Lateral-Type Spin-Photonics Devices: Development and Applications
Abstract
:1. Introduction
1.1. Spin-Polarized Light Emitting Diodes (Spin-LEDs)
1.2. Spin-LEDs as a Circularly Polarized Light Source
2. Compact, Integrable, and Stand-Alone Spin-LEDs
3. Emission with High Circular Polarization
3.1. Crystalline AlOx Tunnel Barrier Layer on GaAs
3.2. Circularly Polarized Emission with x-AlOx Tunneling Barrier
3.3. Oxidized Al/AlAs Tunneling Barrier
4. Controllability of Circular Polarization
5. Circularly Polarized Light Detection
6. CPL Applications with Spin-Photonic Devices
6.1. Proposed Applications Using CPL
6.2. Cancer Identification Using CPL Scattering
7. Conclusions and Future Prospects
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datta, S.; Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 1990, 56, 665–667. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472–2474. [Google Scholar] [CrossRef] [Green Version]
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structure with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef] [Green Version]
- Fiederling, R.; Keim, M.; Reuscher, G.; Ossau, W.; Schmidt, G.; Waag, A.; Molenkamp, L.W. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 1999, 402, 787–790. [Google Scholar] [CrossRef]
- Ohno, Y.; Young, D.K.; Beschoten, B.; Matsukura, F.; Ohno, H.; Awschalom, D.D. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 1999, 402, 790–792. [Google Scholar] [CrossRef]
- Van Roy, W.; Van Dorpe, P.; Motsnyi, V.; Liu, Z.; Borghs, G.; De Boeck, J. Spin-injection in semiconductor: Materials challenges and device aspects. Phys. Status Solidi 2004, 241, 1470–1476. [Google Scholar] [CrossRef]
- Van Roy, W.; Van Dorpe, P.; Vanheertum, R.; Vandormael, P.-J.; Borghs, G. Spin injection and detection in semiconductors-electrical issues and device aspects. IEEE Trans. Electron Devices 2007, 54, 933–944. [Google Scholar] [CrossRef]
- Holub, M.; Bhattacharya, P. Spin-polarized light-emitting diodes and lasers. J. Phys. D Appl. Phys. 2007, 40, R179–R203. [Google Scholar] [CrossRef]
- Meier, F.; Zakharchenya, B.P. Optical Orientation (Modern Problems in Condensed Matter Science); Elsevier Science: Amsterdam, The Netherlands, 1984; p. 28. [Google Scholar]
- Jonker, B.T.; Park, Y.D.; Bennett, B.R.; Cheoung, H.D.; Kioseoglou, G.; Petrou, A. Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 2000, 62, 8180–8183. [Google Scholar] [CrossRef]
- Fiederling, R.; Grabs, P.; Ossau, W.; Schmidt, G.; Molenkamp, L.W. Detection of electrical spin injection by light-emitting diodes in top- and side-emission configurations. Appl. Phys. Lett. 2003, 82, 2160–2162. [Google Scholar] [CrossRef] [Green Version]
- Žutić, I.; Fabian, J.; Das Sarma, S. Spin-polarized transport in inhomogeneous magnetic semiconductors: Theory of magnetic/nonmagnetic p-n junctions. Phys. Rev. Lett. 2002, 88, 66603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, G.; Ferrand, D.; Molenkamp, L.W.; Filip, A.T.; van Wees, B.J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 2000, 62, R4790–R4793. [Google Scholar] [CrossRef] [Green Version]
- Rashba, E.I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 2000, 62, R16267–R16270. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.L.; Silver, R.N. Electrical spin injection into semiconductors. Phys. Rev. B 2001, 64, 45323. [Google Scholar] [CrossRef]
- Schmidt, G.; Molenkamp, L.W. Spin injection into semiconductors, physics and experiments Semicond. Sci. Technol. 2002, 17, 310–321. [Google Scholar]
- Zhu, H.J.; Ramsteiner, M.; Kostial, H.; Wassermeier, M.; Schönherr, H.-P.; Ploog, K.H. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 2001, 87, 16601. [Google Scholar] [CrossRef] [Green Version]
- Hanbicki, A.T.; Jonker, B.T.; Itskos, G.; Kioseoglou, G.; Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 2002, 80, 1240–1242. [Google Scholar] [CrossRef]
- Terui, W.; Munekata, H.; Hanna, T.; Yoshida, D. MnSb-based spin LED with side-wall emission. Phys. Status Solidi C 2011, 2, 396–398. [Google Scholar] [CrossRef]
- Hanna, T.; Yoshida, D.; Munekata, H. Preparation characterization of MnSb-GaAs spin LED. J. Cryst. Growth 2011, 323, 383–386. [Google Scholar] [CrossRef]
