Micro and Nano Raman Lasers
Conflicts of Interest
References
- Spence, D.J. Spectral effects of stimulated Raman scattering in crystals. Prog. Quantum Electron. 2017, 51, 1–45. [Google Scholar] [CrossRef]
- Shen, Y.R.; Bloembergen, N. Theory of Stimulated Brillouin and Raman Scattering. Phys. Rev. 2002, 137, A1787–A1805. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A. Fiber Amplifiers and Fiber Lasers Based on Stimulated Raman Scattering: A Review. Micromachines 2020, 11, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernice, P.; Sirleto, L.; Vergara, A.; Aronne, A.; Gagliardi, M.; Fanelli, E.; Righini, G.C. Large Raman Gain in a Stable Nanocomposite Based on Niobiosilicate Glass. J. Phys. Chem. C 2011, 115, 17314–17319. [Google Scholar] [CrossRef]
- Sirleto, L.; Aronne, A.; Gioffrè, M.; Fanelli, E.; Righini, G.C.; Pernice, P.; Vergara, A. Compositional and thermal treatment effects on Raman gain and bandwidth in nanostructured silica based glasses. Opt. Mater. 2013, 36, 408–413. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Sirleto, L. Integrated Raman Laser: A Review of the Last Two Decades. Micromachines 2020, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Coillet, A.; Chembo, Y.K. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon. 2017, 9, 828–890. [Google Scholar] [CrossRef]
- Sain, B.; Meier, C.; Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review. Adv. Photon. 2019, 1, 024002. [Google Scholar] [CrossRef] [Green Version]
- Spillane, S.M.; Kippenberg, T.J.; Vahala, K.J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nat. Cell Biol. 2002, 415, 621–623. [Google Scholar] [CrossRef]
- Choi, H.; Armani, A.M. High Efficiency Raman Lasers Based on Zr-Doped Silica Hybrid Microcavities. ACS Photon. 2016, 3, 2383–2388. [Google Scholar] [CrossRef]
- Andrianov, A.V.; Anashkina, E.A. Single-mode silica microsphere Raman laser tunable in the U-band and beyond. Results Phys. 2020, 17, 103084. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y. On-chip silicon photonic signaling and processing: A review. Sci. Bull. 2018, 63, 1267–1310. [Google Scholar] [CrossRef] [Green Version]
- Rong, H.; Liu, A.; Jones, R.; Cohen, O.; Hak, D.; Nicolaescu, R.; Fang, A.; Paniccia, M.J. An all-silicon Raman laser. Nat. Cell Biol. 2005, 433, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; Xu, S.; Kuo, Y.-H.; Sih, V.; Cohen, O.; Raday, O.; Paniccia, M. Low-threshold continuous-wave Raman silicon laser. Nat. Photon. 2007, 1, 232–237. [Google Scholar] [CrossRef]
- Takahashi, Y.; Inui, Y.; Chihara, M.; Asano, T.; Terawaki, R.; Noda, S. A micrometre-scale Raman silicon laser with a mi-crowatt threshold. Nature 2013, 498, 470–474. [Google Scholar] [CrossRef]
- Yamashita, D.; Asano, T.; Noda, S.; Takahashi, Y. Lasing dynamics of optically-pumped ultralow-threshold Raman sili-con nanocavity lasers. Phys. Rev. Appl. 2018, 10, 024039. [Google Scholar] [CrossRef] [Green Version]
- Ashida, K.; Okano, M.; Yasuda, T.; Ohtsuka, M.; Seki, M.; Yokoyama, N.; Koshino, K.; Yamada, K.; Takahashi, Y. Photonic Crystal Nanocavities with an Average Q Factor of 1.9 Million Fabricated on a 300-mm-Wide SOI Wafer Using a CMOS-Compatible Process. J. Light. Technol. 2018, 36, 4774–4782. [Google Scholar] [CrossRef]
- Yasuda, T.; Okano, M.; Ohtsuka, M.; Seki, M.; Yokoyama, N.; Takahashi, Y. Raman silicon laser based on a nanocavity fabricated by photolithography. OSA Contin. 2020, 3, 814–823. [Google Scholar] [CrossRef]
