Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams
Abstract
:1. Introduction
2. Theoretical Analysis
3. Results of Modeling and Experiment
3.1. Circular Airy Beams with Vortex Superposition
3.2. Azimuthally Modulated Circular Vortex Airy Beams
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef]
- Zhan, Q. Cylindrical vector beams: From mathematical concepts to applications. Adv. Opt. Photonics 2009, 1, 1–57. [Google Scholar] [CrossRef]
- Fahrbach, F.O.; Simon, P.; Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 2010, 4, 780–785. [Google Scholar] [CrossRef]
- Padgett, M.; Bowman, R. Tweezers with a twist. Nat. Photonics 2011, 5, 343–348. [Google Scholar] [CrossRef]
- Andrews, D.L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Academic Press: San Diego, CA, USA, 2011; p. 400. [Google Scholar]
- Wördemann, M. Structured Light Fields: Applications in Optical Trapping, Manipulation, and Organisation; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012; p. 136. [Google Scholar]
- Litchinitser, N.M. Structured light meets structured matter. Science 2012, 337, 1054–1055. [Google Scholar] [CrossRef]
- Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.; Dennis, M.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt. 2017, 19, 013001. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel beam: Significance and applications—A progressive review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Nalimov, A.G.; Porfirev, A.P. Evolution of an optical vortex with an initial fractional topological charge. Phys. Rev. A 2020, 102, 023516. [Google Scholar] [CrossRef]
- Efremidis, N.K.; Christodoulides, D.N. Abruptly autofocusing waves. Opt. Lett. 2010, 35, 4045–4047. [Google Scholar] [CrossRef]
- Papazoglou, D.G.; Efremidis, N.K.; Christodoulides, D.N.; Tzortzakis, S. Observation of abruptly autofocusing waves. Opt. Lett. 2011, 36, 1842–1844. [Google Scholar] [CrossRef]
- Davis, J.A.; Cottrell, D.M.; Sand, D. Abruptly autofocusing vortex beam. Opt. Express 2012, 20, 13302–13310. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Generation of the azimuthally modulated circular superlinear Airy beams. J. Opt. Soc. Am. B 2017, 34, 2544–2549. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, S.; Yu, W.; Zhu, X. Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles. J. Opt. Soc. Am. A 2018, 35, 890–894. [Google Scholar] [CrossRef]
- Ring, J.; Lindberg, J.; Mourka, A.; Mazilu, M.; Dholakia, K.; Dennis, M. Auto-focusing and self-healing of Pearcey beams. Opt. Express 2012, 20, 18955–18966. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Deng, D.; Zhuang, J.; Yang, X.; Liu, H.; Wang, G. Nonparaxial propagation of abruptly autofocusing circular Pearcey Gaussian beams. Appl. Opt. 2018, 57, 8418–8423. [Google Scholar] [CrossRef]
- Sun, C.; Deng, D.; Wang, G.; Yang, X.; Hong, W. Abruptly autofocusing properties of radially polarized circle Pearcey vortex beams. Opt. Commun. 2020, 457, 124690. [Google Scholar] [CrossRef]
- Khonina, S.N.; Ustinov, A.V.; Porfirev, A.P. Aberration laser beams with autofocusing properties. Appl. Opt. 2018, 57, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N. Specular and vortical Airy beams. Opt. Commun. 2011, 284, 4263–4271. [Google Scholar] [CrossRef]