- Dong, X.Y.; Adelmann, C.; Xie, J.Q.; Palmstrom, C.J.; Lou, X.; Strand, J.; Crowell, P.A.; Barnes, J.-P.; Petford-Long, A.K. Spin injction from the Heusler alloy Co2MnGe into Al0.1Ga0.9As/GaAs heterostructures. Appl. Phys. Lett. 2005, 86, 102107. [Google Scholar] [CrossRef] [Green Version]
- Hickey, M.C.; Damsgaard, C.D.; Farrer, I.; Holmes, S.N.; Husmann, A.; Hansen, J.B.; Jacobsen, C.S.; Ritchie, D.A.; Lee, R.F.; Jones, G.A.C.; et al. Spin injection between epitaxial Co2.4Mn1.6Ga and InGaAs quantum wll. Appl. Phys. Lett. 2005, 86, 252106. [Google Scholar] [CrossRef] [Green Version]
- Fraser, E.D.; Hegde, S.; Schweidenback, L.; Russ, A.H.; Petrou, A.; Luo, H. Kioseoglou, G. Efficient electron spin injection in MnAs-based spin-light-emitting diodes up to room temperature. Appl. Phys. Lett. 2010, 97, 41103. [Google Scholar] [CrossRef]
- Motsnyi, V.F.; De Boeck, J.; Das, J.; Van Roy, W.; Borghs, G.; Goovaerts, E.; Safarov, V.I. Electrical spin injection in a ferromagnet/tunnel barrier/semiconductor heterostructure. Appl. Phys. Lett. 2002, 81, 265–267. [Google Scholar] [CrossRef] [Green Version]
- Van Dorpe, P.; Vasyl, F.; Motsnyi, V.F.; Nijboer, M.; Goovaerts, E.; Safarov, V.I.; Das, J.; Van Roy, W.; Borghs, G.; De Boeck, J. Highly efficient room temperature spin injection in a metal-insulator-semiconductor light-emitting diode. Jpn. J. Appl. Phys. 2003, 42, L502–L504. [Google Scholar] [CrossRef] [Green Version]
- Van Dorpe, P.; Van Roy, W.; Motsnyi, V.F.; Borghs, G.; De Boeck, J. Efficient electrical spin injection in GaAs: A comparison between AlOx and Schottky injectors. J. Vac. Sci. Technol. A 2004, 22, 1862–1867. [Google Scholar] [CrossRef]
- Van’t Erve, O.M.J.; Kioseoglou, G.; Hanbicki, A.T.; Li, C.H.; Jonker, B.T.; Mallory, R.; Yasar, M.; Petrou, A. Comparison of Fe/Schottky and Fe/Al2O3 tunnel barrier contacts for electrical spin injection into GaAs. Appl. Phys. Lett. 2004, 84, 4334–4336. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S.-H. Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, R.; Shelby, R.M.; Macfarlane, R.M.; Bank, S.R.; Harris, J.S.; Parkin, S.S.P. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 2005, 94, 056601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salis, G.; Wang, R.; Jiang, X.; Shelby, R.M.; Parkin, S.S.P.; Bank, S.R.; Harris, J.S. Temperature independence of the spin-injection efficiency of a MgO-based tunnel spin injector. Appl. Phys. Lett. 2005, 87, 262503. [Google Scholar] [CrossRef]
- Manago, T.; Sinsarp, A.; Akinaga, H. Growth condition dependence of spin-polarized electroluminescence in Fe/MgO/light-emitting diodes. J. Appl. Phys. 2007, 102, 83914. [Google Scholar] [CrossRef]
- Lu, Y.; Truong, V.G.; Renucci, P.; Tran, M.; Jaffrès, H.; Deranlot, C.; George, J.-M.; Lemaître, A.; Zheng, Y.; Demaille, D.; et al. MgO thickness dependence of spin injection efficiency in spin-light emitting diodes. Appl. Phys. Lett. 2008, 93, 152102. [Google Scholar] [CrossRef]
- Buyanova, I.A.; Bergman, J.P.; Chen, W.M.; Thaler, G.; Frazier, G.; Abernathy, C.R.; Pearton, S.J.; Kim, J.; Ren, F.; Kyrychenko, F.V.; et al. Optical study of spin injection dynamics in InGaN/GaN quantum wells with GaMnN injection layers. J. Vac. Sci. Technol. B 2004, 22, 2668–2672. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tien, C.-H.; Luo, Y.-M.; Mu, C.-S. Photoluminescence and spin relaxation of MnZnO/GaN-based light-emitting diodes. Thin Solid Film. 2011, 519, 2516–2519. [Google Scholar] [CrossRef]
- Banerjee, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Ganguly, S.; Aldhaheri, R.W.; Hussain, M.A.; Balamesh, A.S.; Saha, D. Electrical spin injection using GaCrN in a GaN based spin light emitting diode. Appl. Phys. Lett. 2013, 103, 242408. [Google Scholar] [CrossRef] [Green Version]
- Melton, A.G.; Kuchkgok, B.; Liu, Z.; Dietz, N.; Lu, N.; Ferguson, I.T. Room temperature GaN-based spin polarized emitters. Proc. SPIE 2013, 8631, 863104. [Google Scholar]
- Wu, Y.; Chen, J.; Zhou, J.; Lan, J.; Zeng, H.; He, B.; Zhong, Z.; Guo, J.; Song, A.; Xia, Y.; et al. Regulating the circular polarization in nitride-based light-emitting diodes trough the spin injection. Appl. Phys. Exp. 2019, 12, 123005. [Google Scholar] [CrossRef]
