A Hybrid Fuzzy Decision Model for Evaluating MEMS and IC Integration Technologies
Abstract
:1. Introduction
2. Literature Review
2.1. Technology Assessment Using MCDM
2.2. Alternative Technologies
3. Research Methods
3.1. Fuzzy AHP Method
- Step 1 Define a problem.
- Step 2 Determine important criteria.
- Step 3 Establish a hierarchical structure.
- Step 4 Determine linguistic variables.
- Step 5 Construct fuzzy judgment matrices.
- Step 6 Check consistency.
- Step 7 Integrate experts’ opinions.
- Step 8 Defuzzify fuzzy weights.
3.2. Fuzzy VIKOR Method
- Step 1 Determine a group of experts.
- Step 2 Determine linguistic variables.
- Step 3 Obtain fuzzy performance rating matrices.
- Step 4 Construct an aggregated fuzzy performance rating matrix.
- Step 5 Determine the fuzzy best value and fuzzy worst value.
- Step 6 Calculate utility and regret measures.
- Step 7 Compute index value.
- Step 10 Defuzzify TFNs
- Step 11 Rank alternatives.
- Step 12 Derive a compromise solution.
- Condition 1 Acceptable advantage
- Condition 2 Acceptable stability
4. Numerical Analysis
- Step 1 Establish the hierarchical model.
- Step 2 Derive the fuzzy preference weights of the criteria.
- (1)
- Design a questionnaire for the data collection.
- (2)
- Generate the fuzzy judgment matrices.
- (3)
- Check the consistency.
- (4)
- Integrate the experts’ opinions.
- (5)
- Defuzzify the fuzzy weights.
- Step 3 Rate the alternatives.
- (1)
- Design a questionnaire for the data collection.
- (2)
- Generate the fuzzy performance rating matrices.
- (3)
- Integrate the experts’ opinions.
- (4)
- Determine the fuzzy best values and fuzzy worst values.
- (5)
- Obtain the weighted fuzzy synthetic normalized rating matrix.
- (6)
- Rank the alternatives.
5. Discussion
5.1. Rationale for the Two Most Important Criteria
5.2. Rationale for the Top Two Preferable Technologies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inform. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Song, Z.; Du, Y.; Liu, M.; Yang, S.; Wu, D.; Wang, Z. Three-dimensional integration of suspended single-crystalline silicon MEMS arrays with CMOS. In Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 304–307. [Google Scholar]
- Adams, T.M.; Layton, R.A. Introductory MEMS: Fabrication and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Fischer, A.C.; Forsberg, F.; Lapisa, M.; Bleiker, S.J.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vavassori, P.; Pancaldi, M.; Perez-Roldan, M.J.; Chuvilin, A.; Berger, A. Remote magnetomechanical nanoactuation. Small 2016, 12, 1013–1023. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chung, P.-H.; Shyu, J.Z. Performance evaluation of medical device manufacturers using a hybrid fuzzy MCDM. J. Sci. Ind. Res. 2017, 76, 28–31. [Google Scholar]
- van de Kaa, G.; Rezaei, J.; Kamp, L.; de Winter, A. Photovoltaic technology selection: A fuzzy MCDM approach. Renew. Sustain. Energ. Rev. 2014, 32, 662–670. [Google Scholar] [CrossRef]
- Vinodh, S.; Nagaraj, S.; Girubha, J. Application of fuzzy VIKOR for selection of rapid prototyping technologies in an agile environment. Rapid Prototyp. J. 2014, 20, 523–532. [Google Scholar] [CrossRef]
- Liu, H.-C.; You, J.-X.; Lu, C.; Chen, Y.-Z. Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renew. Sustain. Energ. Rev. 2015, 41, 932–942. [Google Scholar] [CrossRef]
- Bairagi, B.; Dey, B.; Sarkar, B.; Sanyal, S. Selection of robotic systems in fuzzy multi criteria decision-making environment. Int. J. Comput. Syst. Eng. 2015, 2, 32–42. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chou, C.J. Technology evaluation and selection of 3DIC integration using a three-stage fuzzy MCDM. Sustainability 2016, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Taylan, O.; Alamoudi, R.; Kabli, M.; AlJifri, A.; Ramzi, F.; Herrera-Viedma, E. Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions. Sustainability 2020, 12, 2745. [Google Scholar] [CrossRef] [Green Version]
