A Resonant Pressure Microsensor with a Wide Pressure Measurement Range
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Working Principle
2.2. Optimal Design and Finite Element Analysis (FEA) Simulations
3. Fabrication
4. Characterization
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ikeda, K.; Kuwayama, H.; Kobayashi, T.; Watanabe, T.; Nishikawa, T.; Yoshida, T.; Harada, K. Silicon Pressure Sensor Integrates Resonant Strain Gauge on Diaphragm. Sens. Actuators A Phys. 1990, 21, 146–150. [Google Scholar] [CrossRef]
- Chan, E.; Lin, D.; Tang, Z.; Lu, L.; Chau, K.; Wong, M. High-pressure High-temperature Bulk-type Piezoresistive Pressure Sensor. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018. [Google Scholar]
- Niu, Z.; Zhao, Y.; Tian, B. Design Optimization of High Pressure and High Temperature Piezoresistive Pressure Sensor for High Sensitivity. Rev. Sci. Instrum. 2014, 85, 2107–2109. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C.-P.; Heine, T.; Duesberg, G.S.; et al. Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films. Nano Lett. 2018, 18, 3738–3745. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M. Flexible Piezoelectric-induced Pressure Sensors for Static Measurements Based on Nanowires/graphene Heterostructures. ACS Nano 2017, 11, 4507–4513. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, A.P.; Golonka, L.J. High Pressure Sensor with PZT Transducer in LTCC Package. Procedia Eng. 2014, 87, 1099–1102. [Google Scholar] [CrossRef][Green Version]
- Rogers, T.; Kowal, J. Selection of Glass, Anodic Bonding Conditions and Material Compatibility for Silicon-glass Capacitive Sensors. Sens. Actuators A Phys. 1995, 46, 113–120. [Google Scholar] [CrossRef]
- Tan, Q.; Li, C.; Xiong, J.; Jia, P.; Zhang, W.; Liu, J.; Xue, C.; Hong, Y.; Ren, Z.; Luo, T. A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for in situ Measurement at 600 °C. Sensors 2014, 14, 2417–2430. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.J. Distributed Optical-fibre Sensors for the Measurement of Pressure, Strain and Temperature. Phys. Rep. 1988, 58, 99–143. [Google Scholar] [CrossRef]
- Hallynck, E.; Bienstman, P. Integrated Optical Pressure Sensors in Silicon-on-insulator. IEEE Photonics J. 2012, 4, 443–450. [Google Scholar] [CrossRef]
- Li, A.; Zhang, C.; Wang, H.; He, Y.; Sun, D.; Wang, L.; Du, X.; Gu, D. Design of Temperature-immunization System Packaging for the Resonant Pressure Sensor. Mod. Phys. Lett. B 2017, 31, 1750085. [Google Scholar] [CrossRef]
- Welham, C.J.; Greenwood, J.; Bertioli, M.M. A High Accuracy Resonant Pressure Sensor by Fusion Bonding and Trench Etching. Sens. Actuators A Phys. 1999, 76, 298–304. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Liu, M.; Wang, J. Design and Experiment of a Laterally Driven Micromachined Resonant Pressure Sensor for Barometers. Procedia Eng. 2010, 5, 1490–1493. [Google Scholar] [CrossRef]
- Corman, T.; Enoksson, P.; Stemme, G. Low-pressure-encapsulated Resonant Structures with Integrated Electrodes for Electrostatic Excitation and Capacitive Detection. Sens. Actuators A Phys. 1998, 66, 160–166. [Google Scholar] [CrossRef]