- Song, A.; Chen, J.; Lan, J.; Fu, D.; Zhou, J.; Zhong, Z.; Guo, J.; Wu, X.; Wu, Y.; Li, X.; et al. Modulating room temperature spin injection into GaN towards the high-efficiency spin-light emitting diodes. Appl. Phys. Exp. 2020, 13, 43006. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Baten, M.Z.; Frost, T.; Bhattacharya, P. Room temperature GaN-based edge-emitting spin-polarized light emitting diode. IEEE Photonics Technol. Lett. 2017, 29, 1041–1135. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Zhong, Z.; Zhou, J.; Chen, J.; Guo, J.; Song, A.; Li, X.; Wu, Z.; Kang, J. Room-temperature spin injection and optical polarization in nitride-based blue and ultra-violet spin light-emitting diodes. Appl. Phys. Exp. 2020, 13, 123001. [Google Scholar] [CrossRef]
- Jasperson, S.N.; Schnatterly, S.E. An improved method for high reflectivity ellipsometry based on as new polarization modulation technique. Rev. Sci. Instrum. 1969, 40, 761–767. [Google Scholar] [CrossRef]
- Yang, Y.; Da Costa, R.C.; Smilgies, D.-M.; Cambel, A.J.; Fuchter, M.J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 2013, 25, 2624–2628. [Google Scholar] [CrossRef] [Green Version]
- Konishi, K.; Nomura, M.; Kumagai, N.; Iwamoto, S.; Arakawa, Y.; Kuwata-Gonokami, M. Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys. Rev. Lett. 2011, 106, 57402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, T.; Isozaki, A.; Kanda, N.; Nemoto, N.; Konishi, K.; Takahiashi, H.; Kuwata-Gonokami, M.; Matsumoto, K.; Shimoyama, I. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals. Nat. Commun. 2015, 6, 8422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Oka, T.; Suzuki, R.; Ye, J.T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Liu, H.; McLaughlin, R.; Zhai, Y.; Vardeny, S.R.; Liu, X.; McGill, S.; Semenov, D.; Guo, H.; et al. Spin-optoelectronic devices hybrid organic-inorganic trihalide perovskites. Nat. Commun. 2019, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E.A.; Harvey, S.P.; Berry, J.J.; Vardeny, Z.V.; Luther, J.M.; et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133. [Google Scholar] [CrossRef]
- Hallstein, S.; Berger, J.D.; Hilpert, M.; Schneider, H.C.; Rühle, W.W.; Jahnke, F.; Koch, S.W.; Gibbs, H.M.; Khitrova, G.; Oestreich, M. Manifestation of coherent spin precession in stimulated semiconductor emission dynamics. Phys. Rev. B 1997, 56, R7076–R7079. [Google Scholar] [CrossRef]
- Ando, H.; Sogawa, T.; Gotoh, H. Photon-spin controlled lasing oscillation in surface-emitting lasers. Appl. Phys. Lett. 1998, 73, 566–568. [Google Scholar] [CrossRef]
- Iba, S.; Koh, S.; Ikeda, K.; Kawaguchi, H. Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells. Appl. Phys. Lett. 2011, 98, 81113. [Google Scholar] [CrossRef]
- Höpfner, H.; Lindemann, M.; Gerhardt, N.C.; Hofmann, M.R. Controlled switching of ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 2014, 101, 22409. [Google Scholar] [CrossRef]
- Žutić, I.; Xu, G.; Lindemann, M.; Faria Junior, P.E.; Lee, J.; Labinac, V.; Stojšić, K.; Sipahi, G.M.; Hofmann, M.R.; Gerhardt, N.C. Spin-lasers: Spintronics beyond magnetoresistance. Solid State Commun. 2020, 316–317, 113949. [Google Scholar] [CrossRef]
- Zaumseil, J. Electronic Control of Circularly polarized light emission. Science 2014, 344, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.H.B. Physics of Semiconductor Laser Devices; John Wiley & Sons Ltd.: New York, NY, USA, 1980. [Google Scholar]
- Schubert, E.F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Tudu, B.; Tiwari, A. Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 2017, 146, 329–341. [Google Scholar] [CrossRef]
- Adelmann, C.; Hilton, J.L.; Schultz, B.D.; McKernan, S.; Palmstrøm, C.J.; Lou, X.; Chiang, H.-S.; Crowell, P.A. Spin injection from perpendicular magnetized ferromagnetic δ-MnGa into (Al, Ga)As heterostructure. Appl. Phys. Lett. 2006, 89, 112511. [Google Scholar] [CrossRef] [Green Version]
