Applications; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Velez-Suberbie, M.L.; Betts, J.P.J.; Walker, K.L.; Robinson, C.; Zoro, B.; Keshavarz-Moore, E. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Biotechnol. Prog. 2017, 34, 58–68. [Google Scholar] [CrossRef]
- Bartlett, D.H. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta (BBA) Bioenergy 2002, 1595, 367–381. [Google Scholar] [CrossRef]
- Hemmerich, J.; Noack, S.; Wiechert, W.; Oldiges, M. Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnol. J. 2018, 13, 1700141. [Google Scholar] [CrossRef] [PubMed]
- Nienow, A.W.; Rielly, C.D.; Brosnan, K.; Bargh, N.; Lee, K.; Coopman, K.; Hewitt, C.J. The physical characterisation of a microscale parallel bioreactor platform with an industrial CHO cell line expressing an IgG4. Biochem. Eng. J. 2013, 76, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Bareither, R.; Bargh, N.; Oakeshott, R.; Watts, K.; Pollard, D. Automated disposable small scale reactor for high throughput bioprocess development: A proof of concept study. Biotechnol. Bioeng. 2013, 110, 3126–3138. [Google Scholar] [CrossRef] [PubMed]
- Betts, J.I.; Doig, S.D.; Baganz, F. Characterization and Application of a Miniature 10 mL Stirred-Tank Bioreactor, Showing Scale-Down Equivalence with a Conventional 7 L Reactor. Biotechnol. Prog. 2006, 22, 681–688. [Google Scholar] [CrossRef]
- Betts, J.I.; Baganz, F. Miniature bioreactors: Current practices and future opportunities. Microb. Cell Factories 2006, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Watts, P.; Wiles, C. Micro reactors: A new tool for the synthetic chemist. Org. Biomol. Chem. 2007, 5, 727. [Google Scholar] [CrossRef]
- Szita, N.; Boccazzi, P.; Zhang, Z.; Boyle, P.; Sinskey, A.J.; Jensen, K.F. Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 2005, 5, 819–826. [Google Scholar] [CrossRef]
- Lee, H.L.T.; Boccazzi, P.; Ram, R.J.; Sinskey, A.J. Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 2006, 6, 1229. [Google Scholar] [CrossRef]
- Maharbiz, M.M.; Holtz, W.J.; Howe, R.T.; Keasling, J.D. Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol. Bioeng. 2004, 85, 376–381. [Google Scholar] [CrossRef]
- Hortsch, R.; Stratmann, A.; Weuster-Botz, D. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Biotechnol. Bioeng. 2010, 106, 443–451. [Google Scholar] [CrossRef]
- Hortsch, R.; Weuster-Botz, D. Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol. Prog. 2009, 26, 599. [Google Scholar] [CrossRef] [PubMed]
- Amanullah, A.; Otero, J.M.; Mikola, M.; Hsu, A.; Zhang, J.; Aunins, J.; Schreyer, H.B.; Hope, J.A.; Russo, A.P. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Biotechnol. Bioeng. 2010, 106, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Figallo, E.; Cannizzaro, C.; Gerecht, S.; Burdick, J.A.; Langer, R.; Elvassore, N.; Vunjak-Novakovic, G. Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 2007, 7, 710–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimetta, E.; Figallo, E.; Cannizzaro, C.; Elvassore, N.; Vunjak-Novakovic, G. Micro-bioreactor arrays for controlling cellular environments: Design principles for human embryonic stem cell applications. Methods 2009, 47, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Janakiraman, V.; Kwiatkowski, C.; Kshirsagar, R.; Ryll, T.; Huang, Y. Application of High-Throughput Mini-Bioreactor System for Systematic Scale-Down Modeling, Process Characterization and Control Strategy Development. Biotechnol. Prog. 2015, 31, 1623–1632. [Google Scholar] [CrossRef]
- Delouvroy, F.; Siriez, G.; Tran, A.-V.; Mukankurayija, L.; Kochanowski, N.; Malphettes, L. ambr™ Mini-bioreactor as a high-throughput tool for culture process development to accelerate transfer to stainless steel manufacturing scale: Comparability study from process performance to product quality attributes. BMC Proc. 2015, 9, P78. [Google Scholar] [CrossRef] [Green Version]
- Bulnes-Abundis, D.; Carrillo-Cocom, L.M.; Aráiz-Hernández, D.; García-Ulloa, A.; Granados-Pastor, M.; Sánchez-Arreola, P.B.; Murugappan, G.; Alvarez, M.M. A simple eccentric stirred tank mini-bioreactor: Mixing characterization and mammalian cell culture experiments. Biotechnol. Bioeng. 2012, 110, 1106–1118. [Google Scholar] [CrossRef]
- Nickel, D.B.; Bournazou, M.N.C.; Wilms, T.; Neubauer, P.; Knepper, A. Online bioprocess data generation, analysis, and optimization for parallel fed-batch fermentations in milliliter scale. Eng. Life Sci. 2016, 17, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.m2p-labs.com/bioreactors/products/biolector-pro/#!/1 (accessed on 17 February 2020).
