Sensitivity Analysis of Biosensors Based on a Dielectric-Modulated L-Shaped Gate Field-Effect Transistor
Abstract
:1. Introduction
2. Device Structures and Simulation Approach
3. Results and Discussion
3.1. Impact of Different Biomolecules in the DM-LTFET
3.2. Impact of Different Cavity Thickness in DM-LTFET
3.3. Impact of Charged Biomolecules on the DM-LTFET
3.4. Comparison with the Biosensor-Based TFET
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, C.-T.; Chiu, Y.-S.; Lou, L.-R.; Ho, S.-C.; Chuang, C.-T. Integrated pH sensors and performance improvement mechanism of ZnO-based ion-sensitive field-effect transistors. IEEE Sens. J. 2014, 14, 490–496. [Google Scholar] [CrossRef]
- Kwon, D.; Lee, J.H.; Kim, S.; Lee, R.; Mo, H.; Park, J.; Kim, D.H.; Park, B.-G. Drift-free pH detection with silicon nanowire field-effect transistors. IEEE Electron Device Lett. 2016, 37, 652–655. [Google Scholar] [CrossRef]
- Tamersit, K.; Djeffal, F. Double-gate graphene nanoribbon field-effect transistor for Dna and gas sensing applications: Simulation study and sensitivity analysis. IEEE Sens. J. 2016, 16, 4180–4191. [Google Scholar] [CrossRef]
- Wu, M.; Shin, J.; Hong, T.; Jin, X.; Lee, J.-H. Pulse biasing scheme for the fast recovery of FET-Type gas sensors for reducing gases. IEEE Electron Device Lett. 2017, 38, 971–974. [Google Scholar] [CrossRef]
- Song, Z.; Tang, Q.; Tong, Y.; Liu, Y. High-response identifiable gas sensor based on a gas-dielectric ZnPc nanobelt FET. IEEE Electr. Device Lett. 2017, 38, 1586–1589. [Google Scholar] [CrossRef]
- Lu, H.; Seabaugh, A. Tunnel field-effect transistors: State-of-the-art. IEEE J. Electron Devices Soc. 2014, 2, 44–49. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Wang, S.; Chen, S.; Yang, Z. Design of high performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanoscale Res. Lett. 2017, 12, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, S.; Liu, H.; Li, W.; Wang, Q.; Wang, X. Symmetric U-shaped gate tunnel field-effect transistor. IEEE Trans. Electron Devices 2017, 64, 1343–1349. [Google Scholar] [CrossRef]
- Beniwal, S.; Saini, G. L-shaped tunneling field effect transistor with hetero-gate dielectric and hetero dielectric box. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019. [Google Scholar]
- Zhu, J.; Zhao, Y.; Huang, Q. Design and simulation of a novel graded-channel heterojunction tunnel FET with high ION/I OFF ratio and steep swing. IEEE Electr. Device Lett. 2017, 38, 1200–1203. [Google Scholar] [CrossRef]
- Anand, S.; Singh, S.A.; Amin, I.; Asmita, S.T. Design and performance analysis of dielectrically modulated doping-less tunnel FET-based label free biosensor. IEEE Sens. J. 2019, 19, 4369–4374. [Google Scholar] [CrossRef]
- Tamersit, K.; Djeffal, F. Carbon nanotube field-effect transistor with vacuum gate dielectric for label-free detection of DNA molecules: A computational investigation. IEEE Sens. J. 2019, 19, 9263–9270. [Google Scholar] [CrossRef]
- Singh, A.D.; Sinha, S. Design and simulation of silicon-on-insulator based dielectric-modulated field effect transistor for biosensing applications. In Proceedings of the 2019 3rd International Conference on Electronics, Materials Engineering and Nano-Technology, Kolkata, India, 29–31 August 2019. [Google Scholar]
- Yadav, S.; Gedam, A.; Tirkey, S. A dielectric modulated biosensor for SARS-CoV-2. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Wadhwa, G.; Raj, B. Parametric variation analysis of symmetric double gate charge plasma JLTFET for biosensor application. IEEE Sens. J. 2018, 18, 6070–6077. [Google Scholar] [CrossRef]