- Zube, C.; Malindretos, J.; Watschke, L.; Zamani, R.R.; Disterheft, D.; Ulbrich, R.G.; Rizzi, A.; Iza, M.; Keller, S.; DenBaars, S.P. Spin injection in epitaxial MnGa(111)/GaN(0001) heterostructures. J. Appl. Phys. 2018, 123, 33906. [Google Scholar] [CrossRef]
- Rykov, A.V.; Doroknhin, M.V.; Demina, P.B.; Zdoroveyshchev, A.V.; Ved, M.V. Temperature stabilization of spin-LEDs with CoPt injector. J. Phys. Conf. Ser. 2017, 816, 12304. [Google Scholar] [CrossRef]
- Doroknhin, M.V.; Demina, P.B.; Budanov, A.V.; Vlasov, Y.N.; Kotov, G.I.; Zdoroveyshchev, A.V.; Trushin, V.N.; Zvonkov, B.N. Enhancing the circular polarization of spin light-emitting diodes by processing in selenium vapor. Tech. Phys. Lett. 2019, 45, 235–238. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef]
- Giba, A.E.; Gao, X.; Stoffel, M.; Devaux, X.; Xu, B.; Marie, X.; Renucci, P.; Jaffrès, H.; George, J.-M.; Cong, G.; et al. Spin injection and relaxation in p-doped (In, Ga)As/GaAs quantum-dot spin light-emitting diodes at zero magnetic field. Phys. Rev. Appl. 2020, 14, 34017. [Google Scholar] [CrossRef]
- Cadiz, F.; Lagarde, D.; Liang, S.H.; Tao, B.; Frougier, J.; Lu, Y.; Xu, B.; Jaffrès, H.; Wang, Z.; Han, X.; et al. Very efficient electrical spin injection (/detection) into quantum dots at zero magnetic field. Proc. SPIE 2017, 10357, 103571D. [Google Scholar]
- Cadiz, F.; Djeffal, A.; Lagarde, D.; Balocchi, A.; Tao, B.; Xu, B.; Liang, S.; Stoffel, M.; Devaux, X.; Jaffrès, H.; et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 2018, 18, 2381–2386. [Google Scholar] [CrossRef]
- Tao, B.S.; Barate, P.; Frougier, J.; Renucci, P.; Xu, B.; Djeffal, A.; Jaffrès, H.; George, J.-M.; Marie, X.; Petit-Watelot, S.; et al. Electrical spin injection into GaAs based light emitting diodes using perpendicular magnetic tunnel junction-type spin injector. Appl. Phys. Lett. 2016, 108, 152404. [Google Scholar] [CrossRef]
- Soldat, H.; Li, M.; Gerhardt, N.C.; Hofmann, M.R.; Ludwig, A.; Ebbing, A.; Reuter, D.; Wieck, A.D.; Stromberg, F.; Keune, W.; et al. Room temperature spin relaxation length in spin light-emitting diodes. Appl. Phys. Lett. 2011, 99, 51102. [Google Scholar]
- Zarpellon, J.; Jaffrès, H.; Frougier, J.; Deranlot, C.; George, J.M.; Mosca, D.H.; Lemaître, A.; Freimuth, F.; Duong, Q.H.; Renucci, P.; et al. Spin injection at remanence into III-V spin light-emitting diodes using (Co/Pt) ferromagnetic injectors. Phys. Rev. B 2012, 86, 205314. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-W.; Fitzgerald, E.A. Improved interfacial state density in Al2O3/GaAs interfaces using metal-organic chemical vapor deposition. Appl. Phys. Lett. 2010, 96, 202101. [Google Scholar] [CrossRef]
- Le Breton, J.C.; Le Gall, S.; Jézéquel, G.; Lépine, B.; Schieffer, P.; Turban, P. Transport property study of MgO-GaAs(001) contacts for spin injection devices. Appl. Phys. Lett. 2007, 91, 172112. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, N.; Munekata, H. Efficient spin injection through a crystalline AlOx tunnel barrier prepared by the oxidation of an ultra-thin Al epitaxial layer on GaAs. J. Appl. Phys. 2013, 114, 33507. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.Y.; Dernier, P.D. Single-crystal-aluminum Schottky-barrier diodes prepared by molecular-beam epitaxy (MBE) on GaAs. J. Appl. Phys. 1978, 49, 3328–3332. [Google Scholar] [CrossRef]
- Luo, Y.S.; Yang, Y.-N.; Weaver, J.H.; Florez, L.T.; Palmstrøm, C.J. Multiorientational growth of Al on GaAs(001) studied with scanning tunneling microscopy. Phys. Rev. B 1994, 49, 1893–1899. [Google Scholar] [CrossRef]
- Gartland, P.O. Adsorption of oxygen on clean single crystal faces of aluminum. Surf. Sci. 1977, 62, 183–196. [Google Scholar]
- Yokota, N.; Aoshima, Y.; Ikeda, K.; Nishizawa, N.; Munekata, H.; Kawaguchi, H. Room temperature spin injection into (110) GaAs quantum wells using Fe/x-AlOx contacts in the regime of current density comparable to laser oscillation. J. Appl. Phys. 2015, 118, 163905. [Google Scholar] [CrossRef]
- Nishizawa, N.; Nishibayashi, K.; Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Nat. Acad. Sci. USA 2017, 114, 1783–1788. [Google Scholar] [CrossRef] [Green Version]
- Song, P.H.; Kim, K.W. Spin relaxation of conduction electrons in bulk III-V semiconductors. Phys. Rev. B 2002, 66, 35207. [Google Scholar] [CrossRef] [Green Version]