- Salimi, A.H.; Noori, A.; Bonakdari, H.; Samakosh, J.M.; Sharifi, E.; Hassanvand, M.; Agharazi, M.; Gharabaghi, B. Exploring the role of advertising types on improving the water consumption behavior: An application of integrated fuzzy AHP and fuzzy VIKOR method. Sustainability 2020, 12, 1232. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.S.; Bakir, M.S. 3D integration of CMOS and MEMS using mechanically flexible interconnects (MFI) and through silicon vias (TSV). In Proceedings of the 60th Electronic Components and Technology Conference, Las Vegas, NV, USA, 1–4 June 2010; pp. 822–828. [Google Scholar]
- Fischer, A.C.; Korvink, J.G.; Roxhed, N.; Stemme, G.; Wallrabe, U.; Niklaus, F. Unconventional applications of wire bonding create opportunities for microsystem integration. J. Micromech. Microeng. 2013, 23, 083001. [Google Scholar] [CrossRef]
- Lau, J.H. Design and process of 3D MEMS system-in-package (SiP). J. Microelectron. Electron. Packag. 2010, 7, 10–11. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, G.; Nath, V.; Choudhury, S. IC Packaging: 3D IC Technology and Methods. In Proceedings of the International Conference on Nano-electronics, Circuits & Communication Systems, Jharkhand, India, 11–12 November 2017; pp. 303–317. [Google Scholar]
- Xu, G.; Yan, P.; Chen, X.; Ning, W.; Luo, L.; Jiao, J. Wafer-level chip-to-wafer (C2W) integration of high-sensitivity MEMS and ICs. In Proceedings of the 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), Shanghai, China, 8–11 August 2011; pp. 1–5. [Google Scholar]
- Marenco, N.; Reinert, W.; Warnat, S.; Lange, P.; Gruenzig, S.; Hillmann, G.; Kostner, H.; Bock, G.; Guadagnuolo, S.; Conte, A. Vacuum encapsulation of resonant MEMS sensors by direct chip-to-wafer stacking on ASIC. In Proceedings of the 10th Electronics Packaging Technology Conference, Singapore, 9–12 December 2008; pp. 773–777. [Google Scholar]
- Lau, J.H. Critical issues of TSV and 3D IC integration. J. Microelectron. Electron. Packag. 2010, 7, 35–43. [Google Scholar] [CrossRef]
- Li, C.; Tian, K.-M.; Huang, H. Structure design of the MEMS package based on QFN and SOP. Adv. Mater. Res. Switz. 2015, 5, 18. [Google Scholar]
- Mita, Y.; Lebrasseur, E.; Okamoto, Y.; Marty, F.; Setoguchi, R.; Yamada, K.; Mori, I.; Morishita, S.; Imai, Y.; Hosaka, K. Opportunities of CMOS-MEMS integration through LSI foundry and open facility. Jpn. J. Appl. Phys. 2017, 56, 06GA03. [Google Scholar] [CrossRef] [Green Version]
- Chaehoi, A.; O’Connell, D.; Weiland, D.; Adamson, R.; Bruckshaw, S.; Ray, S.; Begbie, M.; Bruce, J. Monolithic CMOS MEMS technology development: A piezoresistive-sensors case study. In Proceedings of the NSTI-Nanotech, Anaheim, CA, USA, 21–25 June 2010; pp. 284–287. [Google Scholar]
- Topart, P.; Picard, F.; Ilias, S.; Alain, C.; Chevalier, C.; Fisette, B.; Paultre, J.E.; Généreux, F.; Legros, M.; Lepage, J.-F. Heterogeneous MEMS device assembly and integration, SPIE MOEMS-MEMS. In Proceedings of the SPIE 8975, Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS, Nanodevices, and Nanomaterials XIII, San Francisco, CA, USA, 3–4 February 2014; p. 89750E-13. [Google Scholar]
- Bahr, B.; Marathe, R.; Weinstein, D. Theory and design of phononic crystals for unreleased CMOS-MEMS resonant body transistors. J. Microelectromech. Syst. 2015, 24, 1520–1533. [Google Scholar] [CrossRef]
- Knese, K.; Armbruster, S.; Weber, H.; Fischer, M.; Benzel, H.; Metz, M.; Seidel, H. Novel technology for capacitive pressure sensors with monocrystalline silicon membranes. In Proceedings of the 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009; pp. 697–700. [Google Scholar]