- Vaveliuk, P.; Lencina, A.; Rodrigo, J.A.; Matos, O.M. Symmetric Airy beams. Opt. Lett. 2014, 39, 2370–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chremmos, I.; Efremidis, N.K.; Christodoulides, D.N. Pre-engineered abruptly autofocusing beams. Opt. Lett. 2011, 36, 1890–1892. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Peng, T.; Xie, G.; Gan, X.; Zhao, J. Spiral autofocusing Airy beams carrying power-exponent phase vortices. Opt. Express 2014, 22, 7598–7606. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Ustinov, A.V. Fractional Airy beams. J. Opt. Soc. Am. A 2017, 34, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Porfirev, A.P.; Ustinov, A.V. Sudden autofocusing of superlinear chirp beams. J. Opt. 2018, 20, 025605. [Google Scholar] [CrossRef]
- Ddholakia, K.; Čižmár, T. Shaping the future of manipulation. Nat. Photonics 2011, 5, 335–342. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Huang, K.K.; Lu, X.H. Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle. Opt. Express 2013, 21, 24413–24421. [Google Scholar] [CrossRef]
- Lu, W.; Sun, X.; Chen, H.; Liu, S.; Lin, Z. Abruptly autofocusing property and optical manipulation of circular Airy beams. Phys. Rev. A 2019, 99, 013817. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Papazoglou, D.G.; Couairon, A.; Tzortzakis, S. Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Nat. Commun. 2013, 4, 2622. [Google Scholar] [CrossRef] [Green Version]
- Panagiotopoulos, P.; Couairon, A.; Kolesik, M.; Papazoglou, D.G.; Moloney, J.V.; Tzortzakis, S. Nonlinear plasma-assisted collapse of ring-Airy wave packets. Phys. Rev. A 2016, 93, 033808. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, Y.; Zhai, Z.; Fang, Z.; Tao, Q.; Perrie, W.; Edwarson, S.P.; Dearden, G. Dynamic laser beam shaping for material processing using hybrid holograms. Opt. Laser Technol. 2018, 102, 68–73. [Google Scholar] [CrossRef]
- Ustinov, A.V.; Khonina, S.N.; Khorin, P.A.; Porfirev, A.P. Control of the intensity distribution along the light spiral generated by a generalized spiral phase plate. J. Opt. Soc. Am. B 2021, 38, 420–427. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, P.; Liu, S.; Han, L.; Cheng, H.; Zhao, J. Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases. Opt. Express 2016, 24, 28409–28418. [Google Scholar] [CrossRef]
- Yan, X.; Guo, L.; Cheng, M.; Chai, S. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett. 2019, 17, 040101. [Google Scholar] [CrossRef]
- Brimis, A.; Makris, K.G.; Papazoglou, D.G. Tornado waves. Opt. Lett. 2020, 45, 280–283. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, C.; Lin, Z.; Qiu, H.; Fu, X.; Chen, K.; Deng, D. Abruptly autofocusing polycyclic tornado ring Airy beam. New J. Phys. 2020, 22, 093045. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Y.; Zhang, Y.; Cai, X.; Yu, S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt. Lett. 2014, 39, 4435–4438. [Google Scholar] [CrossRef] [PubMed]
- Bliokh, K.Y.; Rodriguez-Fortuno, F.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Ustinov, A.V.; Khonina, S.N. Polarization conversion when focusing cylindrically polarized vortex beams. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Du, L.; Yuan, X. Structured spin angular momentum in highly focused cylindrical vector vortex beams for optical manipulation. Opt. Express 2018, 26, 23449–23459. [Google Scholar] [CrossRef]
- Bekshaev, A.Y.; Soskin, M.S. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun. 2007, 271, 332–348. [Google Scholar] [CrossRef]
- Bekshaev, A.Y. Internal energy flows and instantaneous field of a monochromatic paraxial light beam. Appl. Opt. 2012, 51, C13–C16. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Ustinov, A.V.; Logachev, V.I.; Porfirev, A.P. Properties of vortex light fields generated by generalized spiral phase plates. Phys. Rev. A 2020, 101, 043829. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Soifer, V.A.; Khonina, S.N. An algorithm for the generation of laser beams with longitudinal periodicity: Rotating images. J. Mod. Opt. 1997, 44, 1409–1416. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kotlyar, V.V.; Soifer, V.A.; Lautanen, J.; Honkanen, M.; Turunen, J. Generating a couple of rotating nondiffracting beams using a binary-phase DOE. Optik 1999, 110, 137–144. [Google Scholar]
