Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Sink Sample
2.2. Surface Treatment Methods
2.3. Characterization and Measurements
2.3.1. Heat Sink Surface Roughness and Emissivity Test
2.3.2. Heat Dissipation Performance Test
3. Results and Discussion
3.1. Surface Properities of Heat Sinks with Different Treatments
3.1.1. Surface Roughness
3.1.2. Thermal Emissivity
3.2. Heat Dissipation Performance of Heat Sinks with Different Surface Treatments
3.3. Heat Dissipation Performance of Heat Sinks with Thermal Radiation Coating
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garimella, S.V.; Fleischer, A.S.; Murthy, J.Y.; Keshavarzi, A.; Prasher, R.; Patel, C.; Bhavnani, S.H.; Venkatasubramanian, R.; Mahajan, R.; Joshi, Y.; et al. Thermal Challenges in Next-Generation Electronic Systems. IEEE Trans. Compon. Packag. Technol. 2008, 31, 801–815. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Salman, B.H.; Kherbeet, A.S.; Ahmed, M.I. Optimization of thermal design of heat sinks: A review. Int. J. Heat Mass Transf. 2018, 118, 129–153. [Google Scholar] [CrossRef]
- Li, H.; Chao, S. International Journal of Heat and Mass Transfer Measurement of performance of plate-fin heat sinks with cross flow cooling. Int. J. Heat Mass Transf. 2009, 52, 2949–2955. [Google Scholar] [CrossRef]
- Khattak, Z.; Ali, H.M. Air cooled heat sink geometries subjected to forced flow: A critical review. Int. J. Heat Mass Transf. 2019, 130, 141–161. [Google Scholar] [CrossRef]
- Li, H.; Chiang, M.; Lee, C.I.; Yang, W. Thermal performance of plate-fin vapor chamber heat sinks. Int. Commun. Heat Mass Transf. 2010, 37, 731–738. [Google Scholar] [CrossRef]
- Freegah, B.; Hussain, A.A.; Falih, A.H.; Towsyfyan, H. CFD analysis of heat transfer enhancement in plate-fin heat sinks with fillet profile: Investigation of new designs. Therm. Sci. Eng. Prog. 2020, 17, 100458. [Google Scholar] [CrossRef]
- Oguntala, G.; Abd-Alhameed, R.; Sobamowo, G.; Abdullahi, H.S. Improved thermal management of computer microprocessors using cylindrical-coordinate micro-fin heat sink with artificial surface roughness. Eng. Sci. Technol. 2018, 21, 736–744. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Li, H. An impingement heat sink module design problem in determining optimal non-uniform fin widths. Int. J. Heat Mass Transf. 2013, 67, 992–1006. [Google Scholar] [CrossRef]
- Ahmadi, M.; Mostafavi, G.; Bahrami, M. Natural convection from rectangular interrupted fins. Int. J. Therm. Sci. 2014, 82, 62–71. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, B.; Ge, Y.; He, L.; Li, X.; Liu, W.; Liu, Z. Optimization design of slotted fins based on exergy destruction minimization coupled with optimization algorithm. Int. J. Therm. Sci. 2020, 147, 106133. [Google Scholar] [CrossRef]
- Chu, W.; Tsai, M.K.; Jan, S.; Huang, H.; Wang, C. CFD analysis and experimental verification on a new type of air-cooled heat sink for reducing maximum junction temperature. Int. J. Heat Mass Transf. 2020, 148, 119094. [Google Scholar] [CrossRef]
- Kim, D.K. Thermal optimization of branched-fin heat sinks subject to a parallel flow. Int. J. Heat Mass Transf. 2014, 77, 278–287. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Gunnasegaran, P.; Shuaib, N.H. Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks. Int. Commun. Heat Mass Transf. 2011, 38, 194–201. [Google Scholar] [CrossRef]
- Shkarah, A.; Sulaiman, M.; Ayob, M.; Togun, H. A 3D numerical study of heat transfer in a single-phase micro-channel heat sink using graphene, aluminum and silicon as substrates. Int. Commun. Heat Mass Transf. 2013, 48, 108–115. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Zhang, H.; Li, Y. Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant. Int. J. Heat Mass Transf. 2015, 80, 605–613. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Liu, Y.; Li, Y. Experimental study on heat transfer performance of lotus-type porous copper heat sink. Int. J. Heat Mass Transf. 2013, 56, 172–180. [Google Scholar] [CrossRef]
- Deng, D.; Tang, Y.; Liang, D.; He, H.; Yang, S. Flow boiling characteristics in porous heat sink with reentrant microchannels. Int. J. Heat Mass Transf. 2014, 70, 463–477. [Google Scholar] [CrossRef]
- Jeng, T.-M.; Tzeng, S.-C. Heat transfer measurement of the cylindrical heat sink with sintered-metal-bead-layers fins and a built-in motor fan. Int. Commun. Heat Mass Transf. 2014, 59, 136–142. [Google Scholar] [CrossRef]