- Smith, J.; Montague, S.; Sniegowski, J.; Murray, J.; McWhorter, P. Embedded micromechanical devices for the monolithic integration of MEMS with CMOS. In Proceedings of the IEDM’95, Washington, DC, USA, 10–13 December 1995; pp. 609–612. [Google Scholar]
- Ding, X.; Czarnocki, W.; Schuster, J.; Roeckner, B. DSP-based CMOS monolithic pressure sensor for high volume manufacturing. In Proceedings of the Dig Internation Conference on Solid-State Sensors and Actuators, Sendai, Japan, 7–10 June 1999; pp. 362–365. [Google Scholar]
- Fedder, G.K.; Howe, R.T.; Liu, T.-J.K.; Quevy, E.P. Technologies for cofabricating MEMS and electronics. Proc. IEEE 2008, 96, 306–322. [Google Scholar] [CrossRef]
- Koyanagi, M. Recent progress in 3D integration technology. IEICE Electron. Expr. 2015, 12, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 1986, 32, 841–855. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Tzeng, G.-H.; Huang, J.-J. Multiple Attribute Decision Making: Methods and Applications; Taylor & Francis: Milton Park, UK, 2011. [Google Scholar]
- Lin, G.T.R.; Lee, Y.-C. Evaluation and decision making in Taiwan semiconductor industry through silicon via technology. J. Sci. Ind. Res. 2014, 73, 456–460. [Google Scholar]
- Lee, Y.-C.; Lin, G.T.R.; Hsi, P.-H.; Lim, S.S. Evaluating the commercial potential of original technologies in universities. J. Sci. Ind. Res. 2016, 75, 463–465. [Google Scholar]
- Csutora, R.; Buckley, J.J. Fuzzy hierarchical analysis: The Lambda-Max method. Fuzzy Set. Syst. 2001, 120, 181–195. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy hierarchical analysis. Fuzzy Set. Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Hsieh, T.-Y.; Lu, S.-T.; Tzeng, G.-H. Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int. J. Proj. Manag. 2004, 22, 573–584. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Defuzzification within a multicriteria decision model. Int. J. Uncertain. Fuzz. 2003, 11, 635–652. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 2007, 178, 514–529. [Google Scholar] [CrossRef]
- Hu, S.-K.; Lu, M.-T.; Tzeng, G.-H. Exploring smart phone improvements based on a hybrid MCDM model. Expert Syst. Appl. 2014, 41, 4401–4413. [Google Scholar] [CrossRef]
- Mohammady, P.; Amid, A. Integrated fuzzy AHP and fuzzy VIKOR model for supplier selection in an agile and modular virtual enterprise. Fuzzy Inf. Eng. 2011, 3, 411–431. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.-H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Opricovic, S. A fuzzy compromise solution for multicriteria problems. Int. J. Uncertain. Fuzz. 2007, 15, 363–380. [Google Scholar] [CrossRef]
- Alguliyev, R.M.; Aliguliyev, R.M.; Mahmudova, R.S. Multicriteria personnel selection by the modified fuzzy VIKOR method. Sci. World J. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.K.; Premachandran, C.; Xie, L.; Ong, S.C.; He, J.H.; Yap, G.J.; Yu, A. A novel die to wafer (D2W) collective bonding method for MEMS and electronics heterogeneous 3D integration. In Proceedings of the 60th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 1–4 June 2010; pp. 829–833. [Google Scholar]
- Vigna, B.; Lasalandra, E.; Ungaretti, T. Motion MEMS and sensors, today and tomorrow. In Nyquist AD Converters. Sensor Interfaces, and Robustness; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–127. [Google Scholar]
- Oouchi, A. Plastic molded package technology for MEMS sensor evolution of MEMS sensor package. In Proceedings of the International Conference on Electronics Packaging (ICEP), Toyama, Japan, 23–25 April 2014; pp. 371–375. [Google Scholar]
- Tummala, R. SoC vs. MCM vs SiP vs. SoP. 2006. Available online: https://sst.semiconductor-digest.com/2006/07/soc-vs-mcm-vs-sip-vs-sop/ (accessed on 23 July 2020).