- Available online: https://www.applikon-biotechnology.com/en/products/cultivation-systems/micro-matrix/ (accessed on 4 March 2020).
- Katsikogianni, M.G.; Missirlis, Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef]
- Knitter, R.; Liauw, M.A. Ceramic microreactors for heterogeneously catalysed gas-phase reactions. Lab Chip 2004, 4, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Wu, C.; Atre, S.V.; Jovanovic, G.; Narayanan, V.; Kimura, S.; Sprenkle, V.; Canfield, N.; Roy, S. Synthesis of Nanoparticles in High Temperature Ceramic Microreactors: Design, Fabrication and Testing. Int. J. Appl. Ceram. Technol. 2009, 6, 410–419. [Google Scholar] [CrossRef]
- Woolley, A.T.; Mathies, R.A. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Natl. Acad. Sci. USA 1994, 91, 11348–11352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellors, J.S.; Gorbounov, V.; Ramsey, R.S.; Ramsey, J.M. Fully Integrated Glass Microfluidic Device for Performing High-Efficiency Capillary Electrophoresis and Electrospray Ionization Mass Spectrometry. Anal. Chem. 2008, 80, 6881–6887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bens, A.; Seitz, H.; Bermes, G.; Emons, M.; Pansky, A.; Roitzheim, B.; Tobiasch, E.; Tille, C. Non-toxic flexible photopolymers for medical stereolithography technology. Rapid Prototyp. J. 2007, 13, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Becker, H.; Gärtner, C. Polymer based micro-reactors. Rev. Mol. Biotechnol. 2001, 82, 89–99. [Google Scholar] [CrossRef]
- Becker, H.; Gartner, C. Polymer micro fabrication methods for micro fluidicanalytical applications. Electrophoresis 2000, 21, 12–26. [Google Scholar] [CrossRef]
- Geyer, K.; Seeberger Peter, H. Optimization of glycosylation reactions in a microreactor. Helv. Chim. Acta 2007, 90, 395–403. [Google Scholar] [CrossRef]
- Yen, B.; Gunther, A.; Thalmann, M.; Bawendi, M.; Jensen, K. A microfabricated segmented-flow reactor for the synthesis of CdSe quantum dots. In Proceedings of the Eighth International Conference on Miniaturized Systems in Chemistry and Life Science, Malmö, Sweden, 26–30 September 2004. [Google Scholar]
- Hessel, V.; Hardt, S.; Lowe, H. Chemical Micro Process Engineering: Fundamentals, Modelling and Reactions; John Wiley & Sons: Hoboken, NJ, USA, 2004; p. 712. [Google Scholar]
- Ehrfeld, W.; Hessel, V.; Lowe, H. Microreactors: New Technology for Modern Chemistry; Wiley/VCH: Weinheim, Germany, 2000; p. 288. [Google Scholar]
- Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. 2002, 4, 261–286. [Google Scholar] [CrossRef]
- Tehranirokh, M.; Kouzani, A.Z.; Francis, P.S.; Kanwar, J.R. Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 2013, 7, 051502. [Google Scholar] [CrossRef] [Green Version]
- Brody, J.P.; Yager, P.; Goldstein, R.E.; Austin, R. Biotechnology at low Reynolds numbers. Biophys. J. 1996, 71, 3430–3441. [Google Scholar] [CrossRef] [Green Version]
- Purcell, E.M. Life at low Reynolds number. Am. J. Phys. 1977, 45, 3. [Google Scholar] [CrossRef] [Green Version]
- Breslauer, D.N.; Lee, P.J.; Lee, L.P. Microfluidics-based systems biology. Mol. BioSyst. 2006, 2, 97. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Huang, S.-B.; Lee, G.-B. Microfluidic cell culture systems for drug research. Lab Chip 2010, 10, 939. [Google Scholar] [CrossRef]
- Alam, M.N.H.Z.; Gernaey, K.V. Overview on Design Considerations for Development of Disposable Microbioreactor Prototypes. J. Teknol. 2012, 59. [Google Scholar] [CrossRef] [Green Version]
- Dietzel, A. Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets and Cells; Springer: Braunschweig, Germany, 2016. [Google Scholar]
- Tabatabaei, M.; Ghanavati, H. Biogas: Fundamentals, Process, and Operation, 6th ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Schäpper, D.; Stocks, S.M.; Szita, N.; Lantz, A.E.; Gernaey, K.V. Development of a single-use microbioreactor for cultivation of microorganisms. Chem. Eng. J. 2010, 160, 891–898. [Google Scholar] [CrossRef]
