Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands
Abstract
:1. Introduction
2. Design of the Dual-Band MIMO Antenna System
2.1. Development Steps to Achieve a Dual-Band MIMO Antenna
2.2. Fabrication of the Prototype
3. Dual-Band MIMO Antenna Performance
3.1. Envelope Correlation Coefficient
3.2. Channel Capacity Loss
3.3. Radiation Patterns
3.4. Comparison with Previous Works
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanwal, K.; Safdar, G.A.; Ur-Rehman, M.; Yang, X. Energy Management in LTE Networks. IEEE Access 2017, 5, 4264–4284. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.J.; Lee, S.J.; Khang, S.T.; Yu, J.W. Extensible compact 8-port MIMO antenna with pattern gain. Microw. Opt. Technol. Lett. 2017, 59, 236–240. [Google Scholar] [CrossRef]
- Deng, J.Y.; Yao, J.; Sun, D.Q.; Guo, L.X. Ten-element MIMO antenna for 5G terminals. Microw. Opt. Technol. Lett. 2018, 60, 3045–3049. [Google Scholar] [CrossRef]
- Abdullah, M.; Li, Q.; Xue, W.; Peng, G.; He, Y.; Chen, X. Isolation enhancement of MIMO antennas using shorting pins. J. Electromagn. Waves Appl. 2019, 33, 1249–1263. [Google Scholar] [CrossRef]
- Parchin, N.O.; Basherlou, H.J.; Alibakhshikenari, M.; Parchin, Y.O.; Al-Yasir, Y.I.; Abd-Alhameed, R.A. Mobile-Phone Antenna Array with Diamond-Ring Slot Elements for 5G Massive MIMO Systems. Electronics 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Foschini, G.J.; Gans, M.J. On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 1998, 6, 311–335. [Google Scholar] [CrossRef]
- Johnny, M.; Aref, M.R. Blind Interference Alignment for the K-User SISO Interference Channel Using Reconfigurable Antennas. IEEE Commun. Lett. 2018, 22, 1046–1049. [Google Scholar] [CrossRef]
- Hassan, M.M.; Rasool, M.; Asghar, M.U.; Zahid, Z.; Khan, A.A.; Rashid, I. A novel UWB MIMO antenna array with band notch characteristics using parasitic decoupler. J. Electromagn. Waves Appl. 2019, 34, 1225–1238. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Andersen, J.B. Antenna diversity in mobile communications. IEEE Trans. Veh. Technol. 1987, 36, 149–172. [Google Scholar] [CrossRef]
- Sharawi, M.; Jan, M.; Aloi, D. Four-shaped 2 × 2 multi-standard compact multiple-input–multiple-output antenna system for long-term evolution mobile handsets. IET Micro. Antennas Propag. 2012, 6, 685–696. [Google Scholar] [CrossRef]
- Deng, C.; Liu, D.; Lv, X. Tightly arranged four-element MIMO antennas for 5G mobile terminals. IEEE Trans. Antennas Propag. 2019, 67, 6353–6361. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Al-Yasir, Y.I.; Ullah, A.; Abd-Alhameed, R.A.; Noras, J.M. Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals. Sensors 2019, 19, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, R.; Alreshaid, A.T.; Podilchak, S.K.; Sharawi, M.S. Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microw. Antennas Propag. 2017, 11, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xiong, J.; He, S. A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1107–1110. [Google Scholar] [CrossRef]
- Hassan, T.; Khan, M.U.; Shoaib, N.; Hussain, R.; Sharawi, M.S. Correlation Reduction in a 4-Element MIMO Antenna using Partially Reflective Surface. In Proceedings of the 2019 13th European Conference on Antennas and Propagation EuCAP, Krakow, Poland, 31 March–5 April 2019; pp. 1–4. [Google Scholar]