TFNs | Linguistic Variables | Scale of TFNs |
---|---|---|
Extremely more important | (8, 9, 10) | |
Intermediate | (7, 8, 9) | |
Very strongly more important | (6, 7, 8) | |
Intermediate | (5, 6, 7) | |
Strongly more important | (4, 5, 6) | |
Intermediate | (3, 4, 5) | |
Moderately more important | (2, 3, 4) | |
Intermediate | (1, 2, 3) | |
Equally important | (1, 1, 1) |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
C1 | (1, 1, 1) | (1, 2, 3) | (1, 2, 3) | (1, 1, 1) | (1, 2, 3) | (1, 1, 1) |
C2 | (1/3, 1/2, 1) | (1, 1, 1) | (1, 1, 1) | (1/3, 1/2, 1) | (1, 1, 1) | (1/3, 1/2, 1) |
C3 | (1/3, 1/2, 1) | (1, 1, 1) | (1, 1, 1) | (1/4, 1/3, 1/2) | (1/3, 1/2, 1) | (1/3,1/2, 1) |
C4 | (1, 1, 1) | (1, 2, 3) | (2, 3, 4) | (1, 1, 1) | (1, 2, 3) | (1, 1, 1) |
C5 | (1/3, 1/2, 1) | (1, 1, 1) | (1, 2, 3) | (1/3, 1/2, 1) | (1, 1, 1) | (1/3, 1/2, 1) |
C6 | (1, 1, 1) | (1, 2, 3) | (1, 2, 3) | (1, 1, 1) | (1, 2, 3) | (1, 1, 1) |
Criteria | C1 | C2 | C3 | C4 | C5 | C6 |
---|---|---|---|---|---|---|
C1 | (1, 1, 1) | (1.26, 1.93, 2.51) | (1.26, 2.29, 3.3) | (0.69, 0.79, 1) | (1, 1.33, 1.58) | (0.69, 0.79, 1) |
C2 | (0.4, 0.52, 0.79) | (1, 1, 1) | (1.26, 1.72, 2.09) | (0.4, 0.52, 0.79) | (0.76, 0.84, 1) | (0.3, 0.44, 0.79) |
C3 | (0.3, 0.44, 0.79) | (0.48, 0.58, 0.79) | (1, 1, 1) | (0.27, 0.37, 0.59) | (0.4, 0.52, 0.79) | (0.4, 0.52, 0.79) |
C4 | (1, 1.26, 1.44) | (1.26, 1.93, 2.51) | (1.68, 2.71, 3.72) | (1, 1, 1) | (1.26, 1.93, 2.51) | (1, 1.26, 1.44) |
C5 | (0.63, 0.75, 1) | (1, 1.19, 1.32) | (1.26, 1.93, 2.51) | (0.4, 0.52, 0.79) | (1, 1, 1) | (0.4, 0.52, 0.79) |
C6 | (1, 1.26, 1.44) | (1.26, 2.29, 3.3) | (1.26, 1.93, 2.51) | (0.69, 0.79, 1) | (1.26, 1.93, 2.51) | (1, 1, 1) |
Fuzzy Weights | L | M | U |
---|---|---|---|
0.118 | 0.194 | 0.312 | |
0.074 | 0.116 | 0.205 | |
0.053 | 0.084 | 0.160 | |
0.145 | 0.247 | 0.388 | |
0.087 | 0.137 | 0.229 | |
0.130 | 0.222 | 0.358 |
Criteria | BNP Values | Rank |
---|---|---|
C1 (Physical dimension) | 0.208 | 3 |
C2 (Power consumption) | 0.131 | 5 |
C3 (Signaling length) | 0.099 | 6 |
C4 (Development schedule) | 0.260 | 1 |
C5 (Cost competitiveness) | 0.151 | 4 |
C6 (Manufacturing capability) | 0.237 | 2 |
Criteria | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
C1 | (2, 3, 4) | (7, 8, 9) | (8, 9, 10) | (7, 8, 9) | (8, 9, 10) |
C2 | (3, 4, 5) | (7, 8, 9) | (7, 8, 9) | (6, 7, 8) | (6, 7, 8) |
C3 | (2, 3, 4) | (5, 6, 7) | (5, 6, 7) | (6, 7, 8) | (8, 9, 10) |
C4 | (8, 9, 10) | (7, 8, 9) | (3, 4, 5) | (5, 6, 7) | (2, 3, 4) |
C5 | (7, 8, 9) | (6, 7, 8) | (4, 5, 6) | (5, 6, 7) | (5, 6, 7) |
C6 | (7, 8, 9) | (7, 8, 9) | (3, 4, 5) | (6, 7, 8) | (2, 3, 4) |
Criteria | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
C1 | (2.42, 3.42, 4.42) | (6.67, 7.67, 8.67) | (6.75, 7.75, 8.75) | (7.17, 8.17, 9.17) | (7.25, 8.25, 9.25) |