- Melamud, R.; Hopcroft, M.; Jha, C.; Kim, B.; Chandorkar, S.; Candler, R.; Kenny, T.W. Effects of Stress on the Temperature Coefficient of Frequency in Double Clamped Resonators. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005 (TRANSDUCERS ′05), Seoul, Korea, 5–9 June 2005; pp. 392–395. [Google Scholar]
- Wang, J.B.; Shi, X.J.; Liu, L.; Wu, Z.W.; Chen, D.Y.; Zhao, J. A Novel Resonant Pressure Sensor with Boron Diffused Silicon Resonator. In Proceedings of the SPIE, 2008 International Conference on Optical Instruments and Technology: MEMS/NEMS Technology and Applications, Beijing, China, 16–19 November 2008. [Google Scholar]
- Southworth, D.R.; Craighead, H.G.; Parpia, J.M. Pressure Dependent Resonant Frequency of Micromechanical Drumhead Resonators. Appl. Phys. Lett. 2009, 94, 213506. [Google Scholar] [CrossRef]
- Xu, T.; Zhao, L.; Jiang, Z.; Guo, X.; Ding, J.; Xiang, W.; Zhao, Y. A High Sensitive Pressure Sensor with the Novel Bossed Diaphragm Combined with Peninsula-island Structure. Sens. Actuators A Phys. 2016, 244, 66–76. [Google Scholar] [CrossRef]
- Li, X.; Kan, E.C. A Wireless Low-range Pressure Sensor Based on P(VDF-TrFE) Piezoelectric Resonance. Sens. Actuators A Phys. 2010, 163, 457–463. [Google Scholar] [CrossRef]
- Pakula, L.S.; Yang, H.; Pham, H.T.M.; French, P.J.; Sarro, P.M. Fabrication of a CMOS Compatible Pressure Sensor for Harsh Environments. J. Micromech. Microeng. 2004, 14, 1478. [Google Scholar] [CrossRef]
- Tang, D.; Yang, D.; Jiang, R.; Zhao, J.; Wang, H.; Jiang, S. Fiber Loop Ring-down Optical Fiber Grating Gas Pressure Sensor. Opt. Lasers Eng. 2010, 48, 1262–1265. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, E.J.; Cho, M.R.; Kim, C.S.; Park, Y.D.; Kouh, T. Pressure-sensing Based on Photothermally Coupled Operation of Micromechanical Beam Resonator. Appl. Phys. Lett. 2013, 102, 59. [Google Scholar] [CrossRef]
- Hajjaj, A.Z.; Alcheikh, N.; Hafiz, M.A.A.; Ilyas, S.; Younis, M.I. A Scalable Pressure Sensor Based on an Electrothermally and Electrostatically Operated Resonator. Appl. Phys. Lett. 2017, 111, 223503. [Google Scholar] [CrossRef]
- Sujan, Y.; Uma, G.; Umapathy, M. Design and Modelling of a Micro Resonant Pressure Sensor. Microsyst. Technol. 2017, 23, 1285–1293. [Google Scholar] [CrossRef]
- Tang, Z.; Fan, S.; Xing, W.; Guo, Z.; Zhang, Z. An Electrothermally Excited Dual Beams Silicon Resonant Pressure Sensor with Temperature Compensation. Microsyst. Technol. 2011, 17, 1481–1490. [Google Scholar] [CrossRef]
- Cheng, R.; Zhao, Y.; Li, C.; Tian, B.; Yu, Z.; Liu, K. Design and Fabrication of a Resonant Pressure Sensor by Combination of DETF Quartz Resonator and Silicon Diaphragm. Microsyst. Technol. 2015, 21, 631–640. [Google Scholar] [CrossRef]
- Greenwood, J.C. A High Pressure Resonant Sensor. In IEE Colloquium on Heading Sensors for Sonar and Marine Applications; IET: London, UK, 1994. [Google Scholar]
- Greenwood, J.C.; Wray, T. High Accuracy Pressure Measurement with a Silicon Resonant Sensor. Sens. Actuators A Phys. 1993, 37, 82–85. [Google Scholar] [CrossRef]
- Kinnell, P.K.; Craddock, R. Advances in Silicon Resonant Pressure Transducers. Procedia Chem. 2009, 1, 104–107. [Google Scholar] [CrossRef]