- Zhang, Z.; Boccazzi, P.; Choi, H.-G.; Perozziello, G.; Sinskey, A.J.; Jensen, K.F. Microchemostat—Microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 2006, 6, 906–913. [Google Scholar] [CrossRef]
- Lee, K.S.; Boccazzi, P.; Sinskey, A.J.; Ram, R.J. Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab Chip 2011, 11, 1730. [Google Scholar] [CrossRef]
- Park, J.; Wu, J.; Polymenis, M.; Han, A. Microchemostat array with small-volume fraction replenishment for steady-state microbial culture. Lab Chip 2013, 13, 4217. [Google Scholar] [CrossRef]
- Zanzotto, A.; Szita, N.; Boccazzi, P.; Lessard, P.; Sinskey, A.J.; Jensen, K.F. Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol. Bioeng. 2004, 87, 243–254. [Google Scholar] [CrossRef]
- Larroche, C.; Sanroman, M.; Du, G.; Pandey, A. Current Developments in Biotechnology and Bioengineering: Bioprocesses, Bioreactors and Controls; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Bower, D.M.; Lee, K.S.; Ram, R.J.; Prather, K.L. Fed-batch microbioreactor platform for scale down and analysis of a plasmid DNA production process. Biotechnol. Bioeng. 2012, 109, 1976–1986. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.; Kawaguchi, K.; Yasuda, M.; Riley, D.; Cruz, V.B.; Tran, N.; Chimbayo, A.; Najafi, N. Embedded MEMS-based concentration sensor for fuel cell and biofuel applications. Sens. Actuators Phys. 2008, 145, 9–13. [Google Scholar] [CrossRef]
- Harper, J.C.; Brozik, S.M.; Flemming, J.H.; McClain, J.L.; Polsky, R.; Raj, D.; Eyck, G.A.T.; Wheeler, D.R.; Achyuthan, K.E. Fabrication and Testing of a Microneedles Sensor Array for p-Cresol Detection with Potential Biofuel Applications. ACS Appl. Mater. Interfaces 2009, 1, 1591–1598. [Google Scholar] [CrossRef]
- Sharma, S.; Madou, M. A new approach to gas sensing with nanotechnology. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2012, 370, 2448–2473. [Google Scholar] [CrossRef]
- Ventola, C.L. Medical Applications for 3D Printing: Current and Projected Uses. P T A Peer Rev. J. Formul. Manag. 2014, 39, 704–711. [Google Scholar]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3d-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, M.P.; Rozen, W.M.; McMenamin, P.G.; Findlay, M.W.; Spychal, R.T.; Hunter-Smith, D.J. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Front. Surg. 2015, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotz, F.; Arnold, K.; Bauer, W.; Schild, D.; Keller, N.; Sachsenheimer, K.; Nargang, T.M.; Richter, C.; Helmer, D.; Rapp, B.E. Three-dimensional printing of transparent fused silica glass. Nature 2017, 544, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Selimis, A.; Mironov, V.; Farsari, M. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng. 2015, 132, 83–89. [Google Scholar] [CrossRef]
- Murphy, S.V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Ngo, T.; Kashani, A.; Imbalzano, G.; Nguyen, Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Olakanmi, E.O.T.; Cochrane, R.; Dalgarno, K. A review on selective laser sin-tering/melting (sls/slm) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Young, P.; Huang, J.; Zhu, W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater. Sci. Eng. A 2015, 628, 238–246. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W.; Qiu, J.; Wei, J.; Wang, S. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos. Part B Eng. 2015, 80, 369–378. [Google Scholar] [CrossRef]