C2 | (1.75, 2.75, 3.75) | (6.67, 7.67, 8.67) | (6.67, 7.67, 8.67) | (6.17, 7.17, 8.17) | (5.67, 6.67, 7.67) |
C3 | (1.75, 2.75, 3.75) | (4.83, 5.83, 6.83) | (5.33, 6.33, 7.33) | (6.33, 7.33, 8.33) | (7.67, 8.67, 9.67) |
C4 | (7.58, 8.58, 9.58) | (7.17, 8.17, 9.17) | (3.67, 4.67, 5.67) | (5.83, 6.83, 7.83) | (2.08, 3.08, 4.08) |
C5 | (7.33, 8.33, 9.33) | (6.83, 7.83, 8.83) | (5.33, 6.33, 7.33) | (6.33, 7.33, 8.33) | (5.83, 6.83, 7.83) |
C6 | (7.33, 8.33, 9.33) | (7.25, 8.25, 9.25) | (3.83, 4.83, 5.83) | (5.92, 6.92, 7.92) | (2.25, 3.25, 4.25) |
Criteria | FPIS | FNIS |
---|---|---|
C1 | (7.25, 8.25, 9.25) | (2.42, 3.42, 4.42) |
C2 | (6.67, 7.67, 8.67) | (1.75, 2.75, 3.75) |
C3 | (7.67, 8.67, 9.67) | (1.75, 2.75, 3.75) |
C4 | (7.58, 8.58, 9.58) | (2.08, 3.08, 4.08) |
C5 | (7.33, 8.33, 9.33) | (5.33, 6.33, 7.33) |
C6 | (7.33, 8.33, 9.33) | (2.25, 3.25, 4.25) |
Criteria | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
C1 | (0.12, 0.19, 0.31) | (0.01, 0.02, 0.04) | (0.01, 0.02, 0.03) | (0, 0, 0.01) | (0, 0, 0) |
C2 | (0.07, 0.12, 0.2) | (0, 0, 0) | (0, 0, 0) | (0.01, 0.01, 0.02) | (0.01, 0.02, 0.04) |
C3 | (0.05, 0.08, 0.16) | (0.03, 0.04, 0.08) | (0.02, 0.03, 0.06) | (0.01, 0.02, 0.04) | (0, 0, 0) |
C4 | (0, 0, 0) | (0.01, 0.02, 0.03) | (0.1, 0.18, 0.28) | (0.05, 0.08, 0.12) | (0.14, 0.25, 0.39) |
C5 | (0, 0, 0) | (0.02, 0.03, 0.06) | (0.09, 0.14, 0.23) | (0.04, 0.07, 0.11) | (0.07, 0.1, 0.17) |
C6 | (0, 0, 0) | (0, 0, 0.01) | (0.09, 0.15, 0.25) | (0.04, 0.06, 0.1) | (0.13, 0.22, 0.36) |
Alternatives | BNP of | Rank | |||
---|---|---|---|---|---|
A1 (2D MCM) | (0.24, 0.39, 0.68) | (0.12, 0.19, 0.31) | (0.26, 0.66, 1.82) | 0.91 | 3 |
A2 (3D SiP) | (0.07, 0.12, 0.21) | (0.03, 0.04, 0.08) | (0, 0, 0) | 0.00 | 1 |
A3 (3D SoP) | (0.31, 0.52, 0.85) | (0.10, 0.18, 0.28) | (0.28, 0.75, 1.98) | 1.00 | 4 |
A4 (Monolithic SoC) | (0.15, 0.24, 0.40) | (0.05, 0.08, 0.12) | (0.08, 0.22, 0.54) | 0.28 | 2 |
A5 (Heterogeneous SoC) | (0.36, 0.60, 0.96) | (0.14, 0.25, 0.39) | (0.38, 1.00, 2.64) | 1.34 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Q.-Y.; Lee, M.-X.; Lee, Y.-C. A Hybrid Fuzzy Decision Model for Evaluating MEMS and IC Integration Technologies. Micromachines 2021, 12, 276. https://doi.org/10.3390/mi12030276
Lee Q-Y, Lee M-X, Lee Y-C. A Hybrid Fuzzy Decision Model for Evaluating MEMS and IC Integration Technologies. Micromachines. 2021; 12(3):276. https://doi.org/10.3390/mi12030276
Chicago/Turabian StyleLee, Qian-Yo, Ming-Xuan Lee, and Yen-Chun Lee. 2021. "A Hybrid Fuzzy Decision Model for Evaluating MEMS and IC Integration Technologies" Micromachines 12, no. 3: 276. https://doi.org/10.3390/mi12030276
APA StyleLee, Q. -Y., Lee, M. -X., & Lee, Y. -C. (2021). A Hybrid Fuzzy Decision Model for Evaluating MEMS and IC Integration Technologies. Micromachines, 12(3), 276. https://doi.org/10.3390/mi12030276