- Kressel, H.; Butler, J.K. Semiconductor Lasers and Heterojunction LEDs; Academic Press: New York, NY, USA, 1977; pp. 202–206. [Google Scholar]
- Bourdon, G.; Robert, I.; Sagnes, I.; Abram, I. Spontaneous emission in highly excited semiconductors: Saturation of the radiative recombination rate. J. Appl. Phys. 2002, 92, 6595–6600. [Google Scholar] [CrossRef]
- Kressel, H.; Butler, J.K. Semiconductor Lasers and Heterojunction LEDs; Academic Press: New York, NY, USA, 1977; pp. 19–21. [Google Scholar]
- Stern, F.; Woodall, J.M. Photon recycling in semiconductor lasers. J. Appl. Phys. 1974, 45, 3904–3906. [Google Scholar] [CrossRef]
- D’yakonov, M.I.; Perel, V.I. Spin orientation of electrons associated with the interband absorption of light in semiconductors. Sov. Phys. JETP 1971, 33, 1053–1059. [Google Scholar]
- Munekata, H. Low-threshold pure-circular polarization electro-luminescence from spin-light-emitting diodes consisting of oxidized Al/AlAs tunnel barriers. Proc. SPIE 2020, 11288, 112880Q. [Google Scholar]
- Yoshino, J.; Tokyo Institute of Technology, Tokyo, Japan. Personal communication, 2020.
- Van Roy, W.; Van Dorpe, P.; De Boeck, J.; Borghs, G. Spin injection in LED’s and in unipolar devices. Mater. Sci. Eng. B 2006, 126, 155–163. [Google Scholar] [CrossRef]
- Barate, P.; Liang, S.H.; Zhang, T.T.; Frougier, J.; Xu, B.; Schieffer, P.; Vidal, M.; Jaffrès, H.; Lépine, B.; Tricot, S.; et al. Bias dependence of the electrical spin injection into GaAs from Co-Fe-B/MgO injectors with different MgO growth processes Phys. Rev. Appl. 2017, 8, 54027. [Google Scholar] [CrossRef]
- Oestreich, M.; Bender, M.; Hübneer, J.; Hägele, D.; Rühle, W.W.; Hartmann, T.; Klar, P.J.; Heimbrodt, W.; Lampalzer, M.; Volz, K.; et al. Spin injection, spin transport and spin coherence. Semicond. Sci. Technol. 2002, 17, 285–297. [Google Scholar] [CrossRef]
- Nishizawa, N.; Nishibayashi, K.; Munekata, H. A spin light emitting diode incorporating ability of electrical helicity switching. Appl. Phys. Lett. 2014, 104, 111102. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, N.; Aoyama, M.; Roca, R.C.; Nishibayashi, K.; Munekata, H. Arbitrary helicity control of circularly polarized light from lateral-type spin-polarized light-emitting diodes at room temperature. Appl. Phys. Exp. 2018, 11, 53003. [Google Scholar] [CrossRef] [Green Version]
- Prins, M.W.; van Kempen, H.; van Leuken, H.; de Groot, R.A.; Van Roy, W.; De Boeck, J. Spin-dependent transport in metal/semiconductor tunnel junctions. J. Phys. Condens. Matter 1995, 7, 9447–9464. [Google Scholar] [CrossRef] [Green Version]
- Renucci, P.; Truong, V.G.; Jaffrès, H.; Lombez, L.; Binh, P.H.; Amand, T.; George, J.M.; Marie, X. Spin-polarized electroluminescence and spin-dependent photocurrent in hybrid semiconductor/ferromagnetic heterostructure: An asymmetric problem. Phys. Rev. B 2010, 82, 195317. [Google Scholar] [CrossRef]
- Taniyama, T.; Wastlbauer, G.; Ionescu, A.; Tselepi, M.; Bland, J.A.C. Spin-selective transport through Fe/AlOx/GaAs(100) interfaces under optical spin orientation. Phys. Rev. B 2003, 68, 134430. [Google Scholar] [CrossRef]
- Hövel, S.; Gerhardt, N.C.; Hofmann, M.R.; Lo, F.-Y.; Reuter, D.; Wieck, A.D.; Schuster, E.; Keune, W.; Wende, H.; Petracic, O.; et al. Electrical detection of photoinduced spins both at room temperature and in remanence. Appl. Phys. Lett. 2008, 92, 242102. [Google Scholar] [CrossRef]
- Park, Y.J.; Hickey, M.C.; Van Veenhuizen, M.J.; Chang, J.; Deiman, D.; Perry, C.H.; Moodera, J.S. Efficient spin transfer phenomena in Fe/MgO/GaAs structure. J. Phys. Condens. Matter 2011, 23, 116002. [Google Scholar] [CrossRef]
- Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H.T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508. [Google Scholar] [CrossRef]
- Rinaldi, C.; Cantoni, M.; Petti, D.; Sottocorno, A.; Leone, M.; Caffrey, N.M.; Sanvito, S.; Bertacco, R. Ge-based spin-photodiodes for room-temperature integrated detection of photon helicity. Adv. Mater. 2012, 24, 3037–3041. [Google Scholar] [CrossRef]
- Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; et al. Detection of the spin diffusion length in germanium by spin optical orientation and electrical spin injection. J. Phys. D Appl. Phys. 2016, 49, 425104. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Huang, W.; Renucci, P.; Marie, X.; Liu, Y.; Li, Y.; Wu, Q.; Zhang, Y.; Xu, B.; Lu, Y.; et al. Angular dependence of the spin photocurrent in a Co-Fe-B/MgO/n-i-p GaAs quantum-well structure. Phys. Rev. Appl. 2017, 8, 64022. [Google Scholar] [CrossRef]
- Djeffal, A.; Cadiz, F.; Stoffel, M.; Lagarde, D.; Gao, X.; Jaffrès, H.; Devaux, X.; Migot, S.; Marie, X.; Rinnert, H.; et al. Co-Fe-B/MgO/Ge spin photodiode operating at telecommunication wavelength with zero applied magnetic field. Phys. Rev. Appl. 2018, 10, 44049. [Google Scholar] [CrossRef]
- Steinmuller, S.J.; Gürtler, C.M.; Wastlbauer, G.; Bland, J.A.C. Separation of electron spin filtering and magnetic circular dichroism effects in photoexcitation studies of hybrid ferromagnet/GaAs Schottky barrier structures. Phys. Rev. B 2005, 72, 45301. [Google Scholar] [CrossRef]
- Ikeda, H.; Nishizawa, N.; Nishibayashi, K.; Munekata, H. Circularly polarized light detector based on ferromagnet/semiconductor junctions. J. Magn. Soc. Jpn. 2014, 38, 147–150. [Google Scholar] [CrossRef]
- Roca, R.C.; Nishizawa, N.; Nishibayashi, K.; Munekata, H. Investigation of helicity-dependent photocurrent at room temperature from Fe/x-AlOx/p-GaAs Schottky junction with oblique surface illumination. Jpn. J. Appl. Phys. 2017, 56, 04CN05. [Google Scholar] [CrossRef]
- Nonaka, K.; Hirono, S.; Hatakeyama, I. Magnetostatic energy of magnetic thin-film edge having volume and surface charges J. Appl. Phys. 1985, 58, 1610–1614. [Google Scholar] [CrossRef]
- Roca, R.C.; Nishizawa, N.; Nishibayashi, K.; Munekata, H. Progress in the room temperature operation of GaAs-based lateral-type spin-PD in near-infrared wavelength region. Proc. SPIE 2017, 10357, 103571C. [Google Scholar]
- Roca, R.C.; Nishizawa, N.; Nishibayashi, K.; Munekata, H. A lateral-type spin-photodiode based on Fe/x-AlOx/p-InGaAs junctions with a refracting-facet side window. J. Appl. Phys. 2018, 123, 213903. [Google Scholar] [CrossRef] [Green Version]
- Fukano, H.; Muramoto, Y.; Matsuoka, Y. Edge-illuminated refracting-facet photodiode with large bandwidth and high output voltage. Jpn. J. Appl. Phys. 2000, 39, 2360–2363. [Google Scholar] [CrossRef]
- Roca, R.C.; Nishizawa, N.; Munekata, H. Modeling and optimization of refracting-facet spin-photodiodes based on ferromagnetic metal-insulator-semiconductor tunnel junctions. SPIN 2020, 10, 2050017. [Google Scholar] [CrossRef]
- Yu, Z.G.; Flatte, M.E. Spin diffusion and injection in semiconductor structures: Electric field effects. Phys. Rev. B 2002, 66, 235302. [Google Scholar] [CrossRef] [Green Version]
- Fabian, J.; Matos-Abiague, A.; Ertler, C.; Stano, P.; Žutić, I. Semiconductor spintronics. Acta Phys. Slovaca 2007, 57, 565–907. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.I. Spin drift and spin diffusion currents in semiconductors Sci. Technol. Adv. Mater. 2008, 9, 35014. [Google Scholar] [CrossRef] [Green Version]
- Sze, S.M.; Lee, M.-K. Chapter 2 Carrier transport phenomena. In Semiconductor Devices Physics and Technology, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2012; pp. 56–58. [Google Scholar]
- Seeger, K. Chpater 9 Quantum effects in transport phenomena. In Semiconductor Physics: An Introduction, 8th ed.; Springer: Berlin, Germany, 2002; pp. 282–283. [Google Scholar]
- Ganichev, S.D.; Kiermaier, J.; Weber, W.; Danilov, S.N.; Schuh, D.; Gerl, C.; Wegscheider, W.; Prettl, W.; Bougeard, D.; Abstreiter, G. Subnanosecond ellipticity detector for laser radiation. Appl. Phys. Lett. 2007, 91, 091101. [Google Scholar] [CrossRef]
- Hirose, H.; Ito, N.; Kawaguchi, M.; Lau, Y.-C.; Hayashi, M. Circular photogalvanic effect in Cu/Bi bilayers. Appl. Phys. Lett. 2018, 113, 222404. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Hao, H.M.; Liu, Y.; Zhang, Y.; Zeng, X.L.; Zhu, S.B.; Ni, H.Q.; Chen, Y.H. Anomalous circular photogalvanic effect in p-GaAs. Opt. Express 2021, 29, 13829–13838. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 1992, 68, 3121–3124. [Google Scholar] [CrossRef] [PubMed]