- Au, A.K.; Lee, W.; Folch, A. Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices. Lab Chip 2014, 14, 1294–1301. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ye, F.; Liu, L.; Liu, Q. Feasibility of preparing of silicon nitride ceramics components by aqueous tape casting in combination with laminated object manufacturing. Mater. Des. 2015, 66, 331–335. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y. Tissue engineering applications of three-dimensional bioprint-ing. Cell Biochem. Biophys. 2015, 72, 777–782. [Google Scholar] [CrossRef]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3d bio-printing for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Li, C.; Ding, B.; Zhang, L.; Song, K.; Tao, S. 3D-printed continuous flow reactor for high yield synthesis of CH3NH3PbX3 (X = Br, I) nanocrystals. J. Mater. Chem. C 2019, 7, 9167–9174. [Google Scholar] [CrossRef]
- Bettermann, S.; Schroeter, B.; Moritz, H.-U.; Pauer, W.; Fassbender, M.; Luinstra, G.A. Continuous emulsion copolymerization processes at mild conditions in a 3D-printed tubular bended reactor. Chem. Eng. J. 2018, 338, 311–322. [Google Scholar] [CrossRef]
- Schmieg, B.; Döbber, J.; Kirschhöfer, F.; Pohl, M.; Franzreb, M. Advantages of Hydrogel-Based 3D-Printed Enzyme Reactors and Their Limitations for Biocatalysis. Front. Bioeng. Biotechnol. 2019, 6, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J. Animal Cell Culture: Essential Methods. Chichester, West Sussex. 2011. Available online: http://search.ebscohost.com.proxy-ub.rug.nl/login.aspx?direct=true&db=nlebk&AN=391253&site=ehost-live&scope=site (accessed on 9 December 2019).
- Raveling, A.R.; Theodossiou, S.K.; Schiele, N.R. A 3D printed mechanical bioreactor for investigating mechanobiology and soft tissue mechanics. MethodsX 2018, 5, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Michel, F.M.; Rimstidt, J.D.; Kletetschka, K. 3D printed mixed flow reactor for geochemical rate measurements. Appl. Geochem. 2018, 89, 86–91. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Chen, Z.; Wu, T.; Jiang, Z.; Tong, L.; Tang, B. A Simple 3D-Printed Enzyme Reactor Paper Spray Mass Spectrometry Platform for Detecting BuChE Activity in Human Serum. Anal. Chem. 2019, 91, 12874–12881. [Google Scholar] [CrossRef]
- Su, C.-K.; Tseng, H.-H. 3D-printed CuO nanoparticle–functionalized flow reactor enables online fluorometric monitoring of glucose. Microchim. Acta 2019, 186, 404. [Google Scholar] [CrossRef]
- Latocha, J.; Wojasiński, M.; Jurczak, K.; Gierlotka, S.; Sobieszuk, P.; Ciach, T.; Jurczak, K. Precipitation of hydroxyapatite nanoparticles in 3D-printed reactors. Chem. Eng. Process. Process. Intensif. 2018, 133, 221–233. [Google Scholar] [CrossRef]
- Kadimisetty, K.; Song, J.; Doto, A.M.; Hwang, Y.; Peng, J.; Mauk, M.G.; Bushman, F.D.; Gross, R.; Jarvis, J.N.; Liu, C. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens. Bioelectron. 2018, 109, 156–163. [Google Scholar] [CrossRef]
- Scotti, G.; Nilsson, S.M.E.; Haapala, M.; Pöhö, P.; Gennäs, G.B.A.; Yli-Kauhaluoma, J.; Kotiaho, T. A miniaturised 3D printed polypropylene reactor for online reaction analysis by mass spectrometry. React. Chem. Eng. 2017, 2, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef]
- Ai, H.; Anderson, J.; Anseth, K.; Antoniac, I.; Barbosa, M.; Basu, B.; Best, S.; Bettini, R.; Bezuidenhout, D.; Bizios, R.; et al. Attendees at Chengdu Definitions in Biomaterials Conference 2019. In Proceedings of the Definitions of Biomaterials for the Twenty-First Century, Chester, UK, 3–5 March 1986; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Williams, D.F. Biocompatibility Pathways in Tissue-Engineering Templates. Engineering 2018, 4, 286–290. [Google Scholar] [CrossRef]
- Black, J. Biological Performance of Materials; Informa UK Limited: Essex, UK, 2005. [Google Scholar]
- Williams, D.F. There is no such thing as a biocompatible material. Biomaterials 2014, 35, 10009–10014. [Google Scholar] [CrossRef] [PubMed]
- Pahl, G.; Beitz, W. Engineering Design: A Systematic Approach, 3rd ed.; Springer: London, UK, 2007. [Google Scholar]