- Singh, D.; Pandey, S.; Nigam, K.; Sharma, D.; Singh, Y.D.; Kondekar, P. A charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans. Electron Devices 2017, 64, 271–278. [Google Scholar] [CrossRef]
- Verma, M.; Tirkey, S.; Yadav, S.; Sharma, D.; Singh, Y.D. Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor. IEEE Trans. Electron Devices 2017, 64, 3841–3848. [Google Scholar] [CrossRef]
- Dwivedi, P.; Singh, R. Investigation the impact of the gate work-function and biases on the sensing metrics of TFET based biosensors. Eng. Res. Expr. 2020, 20, 10405–10414. [Google Scholar] [CrossRef]
- Kanungo, S.; Chattopadhyay, S.; Gupta, P.S.; Sinha, K.; Rahaman, H. Study and analysis of the effects of SiGe source and pocket-doped channel on sensing performance of dielectrically modulated tunnel FET-based biosensors. IEEE Trans. Electron Devices 2016, 63, 2589–2596. [Google Scholar] [CrossRef]
- Wadhwa, G.; Raj, B. Design, simulation and performance analysis of JLTFET biosensor for high sensitivity. IEEE Trans. Nanotechnol. 2018, 18, 567–574. [Google Scholar] [CrossRef]
- Mohammad, K.; Zeinab, A.; Ramezani, I.S.; Tamersit, A.K.; Mahdavi, N.A. Profound analysis on sensing performance of Nanogap SiGe source DM-TFET biosensor. J. Mater. Sci. Mater. Electron. 2020. [Google Scholar] [CrossRef]
- Wadhwa, G.; Kamboj, P.; Raj, B. Design optimisation of junctionless TFET biosensor for high sensitivity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045001. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, T.; Singh, B.; Tiwari, P.K. Simulation study of dielectric modulated dual channel trench gate TFET based biosensor. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, H.; Wang, S.; Chen, S. TCAD simulation of single-event-transient effects in L-shaped channel tunneling field-effect transistors. IEEE Trans. Nucl. Sci. 2018, 65, 2250–2259. [Google Scholar] [CrossRef]
- Moon, D.-I.; Han, J.-W.; Meyyappan, M. Comparative study of field effect transistor based biosensors. IEEE Trans. Nanotechnol. 2016, 15, 956–961. [Google Scholar] [CrossRef]
- Kanungo, S.; Chattopadhyay, S.; Gupta, P.S.; Rahaman, H. Comparative performance analysis of the dielectrically modulated full-gate and short-gate tunnel FET-based biosensors. IEEE Trans. Electron Devices 2015, 14, 427–435. [Google Scholar] [CrossRef]
Parameter Name | Symbol | Value | Unit |
---|---|---|---|
Pocket thickness | Tp | 5 | nm |
Oxide thickness | Tox | 2 | nm |
Channel doping | Nc | 1 × 1015 | cm−3 |
Source doping | Ns | 1 × 1020 | cm−3 |
Drain doping | Nd | 1 × 1018 | cm−3 |
Pocket doping | Np | 1 × 1019 | cm−3 |
Source length | Ls | 68 | nm |
Drain length | Ld | 65 | nm |
Cavity height | Hc | 45 | nm |
Gate work function | Φms | 4.2 | eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, C.; Liu, H.; Wang, S.; Chen, S.; Xie, H. Sensitivity Analysis of Biosensors Based on a Dielectric-Modulated L-Shaped Gate Field-Effect Transistor. Micromachines 2021, 12, 19. https://doi.org/10.3390/mi12010019
Chong C, Liu H, Wang S, Chen S, Xie H. Sensitivity Analysis of Biosensors Based on a Dielectric-Modulated L-Shaped Gate Field-Effect Transistor. Micromachines. 2021; 12(1):19. https://doi.org/10.3390/mi12010019
Chicago/Turabian StyleChong, Chen, Hongxia Liu, Shulong Wang, Shupeng Chen, and Haiwu Xie. 2021. "Sensitivity Analysis of Biosensors Based on a Dielectric-Modulated L-Shaped Gate Field-Effect Transistor" Micromachines 12, no. 1: 19. https://doi.org/10.3390/mi12010019
APA StyleChong, C., Liu, H., Wang, S., Chen, S., & Xie, H. (2021). Sensitivity Analysis of Biosensors Based on a Dielectric-Modulated L-Shaped Gate Field-Effect Transistor. Micromachines, 12(1), 19. https://doi.org/10.3390/mi12010019