- Jiang, Y.W.; Du, X.; Zhan, Z.; Xu, B.; Lv, W.; Wang, L. Design and Simulation of Fully-symmetrical Resonant Pressure Sensor. In Proceedings of the 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012. [Google Scholar]
- Mitsuya, H.; Ashizawa, H.; Sugiyama, T.; Kumemura, M. Electret-based Low Power Resonator for Robust Pressure Sensor. In Proceedings of the 27th IEEE International Conference on Micro Electro Mechanical Systems, San Francisco, CA, USA, 26–30 January 2014. [Google Scholar]
- Lu, Y.L.; Yan, P.C.; Xiang, C.; Chen, D.Y.; Wang, J.B.; Chen, J. A Resonant Pressure Microsensor with the Measurement Range of 1 MPa Based on Sensitivities Balanced Dual Resonators. Sensors 2019, 19, 2272. [Google Scholar] [CrossRef]
- Yan, P.C.; Lu, Y.L.; Xiang, C.; Chen, D.Y.; Wang, J.B.; Chen, J. A Temperature-Insensitive Resonant Pressure Micro Sensor Based on Silicon-on-Glass Vacuum Packaging. Sensors 2019, 19, 3866. [Google Scholar] [CrossRef]
- Xiang, C.; Yan, P.C.; Lu, Y.L.; Chen, D.Y.; Wang, J.B.; Chen, J. A Resonant Pressure Microsensor with Temperature Compensation Based on Differential Outputs and a Temperature Sensor. Micromachines 2020, 11, 1022. [Google Scholar] [CrossRef]
- Bao, M.H. Analysis and Design Principles of MEMS Devices; Elsevier: Amsterdam, The Netherlands, 2005; pp. 97–107. [Google Scholar]
Items | α |
---|---|
Square | 0.31 |
Circle | 0.24 |
Type | Length/mm | Width/mm | Diameter/mm |
---|---|---|---|
A | 5 | 5 | - |
B | 3.6 | 3.6 | - |
C | - | - | 5 |
D | - | - | 3.6 |
Type | 11 MPa | 20 MPa | 35 MPa | 40 MPa | 60 MPa |
---|---|---|---|---|---|
A | Broken | - | - | - | - |
B | OK | OK | Broken | - | - |
C | OK | Broken | - | - | - |
D | OK | OK | OK | OK | Broken |
Part | Length/μm | Width/μm | Thickness/μm | Depth/μm | Diameter/μm |
---|---|---|---|---|---|
Resonant Beam | 1200 | 16.5 | 40 | - | - |
Device Layer of SOI | 10,200 | 10,200 | 40 | - | - |
Handle Layer of SOI | 10,200 | 10,200 | 300 | - | - |
Oxide Layer of SOI | 10,200 | 10,200 | 2 | - | - |
Vacuum Cavity | - | - | - | 10 | 3560 |
Glass Layer of SOG | 10,200 | 10,200 | 120 | - | - |
Silicon Layer of SOG | 10,200 | 10,200 | 1500 | - | - |
Item | Silicon | BF33 |
---|---|---|
Young’s modulus (GPa) | 165 | 64 |
Density () | 2.33 | 2.23 |
Poisson’s ratio | 0.28 | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, C.; Lu, Y.; Cheng, C.; Wang, J.; Chen, D.; Chen, J. A Resonant Pressure Microsensor with a Wide Pressure Measurement Range. Micromachines 2021, 12, 382. https://doi.org/10.3390/mi12040382
Xiang C, Lu Y, Cheng C, Wang J, Chen D, Chen J. A Resonant Pressure Microsensor with a Wide Pressure Measurement Range. Micromachines. 2021; 12(4):382. https://doi.org/10.3390/mi12040382
Chicago/Turabian StyleXiang, Chao, Yulan Lu, Chao Cheng, Junbo Wang, Deyong Chen, and Jian Chen. 2021. "A Resonant Pressure Microsensor with a Wide Pressure Measurement Range" Micromachines 12, no. 4: 382. https://doi.org/10.3390/mi12040382
APA StyleXiang, C., Lu, Y., Cheng, C., Wang, J., Chen, D., & Chen, J. (2021). A Resonant Pressure Microsensor with a Wide Pressure Measurement Range. Micromachines, 12(4), 382. https://doi.org/10.3390/mi12040382