- Qu, Z.; Li, W.; Wang, J.; Tao, W. Passive thermal management using metal foam saturated with phase change material in a heat sink. Int. Commun. Heat Mass Transf. 2012, 39, 1546–1549. [Google Scholar] [CrossRef]
- Feng, S.; Kuang, J.; Wen, T.; Lu, J.; Ichimiya, K. An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling. Int. J. Heat Mass Transf. 2014, 77, 1063–1074. [Google Scholar] [CrossRef]
- Jang, D.; Park, S.J.; Yook, S.J.; Lee, K.S. The orientation effect for cylindrical heat sinks with application to LED light bulbs. Int. J. Heat Mass Transf. 2014, 71, 496–502. [Google Scholar] [CrossRef]
- Shen, Q.; Sun, D.; Xu, Y.; Jin, T.; Zhao, X. Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs. Int. J. Heat Mass Transf. 2014, 75, 462–469. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Chao, S.; Liang, G.F. Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators. Int. J. Heat Mass Transf. 2013, 67, 666–677. [Google Scholar] [CrossRef]
- Tsai, G.; Li, H.; Lin, C. Effect of the angle of inclination of a plate shield on the thermal and hydraulic performance of a plate-fin heat sink. Int. J. Heat Mass Transf. 2010, 37, 364–371. [Google Scholar] [CrossRef]
- Wyssmann, R.; Ullmer, D.; Terzis, A.; Ott, P. A comparative study of the local heat transfer distributions around various surface mounted obstacles. J. Therm. Sci. 2014, 23, 169–176. [Google Scholar] [CrossRef]
- Ahmed, H.E. Optimization of thermal design of ribbed flat-plate fin heat sink. Appl. Therm. Eng. 2016, 102, 1422–1432. [Google Scholar] [CrossRef]
- Rao, Y.; Li, B.; Feng, Y. Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples. Exp. Therm. Fluid Sci. 2015, 61, 201–209. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Yang, X.; Deng, Y.; Su, C. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator. J. Electron. Mater. 2016, 45, 1792–1802. [Google Scholar] [CrossRef]
- Leontiev, A.I.; Kiselev, N.A.; Burtsev, S.A.; Strongin, M.M.; Vinogradov, Y.A. Experimental investigation of heat transfer and drag on surfaces with spherical dimples. Exp. Therm. Fluid Sci. 2016, 79, 74–84. [Google Scholar] [CrossRef]
- Singh, P.; Patil, A.K. Experimental investigation of heat transfer enhancement through embossed fin heat sink under natural convection. Exp. Therm. Fluid Sci. 2015, 61, 24–33. [Google Scholar] [CrossRef]
- Ventola, L.; Robotti, F.; Dialameh, M.; Calignano, F.; Manfredi, D.; Chiavazzo, E.; Asinari, P. Rough surfaces with enhanced heat transfer for electronics cooling by direct metal laser sintering. Int. J. Heat Mass Transf. 2014, 75, 58–74. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Mahapatra, S.K. Role of surface radiation on the functionality of thermoelectric cooler with heat sink. Appl. Therm. Eng. 2014, 69, 39–45. [Google Scholar] [CrossRef]
- Chang, S.; Lees, A.W. Endwall heat transfer and pressure drop in scale-roughened pin-fin channels. Int. J. Therm. Sci. 2010, 49, 702–713. [Google Scholar] [CrossRef]
Roughness | Without Treatment | Chemical Polishing | Chemical Coarsening | Mechanical Shot Peening | Chemical Oxidation |
---|---|---|---|---|---|
Ra/μm | 1.24 ± 0.05 | 0.27 ± 0.03 | 4.6 ± 0.1 | 5.63 ± 0.07 | 16.5 ± 0.1 |
Rz/μm | 9.0 ± 0.5 | 2.3 ± 0.2 | 27.8 ± 0.6 | 36.4 ± 0.4 | 87.8 ± 0.8 |
Ry/μm | 13.8 ± 0.5 | 3.8 ± 0.3 | 37.5 ± 1.3 | 42.1 ± 0.8 | 107 ± 2 |
Without Treatment | Chemical Polishing | Chemical Coarsening | Mechanical Shot Peening | Chemical Oxidation | Thermal Radiation Coating | |
---|---|---|---|---|---|---|
Emissivity | 0.11 | 0.1 | 0.16 | 0.23 | 0.25 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Zhang, B.; Tao, S.; Liang, Z.; Tang, B.; Zhou, R.; Yuan, D. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices. Micromachines 2021, 12, 265. https://doi.org/10.3390/mi12030265
You Y, Zhang B, Tao S, Liang Z, Tang B, Zhou R, Yuan D. Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices. Micromachines. 2021; 12(3):265. https://doi.org/10.3390/mi12030265
Chicago/Turabian StyleYou, Yuxin, Beibei Zhang, Sulian Tao, Zihui Liang, Biao Tang, Rui Zhou, and Dong Yuan. 2021. "Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices" Micromachines 12, no. 3: 265. https://doi.org/10.3390/mi12030265
APA StyleYou, Y., Zhang, B., Tao, S., Liang, Z., Tang, B., Zhou, R., & Yuan, D. (2021). Effect of Surface Microstructure on the Heat Dissipation Performance of Heat Sinks Used in Electronic Devices. Micromachines, 12(3), 265. https://doi.org/10.3390/mi12030265