- Kalpakjian, S. Manufacturing Processes for Engineering Materials, 5th ed.; Pearson Education: London, UK, 2008. [Google Scholar]
- Edmonds, T.; Edmonds, C.; Tsay, B.; Olds, P. Fundamental Managerial Accounting Concepts, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Heinzel, A.; Mahlendorf, F.; Niemzig, O.; Kreuz, C. Injection moulded low cost bipolar plates for PEM fuel cells. J. Power Sources 2004, 131, 35–40. [Google Scholar] [CrossRef]
- Chougule, R.G.; Ravi, B. Casting cost estimation in an integrated product and process design environment. Int. J. Comput. Integr. Manuf. 2006, 19, 676–688. [Google Scholar] [CrossRef]
- Shunmugam, M.; Reddy, S.B.; Narendran, T. Selection of optimal conditions in multi-pass face-milling using a genetic algorithm. Int. J. Mach. Tools Manuf. 2000, 40, 401–414. [Google Scholar] [CrossRef]
- Hui, Y.V.; Leung, L.C.; Linn, R. Optimal machining conditions with costs of quality and tool maintenance for turning. Int. J. Prod. Res. 2001, 39, 647–665. [Google Scholar] [CrossRef]
Reactor Volume | Application | Material | Mixing | Sensors | Ref. |
---|---|---|---|---|---|
μBR (150 μL) | Microbial fermentation | PMMA 1, PDMS 3 | Magnetic | pH, DO 2 | [23] |
μBR (150 μL) | Fermentation | PDMS | Peristaltic oxygenating mixer | pH, DO | [24] |
μBR (150 μL) | Cell cultivation | Plastic | Unknown | pH, DO, dCO2 | [25] |
Milliliter scale tank BR (10 mL) | Mycelium forming | PEEK * | Magnetic | pH, DO | [26] |
Milliliter scale BR (12 mL) | Measuring power consumption/energy dissipation | magnetic | Torque, particle size | [27] | |
SimcellTM (1 mL) | Cell cultivation | Sparging | pH, DO | [28] | |
MA (0.1–2.0 mL) | Controlling cellular microenvironment | PDMS | Unknown | Flow velocity | [29,30] |
ambrTM (15 mL) | Cell cultivation | Sparging | pH, DO | [31] | |
ambrTM (15 mL) | Cell cultivation | Sparging | pH, DO | [32] | |
Mini bioreactor (30 mL) | Mammalian cell culturing | Angled disc impeller | Temperature | [33] | |
BioREACTOR48 (8–15 mL) | Parallel fermentation | Autoinduction impeller | pH, DO | [34] | |
RoboLector (800–2400 µL) | Parallel fermentation | Shaking | biomass, pH, DO, fluorescence | [35] | |
micro-Matrix (10 mL) | Parallel fermentation | Shaking | pH, DO, Temperature | [36] |
Solutions | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Supply thermal energy | Water bath | Water jacket | Hot air oven | Micro heaters | Coil |
Supply electrical energy | Plug and socket | Battery | Controller | ||
Supply substrate | Infusion pump | Infusion controller | Effluent and pump | Piezoelectric pressure sensor | |
Open / close reactor | Insertable lid | Lid and thread | |||
Ports sealing | Teflon tape | Butyl rubber and needle | Tight thread | Rubber O-ring | 1-component design |
Measure pH | Online mini electrodes | Offline assay kit (pH test strips) | Offline assay kit (fluorometric intracellular pH) | ||
Measure biogas volume | Gas counter | Water displacement | Syringe | Flow meter | |
Type of Reactor | 3D Printing Technique | Printing Material | Volume (in mL) | Conditions | Application | Remarks | Ref. |
---|---|---|---|---|---|---|---|
Enzyme Reactor Paper Spray | Autoclavable polylactic acid plastic | 3.5 | Heated to 40 °C for 15 min, then 37 °C for 10 min. Then a voltage of 4 kV. Then heated to 68 °C for 5 min. | BuChE detection using a paper strip coated with 4-mercaptobutyrylcholine-functionalized gold nanoparticles | Easy preparation, low-cost, facile modification. High reliability and repeatability | [90] | |
Mechanical Stretching Bioreactor | FDM | ABS plus-P430 in combination with SR30 soluble support material | 1.35 | Procedures of a cell biology/tissue engineering laboratory. Laminar flow, mechanical stimulation | Mechanical stretching, tissue engineering | No malfunctions during testing | [87] |