- Kak, S.; Verma, P.; MacDonald, G. Cryptography and system state estimation using polarization states. Proc. SPIE 2011, 8121, 81210M. [Google Scholar]
- Kimel, A.V.; Kirilyuk, A.; Usachev, P.A.; Pisarev, R.V.; Balbashov, A.M.; Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 2005, 435, 655–657. [Google Scholar] [CrossRef]
- Stanciu, C.D.; Hansteen, F.; Kiml, A.V.; Kirilyuk, A.; Tsukamoto, A.; Itoh, A.; Rasing, T. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007, 99, 47601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkochi, T.; Fujiwara, H.; Kotsugi, M.; Tsukamoto, A.; Arai, K.; Isogami, S.; Sekiyama, A.; Yamaguchi, J.; Fukushima, K.; Adam, R.; et al. Microscopic and spectroscopic studies of light-induced magnetization switching of GdFeCo facilitated by photoemission electron microscopy. Jpn. J. Appl. Phys. 2012, 51, 73001. [Google Scholar] [CrossRef]
- Jachimowicz, K.E.; Gold, R.S. Stereoscopic (3-D) projection display using polarized color multiplexing. Opt. Eng. 1990, 29, 838–842. [Google Scholar]
- Kim, S.-C.; Kim, E.-S. Performance analysis of stereoscopic three-dimensional projection display system. 3D Res. 2010, 1, 1–16. [Google Scholar] [CrossRef]
- Boher, P.; Leroux, T.; Bignon, T.; Collomb-Patton, V. Multispectral polarization viewing angle analysis of circular polarized stereoscopic 3D displays. Proc. SPIE 2010, 7524, 75240R. [Google Scholar]
- Bae, K.-S.; Cha, U.; Moon, Y.-K.; Heo, J.W.; Lee, Y.-H.; Kim, J.-H.; Yu, C.-J. Reflective three-dimensional displays using the cholesteric liquid crystal with an inner patterned retarder. Opt. Express 2012, 20, 6927–6931. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Zhang, H.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.-W.; Qiu, C.-W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 3808. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-J.; Lin, C.-E.; Yu, L.-P.; Chou, C. Paired circularly polarized heterodyne ellipsometer. Appl. Opt. 2009, 48, 758–764. [Google Scholar] [CrossRef]
- Jan, C.-M.; Lee, Y.H.; Wu, K.-C.; Lee, C.-K. Integrating fault tolerance algorithm and circularly polarized ellipsometer for point-of-care applications. Opt. Express 2011, 19, 5431–5441. [Google Scholar] [CrossRef]
- Porter, W.H. Resolution of chiral drugs. Pure Appl. Chem. 1991, 63, 1119–1122. [Google Scholar] [CrossRef]
- Drake, A.F.; Gould, J.M.; Mason, S.F. Simultaneous monitoring of light-absorption and optical activity in the liquid chromatography of chiral substances. J. Chromatogr. 1980, 202, 239–245. [Google Scholar] [CrossRef]
- Ranjbar, B.; Gill, P. Circular dichroism techniques: Biomolecular and nanostructural analyses—A review. Chem. Biol. Drug Des. 2009, 74, 104–120. [Google Scholar] [CrossRef]
- Meglinski, I.; Macdonald, C.; Karl, A. The mapping of tissue scattering properties on the Poincaré sphere. In Biomedical Optics and 3D Imaging, OSA Technical Digest; Optical Society of America: Washington, DC, USA, 2012; p. BW3B.6. [Google Scholar]
- Kunnen, B.; Macdonald, C.; Doronin, A.; Jacques, S.; Eccles, M.; Meglinski, I. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 2015, 8, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Bickel, W.S.; Davidson, J.F.; Huffman, D.R.; Kilkson, R. Application of polarization effects in light scattering: A new biophysical tool. Proc. Nat. Acad. Sci. USA 1976, 73, 486–490. [Google Scholar] [CrossRef] [Green Version]
- Bohren, C.F.; Huffman, D.R. Chapter 4: Absorption and scattering by a sphere. In Absorption and Scattering of Light by Small Particles; Wiley-VCH: Weinheim, Germany, 1983; pp. 82–129. [Google Scholar]
- MacKintosh, F.C.; Zhu, J.X.; Pine, D.J.; Weitz, D.A. Polarization memory of multiply scattered light. Phys. Rev. B 1989, 40, 9342–9345. [Google Scholar] [CrossRef] [PubMed]
- Bicout, D.; Brosseau, C.; Martinez, A.S.; Schmitt, J.M. Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter. Phys. Rev. E 1994, 49, 1767–1770. [Google Scholar] [CrossRef] [PubMed]