- Karimian, R.; Soleimani, M.; Hashemi, S. Tri-band four elements MIMO antenna system for WLAN and WiMAX application. J. Electromagn. Waves Appl. 2012, 26, 2348–2357. [Google Scholar] [CrossRef]
- Zhang, S.; Zetterberg, P.; He, S. Printed MIMO antenna system of four closely-spaced elements with large bandwidth and high isolation. Electron. Lett. 2010, 46, 1052–1053. [Google Scholar] [CrossRef]
- Chen, S.; Chiang, C.; Hsu, C.G. Compact Four-Element MIMO Antenna System for 5G Laptops. IEEE Access 2019, 7, 186056–186064. [Google Scholar] [CrossRef]
- Abed, A.T.; Jawad, A.M. Compact Size MIMO Amer Fractal Slot Antenna for 3G, LTE (4G), WLAN, WiMAX, ISM and 5G Communications. IEEE Access 2019, 7, 125542–125551. [Google Scholar] [CrossRef]
- Anguera, J.; Andújar, A.; Mateos, R.M.; Kahng, S. A 4 × 4 MIMO multiband antenna system with non-resonant elements for smartphone platforms. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2705–2708. [Google Scholar]
- Votis, C.; Tatsis, G.; Kostarakis, P. Envelope correlation parameter measurements in a MIMO antenna array configuration. Int. J. Commun. Netw. Syst. Sci. 2010, 3, 350. [Google Scholar] [CrossRef] [Green Version]
- Chae, S.H.; Oh, S.k.; Park, S.O. Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 122–125. [Google Scholar] [CrossRef]
- Levitas, B.; Drozdov, M.; Naidionova, I.; Jefremov, S.; Malyshev, S.; Chizh, A. UWB system for time-domain near-field antenna measurement. In Proceedings of the 2013 European Microwave Conference, Nuremberg, Germany, 6–10 October 2013; pp. 388–391. [Google Scholar]
- Chen, Q.; Lin, H.; Wang, J.; Ge, L.; Li, Y.; Pei, T. Single ring slot-based antennas for metal-rimmed 4G/5G smartphones. IEEE Trans. Antennas Propag. 2018, 67, 1476–1487. [Google Scholar] [CrossRef]
All Dimensions Are in mm | |
---|---|
Wg = 5 | L5 = 9.89 |
Wt = 2.82 | L6 = 12.02 |
W1 = 2 | L7 = 11.58 |
W2 = W3 = 1.41 | L8 = 7.77 |
W4 = 2 | L9 = 5.5 |
L1 = 17 | L10 = 7.07 |
L2 = 12 | L11 = 4.5 |
L3 = 11 | L12 = 1 |
L4 = 10.59 | L13 = 2 |
Reference | Frequency (GHz) | Gain (dBi) | Isolation (dB) | ECC | Size () |
---|---|---|---|---|---|
[11] | 3.4–3.6 | - | >11 | - | |
[12] | Tri-band 2.5–2.7 3.45–3.8 5.0–5.45 | 2.5 2.77 2.8 | >19 >23 >17 | <0.01 <0.001 <0.002 | |
[13] | Dual-Band 1.87–2.53 26–28 | 3.86 8.0 | >15 >25 | 0.181 NA | |
[24] | Tri-band 0.82–0.96 1.710–2.69 3.4–3.6 | NA NA 6.5 | NA NA >13 | NA NA <0.07 | |
This work | Dual-Band 1.55–2.65 3.35–3.65 | 2.2 3.8 | >10 >19 | <0.08 <0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkawi, W.M.; Malik, W.A.; Rehman, S.U.; Aziz, A.; Sheta, A.F.A.; Alkanhal, M.A. Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands. Micromachines 2021, 12, 383. https://doi.org/10.3390/mi12040383
Abdulkawi WM, Malik WA, Rehman SU, Aziz A, Sheta AFA, Alkanhal MA. Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands. Micromachines. 2021; 12(4):383. https://doi.org/10.3390/mi12040383
Chicago/Turabian StyleAbdulkawi, Wazie M., Waqar Ahmad Malik, Sajjad Ur Rehman, Abdul Aziz, Abdel Fattah A. Sheta, and Majeed A. Alkanhal. 2021. "Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands" Micromachines 12, no. 4: 383. https://doi.org/10.3390/mi12040383
APA StyleAbdulkawi, W. M., Malik, W. A., Rehman, S. U., Aziz, A., Sheta, A. F. A., & Alkanhal, M. A. (2021). Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands. Micromachines, 12(4), 383. https://doi.org/10.3390/mi12040383