- Takahashi, Y.; Inui, Y.; Chihara, M.; Asano, T.; Terawaki, R.; Noda, S. High-Q resonant modes in a photonic crystal heter-ostructure nanocavity and applicability to a Raman silicon laser. Phys. Rev. B 2013, 88, 235313. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, D.; Asano, T.; Noda, S.; Takahashi, Y. Strongly asymmetric wavelength dependence of optical gain in nanocavity-based Raman silicon lasers. Optica 2018, 5, 1256–1263. [Google Scholar] [CrossRef]
- Latawiec, P.; Venkataraman, V.; Burek, M.J.; Hausmann, B.J.M.; Bulu, I.; Lončar, M. On-chip diamond Raman laser. Optica 2015, 2, 924–928. [Google Scholar] [CrossRef]
- Yu, M.; Okawachi, Y.; Cheng, R.; Wang, C.; Zhang, M.; Gaeta, A.L.; Lončar, M. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light. Sci. Appl. 2020, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Choi, H.; Chen, D.; Zhao, W.; Armani, A.M. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photon. 2019, 14, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Maayani, S.; Carmon, T. Droplet Raman laser coupled to a standard fiber. Photon. Res. 2019, 7, 1188–1192. [Google Scholar] [CrossRef]
- Suresh, S.; Arivuoli, D. Nanomaterials for nonlinear optical applications: A review. Rev. Adv. Mater. Sci. 2012, 30, 243–253. [Google Scholar]
- Sirleto, L.; Ferrara, M.A.; Rendina, I.; Basu, S.N.; Warga, J.; Li, R.; Negro, L.D. Enhanced stimulated Raman scattering in sili-con nanocrystals embedded in silicon-rich nitride/silicon superlattice structures. Appl. Phys. Lett. 2008, 93, 251104. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Nicotra, G.; Spinella, C.; Rendina, I. Observation of stimulated Raman scattering in silicon nano-composites. Appl. Phys. Lett. 2009, 94, 221106. [Google Scholar] [CrossRef]
- Sirleto, L.; Ferrara, M.A.; Nikitin, T.; Novikov, S.; Khriachtchev, L. Giant Raman gain in silicon nanocrystals. Nat. Commun. 2012, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sirleto, L.; Vergara, A.; Ferrara, M.A. Advances in stimulated Raman scattering in nanostructures. Adv. Opt. Photon. 2017, 9, 169–217. [Google Scholar] [CrossRef]
- Rukhlenko, I.D.; Kalavally, V. Raman Amplification in Silicon-Nanocrystal Waveguides. J. Light. Technol. 2013, 32, 130–134. [Google Scholar] [CrossRef]
- Datta, T.; Sen, M. Characterization of slotted photonic crystal waveguide and its application in nonlinear optics. Superlattices Microstruct. 2017, 109, 107–116. [Google Scholar] [CrossRef]
- Datta, T.; Sen, M. LED pumped micron-scale all-silicon Raman amplifier. Superlattices Microstruct. 2017, 110, 273–280. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Sen, M. An integrable all-silicon slotted photonic crystal Raman laser. J. Appl. Phys. 2019, 126, 233103. [Google Scholar] [CrossRef]
- Agarwal, D.; Ren, M.-L.; Berger, J.S.; Yoo, J.; Pan, A.; Agarwal, R. Nanocavity-Enhanced Giant Stimulated Raman Scattering in Si Nanowires in the Visible Light Region. Nano Lett. 2019, 19, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Griffith, A.G.; Yu, M.; Okawachi, Y.; Cardenas, J.; Mohanty, A.; Gaeta, A.L.; Lipson, M. Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. Opt. Express 2016, 24, 13044. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirleto, L. Micro and Nano Raman Lasers. Micromachines 2021, 12, 15. https://doi.org/10.3390/mi12010015
Sirleto L. Micro and Nano Raman Lasers. Micromachines. 2021; 12(1):15. https://doi.org/10.3390/mi12010015
Chicago/Turabian StyleSirleto, Luigi. 2021. "Micro and Nano Raman Lasers" Micromachines 12, no. 1: 15. https://doi.org/10.3390/mi12010015
APA StyleSirleto, L. (2021). Micro and Nano Raman Lasers. Micromachines, 12(1), 15. https://doi.org/10.3390/mi12010015