Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Surface Fluorination of PMMA and Wettability Verification
2.4. BLM Formation
2.5. Current Recording
3. Results and Discussion
3.1. Efficacy of Fluorination
3.2. Device Configuration and Preparation of BLM Formation
3.3. BLM Formation and Microscopic Observation
3.4. BLM Formation with αHL
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiß, K.; Neef, A.; Van, Q.; Kramer, S.; Gregor, I.; Enderlein, J. Quantifying the Diffusion of Membrane Proteins and Peptides in Black Lipid Membranes with 2-Focus Fluorescence Correlation Spectroscopy. Biophys. J. 2013, 105, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano-Iwata, A.; Ishinari, Y.; Yoshida, M.; Araki, S.; Tadaki, D.; Miyata, R.; Ishibashi, K.; Yamamoto, H.; Kimura, Y.; Niwano, M. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces. Biophys. J. 2016, 110, 2207–2215. [Google Scholar] [CrossRef] [Green Version]
- Tero, R.; Fukumoto, K.; Motegi, T.; Yoshida, M.; Niwano, M.; Hirano-Iwata, A. Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer. Sci. Rep. 2017, 7, 17905–17914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, K. Development of Artificial Cell Models Using Microfluidic Technology and Synthetic Biology. Micromachines 2020, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Kawano, R.; Tsuji, Y.; Sato, K.; Osaki, T.; Kamiya, K.; Hirano, M.; Ide, T.; Miki, N.; Takeuchi, S. Automated Parallel Recordings of Topologically Identified Single Ion Channels. Sci. Rep. 2013, 3, 1995–2001. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Nobukawa, A.; Osaki, T.; Morimoto, Y.; Kamiya, K.; Misawa, N.; Takeuchi, S. Pesticide vapor sensing using an aptamer, nanopore, and agarose gel on a chip. Lab Chip 2017, 17, 2421–2425. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Kamiya, K.; Osaki, T.; Misawa, N.; Hayakawa, M.; Takeuchi, S. Purification-Free MicroRNA Detection by Using Magnetically Immobilized Nanopores on Liposome Membrane. Anal. Chem. 2018, 90, 10217–10222. [Google Scholar] [CrossRef]
- Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 2011, 6, 615–624. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Huo, M.-Z.; Ying, Y.-L.; Long, Y.-T. Biological Nanopore Approach for Single-Molecule Protein Sequencing. Angew. Chem. Int. Ed. 2020. [Google Scholar] [CrossRef]
- Mueller, P.; Rudin, D.; Tien, H.; Wescott, W. Reconstitution of Cell Membrane Structure in vitro and its Transformation into an Excitable System. Nature 1962, 194, 979–980. [Google Scholar] [CrossRef]
- Montal, M.; Mueller, P. Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties. Proc. Natl. Acad. Sci. USA 1972, 69, 3561–3566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funakoshi, K.; Suzuki, H.; Takeuchi, S. Lipid Bilayer Formation by Contacting Monolayers in a Microfluidic Device for Membrane Protein Analysis. Anal. Chem. 2006, 78, 8169–8174. [Google Scholar] [CrossRef] [PubMed]
- Bayley, H.; Cronin, B.; Heron, A.; Holden, A.M.; Hwang, L.W.; Syeda, R.; Thompson, J.; Wallace, M. Droplet interface bilayers. Mol. BioSyst. 2008, 4, 1191–1208. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Shoji, K.; Watanabe, C.; Kawano, R.; Yanagisawa, M. Microfluidic Formation of Honeycomb-Patterned Droplets Bounded by Interface Bilayers via Bimodal Molecular Adsorption. Micromachines 2020, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, Y.; Kawano, R.; Osaki, T.; Kamiya, K.; Miki, N.; Takeuchi, S. Droplet-based lipid bilayer system integrated with microfluidic channels for solution exchange. Lab Chip 2013, 13, 1476–1481. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Kamiya, K.; Osaki, T.; Takeuchi, S. A pumpless solution exchange system for nanopore sensors. Biomicrofluidics 2019, 13, 064104. [Google Scholar] [CrossRef]
- Sato, K.; Takeuchi, S. Chemical Vapor Detection Using a Reconstituted Insect Olfactory Receptor Complex. Angew. Chem. Int. Ed. 2014, 53, 11798–11802. [Google Scholar] [CrossRef]
- Izawa, Y.; Osaki, T.; Kamiya, K.; Fujii, S.; Misawa, N.; Takeuchi, S.; Miki, N. Suppression of sloshing by utilizing surface energy and geometry in microliter cylindrical well. Sens. Actuators B Chem. 2018, 258, 1036–1041. [Google Scholar] [CrossRef]
- Misawa, N.; Fujii, S.; Kamiya, K.; Osaki, T.; Takaku, T.; Takahashi, Y.; Takeuchi, S. Construction of a Biohybrid Odorant Sensor Using Biological Olfactory Receptors Embedded into Bilayer Lipid Membrane on a Chip. ACS Sens. 2019, 4, 711–716. [Google Scholar] [CrossRef]
- Suzuki, H.; Tabata, K.; Noji, H.; Takeuchi, S. Highly Reproducible Method of Planar Lipid Bilayer Reconstitution in Polymethyl Methacrylate Microfluidic Chip. Langmuir 2006, 22, 1937–1942. [Google Scholar] [CrossRef]
- Beltramo, J.P.; Hooghten, V.R.; Vermant, J. Millimeter-area, free standing, phospholipid bilayers. Soft Matter 2016, 12, 4324–4331. [Google Scholar] [CrossRef] [PubMed]
- Misawa, N.; Fujii, S.; Kamiya, K.; Osaki, T.; Ozoe, A.; Takahashi, Y.; Takeuchi, S. Formation of droplet interface bilayers equipped with open water surface for odorant detection using olfactory receptors. In Proceedings of the 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS), Savannah, GA, USA, 22–26 October 2017; pp. 157–158. [Google Scholar]
- Fujii, S.; Misawa, N.; Kamiya, K.; Osaki, T.; Takeuchi, S. Breathable fabric meets a lipid bilayer system for rapid vapor detection. In Proceedings of the IEEE MEMS 2018, Belfast, UK, 21–25 January 2018; pp. 276–277. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misawa, N.; Fujii, S.; Kamiya, K.; Osaki, T.; Takeuchi, S. Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution. Micromachines 2021, 12, 53. https://doi.org/10.3390/mi12010053
Misawa N, Fujii S, Kamiya K, Osaki T, Takeuchi S. Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution. Micromachines. 2021; 12(1):53. https://doi.org/10.3390/mi12010053
Chicago/Turabian StyleMisawa, Nobuo, Satoshi Fujii, Koki Kamiya, Toshihisa Osaki, and Shoji Takeuchi. 2021. "Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution" Micromachines 12, no. 1: 53. https://doi.org/10.3390/mi12010053
APA StyleMisawa, N., Fujii, S., Kamiya, K., Osaki, T., & Takeuchi, S. (2021). Efficient Lipid Bilayer Formation by Dipping Lipid-Loaded Microperforated Sheet in Aqueous Solution. Micromachines, 12(1), 53. https://doi.org/10.3390/mi12010053