Mechanical bioreactor | Acrylonitrile butadiene styrene (ABS) | 129.9 | Cycle tensile strains are applied. Force and displacement data collection with ramp control program | Low-cost culture chamber for maintaining cells and engineered tissue in culture medium and custom grips for mounting 3D engineered tissue constructs and soft tissues | Can be sterilized with 70% ethanol. Maximum failure loads of less than 10 Newton | [88] | |
Continuous flow reactor | SLA | Methacrylate photopolymer resin | 0.00265 | Stirring at 800 rpm | Preparation of perovskite nanocrystals in the full-emission range | [84] | |
CuO-nanoparticle functionalized flow reactor | FDM | Poly(lactic acid) filaments | 0.868 | pH 10, reaction temperature = 50 °C, reaction medium = 100 mM phosphate-buffered saline | Online fluorometric monitoring of glucose | The 3D printed flow reactor has several advantages over the conventional flow reactor | [91] |
Hydrogel-based enzyme reactor | Pneumatic extrusion-based printing | PEO and Laponite RD | 0.507 | T = 37 °C, pH 9. Centrifugation with 10,000 rpm, 4 min. | Immobilization of enzymes in hydrogel lattices under mild conditions | Mass transfer limitations occur | [86] |
Continuous reactor | FDM | Acrylonitrile butadiene styrene (ABS) | 0.15 | T = 60 °C, pH 10. Agitation at 400 rpm. Then centrifuged at 5500 rpm for 30 min. | Continuous precipitation of hydroxyapatite nanoparticles for potential tissue engineering applications | [92] | |
Microfluidic reactor | SLA | Clear methacrylate-based resin | 1.008 | Plasma samples added, incubated at 56 °C for 15 min. | Carrying out extraction, concentration and isothermal amplification of nucleic acids in a variety of body fluids | Cost-effective scalability. PEG-coating resulted in the best results. Suitable for all types of detection | [93] |
Tubular bent reactor | FDM | Polylactic acid (PLA) | 330 | Injector T = 200 °C. Gas chromatography | Redox-initiated continuous emulsion copolymerization of styrene-butyl acrylate and vinyl acetate-neodecanoic acid vinyl ester | Narrow residence time distribution, small dead volumes and suitable flow characteristics for emulsion copolymerization processes | [85] |
Mixed flow reactor | SLA | Clear Resin (Formlabs) | 25 | Curing treatment | Measure mineral precipitation rates | Can also be modified for use in mineral dissolution experiments | [89] |
Miniaturized polypropylene reactor | FDM | Polypropylene | 0.25 | Magnetic stirring. Infusion rate of 125 μL min–1 | Online analysis of a Diels-Alder reaction and the subsequent retro Diels-Alder reaction | Resistant to inorganic and organic reagents and solvents | [94] |
Technique | Technical | Economical |
---|---|---|
3D printing | Quality | Raw material costs |
Injection molding | Lifespan | Production costs |
Casting | Process complexity | Production time |
Milling and turning | Process accuracy | Flexibility |
Quality | General overhead costs |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achinas, S.; Heins, J.-I.; Krooneman, J.; Euverink, G.J.W. Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review. Micromachines 2020, 11, 853. https://doi.org/10.3390/mi11090853
Achinas S, Heins J-I, Krooneman J, Euverink GJW. Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review. Micromachines. 2020; 11(9):853. https://doi.org/10.3390/mi11090853
Chicago/Turabian StyleAchinas, Spyridon, Jorn-Ids Heins, Janneke Krooneman, and Gerrit Jan Willem Euverink. 2020. "Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review" Micromachines 11, no. 9: 853. https://doi.org/10.3390/mi11090853
APA StyleAchinas, S., Heins, J. -I., Krooneman, J., & Euverink, G. J. W. (2020). Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review. Micromachines, 11(9), 853. https://doi.org/10.3390/mi11090853