- Sandell, J.L.; Zhu, T.C. A review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics 2011, 4, 773–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Sordillo, L.A.; Rodríguez-Contreras, A.; Alfano, R. Trasmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 2016, 9, 38–43. [Google Scholar] [CrossRef]
- Hielscher, A.H.; Mourant, J.R.; Bigio, I.J. Influence of particle size and biological cell suspensions. Appl. Opt. 1997, 36, 125–135. [Google Scholar] [CrossRef]
- Backman, V.; Furjar, R.; Badizadegan, K.; Itzkan, I.; Dasari, R.R.; Perelman, L.T.; Feld, M.S. Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structure in situ. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Gurger, R.S.; Backman, V.; Perelman, L.T.; Georgakoudi, I.; Badizadegan, K.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 2001, 7, 1245–1248. [Google Scholar] [CrossRef]
- Ushenko, V.; Sdobnov, A.; Syvokorovskaya, A.; Dubolazov, A.; Vanchulyak, O.; Ushenko, A.; Ushenko, Y.; Corsky, M.; Sidor, M.; Bykov, A.; et al. 3D Mueller-matrix diffusive tomography of polycrystalline blood films for cancer diagnosis. Photonics 2018, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Das, N.K.; Dey, R.; Chakraborty, S.; Panigrahi, P.K.; Meglinski, I.; Ghosh, N. Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the frame work of Born Approximation. Opt. Commun. 2018, 413, 172–178. [Google Scholar] [CrossRef]
- Ushenko, A.; Sdobnov, A.; Dubolazov, A.; Grytsiuk, M.; Ushenko, Y.; Bykov, A.; Meglinski, I. Stokes-correlometry analysis of biological tissues with polycrystalline structure. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 7101612. [Google Scholar] [CrossRef] [Green Version]
- Ushenko, V.A.; Hogan, B.T.; Dubolazov, A.; Piavchenko, G.; Kuznetsov, S.L.; Ushenko, A.G.; Ushenko, Y.O.; Gorsky, M.; Bykov, A.; Meglinski, I. 3D Mueller matrix mapping of layered distributions of depolarization degree for analysis of prostate adenoma and carcinoma diffuse tissues. Sci. Rep. 2021, 11, 5162. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, D.; Dremin, V.; Bykov, A.; Borisova, E.; Genova, T.; Popov, A.; Ossikovski, R.; Novikova, T.; Meglinski, I. Colon cancer detection by using Poincaré sphere and 2D polarimetric mapping of ex vivo colon samples. J. Biophotonics 2020, 13, e202000082. [Google Scholar] [CrossRef] [PubMed]
- Borovkova, M.; Bykov, A.; Popov, A.; Pierangelo, A.; Novikova, T.; Pahnke, J.; Meglinski, I. Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 2020, 11, 4509–4519. [Google Scholar] [CrossRef]
- Nishizawa, N.; Al-Qadi, B.; Kuchimaru, T. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics 2020, 14, e202000380. [Google Scholar]
- Nishizawa, N.; Hamada, A.; Takahashi, K.; Kuchimaru, T.; Munekata, H. Monte Carlo simulation of scattered circularly polarized light in biological tissues for detection technique of abnormal tissues using spin-polarized light emitting diodes. Jpn. J. Appl. Phys. 2020, 59, SEEG03. [Google Scholar] [CrossRef]
- Nishizawa, N.; Kawashima, S.; Al-Qadi, B.; Kuchimaru, T.; Munekata, H. Spatial discrimination of cancer using circular polarization of light scattered by biological tissues. Proc. SPIE 2020, 11521, 1152114. [Google Scholar]
- Weinberg, R.A. The Biology of Cancer, 2nd ed.; Garland Science: New York, NY, USA, 2014. [Google Scholar]
- Muto, M.; Minashi, K.; Yano, T.; Saito, Y.; Oda, I.; Nonaka, S.; Omori, T.; Sufiura, H.; Goda, K.; Kaise, M.; et al. Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: A multicenter randomized controlled trial. J. Clin. Oncol. 2010, 29, 1566–1572. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishizawa, N.; Munekata, H. Lateral-Type Spin-Photonics Devices: Development and Applications. Micromachines 2021, 12, 644. https://doi.org/10.3390/mi12060644
Nishizawa N, Munekata H. Lateral-Type Spin-Photonics Devices: Development and Applications. Micromachines. 2021; 12(6):644. https://doi.org/10.3390/mi12060644
Chicago/Turabian StyleNishizawa, Nozomi, and Hiro Munekata. 2021. "Lateral-Type Spin-Photonics Devices: Development and Applications" Micromachines 12, no. 6: 644. https://doi.org/10.3390/mi12060644
APA StyleNishizawa, N., & Munekata, H. (2021). Lateral-Type Spin-Photonics Devices: Development and Applications. Micromachines, 12(6), 644. https://doi.org/10.3390/mi12060644