- Zhang, P.; Prakash, J.; Zhang, Z.; Mills, M.S.; Efremidis, N.K.; Christodoulides, D.N.; Chen, Z.G. Trapping and guiding microparticles with morphing autofocusing Airy beams. Opt. Lett. 2011, 36, 2883–2885. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Huang, S.; Liu, X.; Chen, Y.; Shao, W. Optical trapping and rotating of micro-particles using the circular Airy vortex beams. Appl. Phys. B 2019, 125, 184. [Google Scholar] [CrossRef]
- Vallee, O. Airy Functions and Applications in Physics; Vallee, O., Soares., M., Eds.; Imperial College Press: London, UK, 2004; p. 194. ISBN 978-1-86094-478-9. [Google Scholar]
- Degtyarev, S.A.; Volotovsky, S.G.; Khonina, S.N. Sublinearly chirped metalenses for forming abruptly autofocusing cylindrically polarized beams. J. Opt. Soc. Am. B 2018, 35, 1963–1969. [Google Scholar] [CrossRef]
- Almazov, A.A.; Khonina, S.N.; Kotlyar, V.V. Using phase diffraction optical elements to shape and select laser beams consisting of a superposition of an arbitrary number of angular harmonics. J. Opt. Technol. 2005, 72, 391–399. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kotlyar, V.V.; Soifer, V.A.; Jefimovs, K.; Turunen, J. Generation and selection of laser beams represented by a superposition of two angular harmonics. J. Mod. Opt. 2004, 51, 761–773. [Google Scholar] [CrossRef]
Input Amplitude and Phase (2 mm × 2 mm) | Longitudinal Intensity Distribution (2 mm × 300 mm) | Transverse Distribution | ||
---|---|---|---|---|
z = 150 mm | z = 200 mm | z = 250 mm | ||
m1 = 2, m2 = 1 | Simulation Experiment | Simulation: intensity (1.6 mm × 1.6 mm) Simulation: TEFD (1 mm × 1 mm) Experiment: intensity (1.6 mm × 1.6 mm) | ||
m1 = 2, m2 = −1 | Simulation Experiment | Simulation: intensity (1.6 mm × 1.6 mm) Simulation: TEFD (1 mm × 1 mm) Experiment: intensity (1.6 mm × 1.6 mm) |
Input Amplitude and Phase (2 mm × 2 mm) |
Longitudinal Intensity Distribution (1.6 mm × 300 mm) |
Transverse Intensity Distribution (1.6 mm × 1.6 mm) | ||
---|---|---|---|---|
z = 100 mm | z = 200 mm | z = 300 mm | ||
q = 2, m = 1 | Simulation | Simulation | ||
| | | ||
Experiment | Experiment | |||
| | |||
q = 2, m = 2 | Simulation | Simulation | ||
| | | ||
Experiment | Experiment | |||
| |
Input Amplitude and Phase (2 mm × 2 mm) | Transverse Distribution (1 mm × 1 mm) | |
---|---|---|
Value | z = 150 mm z = 175 mm z = 200 mm z = 225 mm z = 250 mm | |
q = 2, m = 1 | | |
| ||
q = 2, m = 2 | | |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khonina, S.N.; Porfirev, A.P.; Ustinov, A.V.; Butt, M.A. Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams. Micromachines 2021, 12, 297. https://doi.org/10.3390/mi12030297
Khonina SN, Porfirev AP, Ustinov AV, Butt MA. Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams. Micromachines. 2021; 12(3):297. https://doi.org/10.3390/mi12030297
Chicago/Turabian StyleKhonina, Svetlana N., Alexey P. Porfirev, Andrey V. Ustinov, and Muhammad Ali Butt. 2021. "Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams" Micromachines 12, no. 3: 297. https://doi.org/10.3390/mi12030297
APA StyleKhonina, S. N., Porfirev, A. P., Ustinov, A. V., & Butt, M. A. (2021). Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams. Micromachines, 12(3), 297. https://doi.org/10.3390/mi12030297